rhine-0.5.0.0: Functional Reactive Programming with type-level clocks

Safe HaskellNone
LanguageHaskell2010

FRP.Rhine

Description

This module reexports most common names and combinators you will need to work with Rhine. It does not export specific clocks, resampling buffers or schedules, so you will have to import those yourself, e.g. like this:

import FRP.Rhine
import FRP.Rhine.Clock.Realtime.Millisecond

main :: IO ()
main = flow $ constMCl (putStrLn "Hello World!") @@ (waitClock :: Millisecond 100)
Synopsis

Documentation

class Monad m => MonadIO (m :: * -> *) where #

Monads in which IO computations may be embedded. Any monad built by applying a sequence of monad transformers to the IO monad will be an instance of this class.

Instances should satisfy the following laws, which state that liftIO is a transformer of monads:

Minimal complete definition

liftIO

Methods

liftIO :: IO a -> m a #

Lift a computation from the IO monad.

Instances
MonadIO IO

Since: base-4.9.0.0

Instance details

Defined in Control.Monad.IO.Class

Methods

liftIO :: IO a -> IO a #

MonadIO Q 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

liftIO :: IO a -> Q a #

MonadIO m => MonadIO (MaybeT m) 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

liftIO :: IO a -> MaybeT m a #

(Monoid w, MonadIO m) => MonadIO (WriterT w m) 
Instance details

Defined in Control.Monad.Trans.Writer.Strict

Methods

liftIO :: IO a -> WriterT w m a #

MonadIO m => MonadIO (ExceptT e m) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

liftIO :: IO a -> ExceptT e m a #

(Functor f, MonadIO m) => MonadIO (FreeT f m) 
Instance details

Defined in Control.Monad.Trans.Free

Methods

liftIO :: IO a -> FreeT f m a #

(Error e, MonadIO m) => MonadIO (ErrorT e m) 
Instance details

Defined in Control.Monad.Trans.Error

Methods

liftIO :: IO a -> ErrorT e m a #

MonadIO m => MonadIO (ReaderT r m) 
Instance details

Defined in Control.Monad.Trans.Reader

Methods

liftIO :: IO a -> ReaderT r m a #

newChan :: IO (Chan a) #

Build and returns a new instance of Chan.

leftApp :: ArrowApply a => a b c -> a (Either b d) (Either c d) #

Any instance of ArrowApply can be made into an instance of ArrowChoice by defining left = leftApp.

(^<<) :: Arrow a => (c -> d) -> a b c -> a b d infixr 1 #

Postcomposition with a pure function (right-to-left variant).

(<<^) :: Arrow a => a c d -> (b -> c) -> a b d infixr 1 #

Precomposition with a pure function (right-to-left variant).

(>>^) :: Arrow a => a b c -> (c -> d) -> a b d infixr 1 #

Postcomposition with a pure function.

(^>>) :: Arrow a => (b -> c) -> a c d -> a b d infixr 1 #

Precomposition with a pure function.

returnA :: Arrow a => a b b #

The identity arrow, which plays the role of return in arrow notation.

class Category a => Arrow (a :: * -> * -> *) where #

The basic arrow class.

Instances should satisfy the following laws:

where

assoc ((a,b),c) = (a,(b,c))

The other combinators have sensible default definitions, which may be overridden for efficiency.

Minimal complete definition

arr, (first | (***))

Methods

arr :: (b -> c) -> a b c #

Lift a function to an arrow.

first :: a b c -> a (b, d) (c, d) #

Send the first component of the input through the argument arrow, and copy the rest unchanged to the output.

second :: a b c -> a (d, b) (d, c) #

A mirror image of first.

The default definition may be overridden with a more efficient version if desired.

(***) :: a b c -> a b' c' -> a (b, b') (c, c') infixr 3 #

Split the input between the two argument arrows and combine their output. Note that this is in general not a functor.

The default definition may be overridden with a more efficient version if desired.

(&&&) :: a b c -> a b c' -> a b (c, c') infixr 3 #

Fanout: send the input to both argument arrows and combine their output.

The default definition may be overridden with a more efficient version if desired.

Instances
Monad m => Arrow (Kleisli m)

Since: base-2.1

Instance details

Defined in Control.Arrow

Methods

arr :: (b -> c) -> Kleisli m b c #

first :: Kleisli m b c -> Kleisli m (b, d) (c, d) #

second :: Kleisli m b c -> Kleisli m (d, b) (d, c) #

(***) :: Kleisli m b c -> Kleisli m b' c' -> Kleisli m (b, b') (c, c') #

(&&&) :: Kleisli m b c -> Kleisli m b c' -> Kleisli m b (c, c') #

Monad m => Arrow (MSF m)

Arrow instance for MSFs.

Instance details

Defined in Data.MonadicStreamFunction.Core

Methods

arr :: (b -> c) -> MSF m b c #

first :: MSF m b c -> MSF m (b, d) (c, d) #

second :: MSF m b c -> MSF m (d, b) (d, c) #

(***) :: MSF m b c -> MSF m b' c' -> MSF m (b, b') (c, c') #

(&&&) :: MSF m b c -> MSF m b c' -> MSF m b (c, c') #

Arrow ((->) :: * -> * -> *)

Since: base-2.1

Instance details

Defined in Control.Arrow

Methods

arr :: (b -> c) -> b -> c #

first :: (b -> c) -> (b, d) -> (c, d) #

second :: (b -> c) -> (d, b) -> (d, c) #

(***) :: (b -> c) -> (b' -> c') -> (b, b') -> (c, c') #

(&&&) :: (b -> c) -> (b -> c') -> b -> (c, c') #

(Applicative f, Arrow p) => Arrow (Tannen f p) 
Instance details

Defined in Data.Bifunctor.Tannen

Methods

arr :: (b -> c) -> Tannen f p b c #

first :: Tannen f p b c -> Tannen f p (b, d) (c, d) #

second :: Tannen f p b c -> Tannen f p (d, b) (d, c) #

(***) :: Tannen f p b c -> Tannen f p b' c' -> Tannen f p (b, b') (c, c') #

(&&&) :: Tannen f p b c -> Tannen f p b c' -> Tannen f p b (c, c') #

newtype Kleisli (m :: * -> *) a b #

Kleisli arrows of a monad.

Constructors

Kleisli 

Fields

Instances
Monad m => Arrow (Kleisli m)

Since: base-2.1

Instance details

Defined in Control.Arrow

Methods

arr :: (b -> c) -> Kleisli m b c #

first :: Kleisli m b c -> Kleisli m (b, d) (c, d) #

second :: Kleisli m b c -> Kleisli m (d, b) (d, c) #

(***) :: Kleisli m b c -> Kleisli m b' c' -> Kleisli m (b, b') (c, c') #

(&&&) :: Kleisli m b c -> Kleisli m b c' -> Kleisli m b (c, c') #

MonadPlus m => ArrowZero (Kleisli m)

Since: base-2.1

Instance details

Defined in Control.Arrow

Methods

zeroArrow :: Kleisli m b c #

MonadPlus m => ArrowPlus (Kleisli m)

Since: base-2.1

Instance details

Defined in Control.Arrow

Methods

(<+>) :: Kleisli m b c -> Kleisli m b c -> Kleisli m b c #

Monad m => ArrowChoice (Kleisli m)

Since: base-2.1

Instance details

Defined in Control.Arrow

Methods

left :: Kleisli m b c -> Kleisli m (Either b d) (Either c d) #

right :: Kleisli m b c -> Kleisli m (Either d b) (Either d c) #

(+++) :: Kleisli m b c -> Kleisli m b' c' -> Kleisli m (Either b b') (Either c c') #

(|||) :: Kleisli m b d -> Kleisli m c d -> Kleisli m (Either b c) d #

Monad m => ArrowApply (Kleisli m)

Since: base-2.1

Instance details

Defined in Control.Arrow

Methods

app :: Kleisli m (Kleisli m b c, b) c #

MonadFix m => ArrowLoop (Kleisli m)

Beware that for many monads (those for which the >>= operation is strict) this instance will not satisfy the right-tightening law required by the ArrowLoop class.

Since: base-2.1

Instance details

Defined in Control.Arrow

Methods

loop :: Kleisli m (b, d) (c, d) -> Kleisli m b c #

Monad m => Category (Kleisli m :: * -> * -> *)

Since: base-3.0

Instance details

Defined in Control.Arrow

Methods

id :: Kleisli m a a #

(.) :: Kleisli m b c -> Kleisli m a b -> Kleisli m a c #

class Arrow a => ArrowZero (a :: * -> * -> *) where #

Minimal complete definition

zeroArrow

Methods

zeroArrow :: a b c #

Instances
MonadPlus m => ArrowZero (Kleisli m)

Since: base-2.1

Instance details

Defined in Control.Arrow

Methods

zeroArrow :: Kleisli m b c #

(Applicative f, ArrowZero p) => ArrowZero (Tannen f p) 
Instance details

Defined in Data.Bifunctor.Tannen

Methods

zeroArrow :: Tannen f p b c #

class ArrowZero a => ArrowPlus (a :: * -> * -> *) where #

A monoid on arrows.

Minimal complete definition

(<+>)

Methods

(<+>) :: a b c -> a b c -> a b c infixr 5 #

An associative operation with identity zeroArrow.

Instances
MonadPlus m => ArrowPlus (Kleisli m)

Since: base-2.1

Instance details

Defined in Control.Arrow

Methods

(<+>) :: Kleisli m b c -> Kleisli m b c -> Kleisli m b c #

(Applicative f, ArrowPlus p) => ArrowPlus (Tannen f p) 
Instance details

Defined in Data.Bifunctor.Tannen

Methods

(<+>) :: Tannen f p b c -> Tannen f p b c -> Tannen f p b c #

class Arrow a => ArrowChoice (a :: * -> * -> *) where #

Choice, for arrows that support it. This class underlies the if and case constructs in arrow notation.

Instances should satisfy the following laws:

where

assocsum (Left (Left x)) = Left x
assocsum (Left (Right y)) = Right (Left y)
assocsum (Right z) = Right (Right z)

The other combinators have sensible default definitions, which may be overridden for efficiency.

Methods

left :: a b c -> a (Either b d) (Either c d) #

Feed marked inputs through the argument arrow, passing the rest through unchanged to the output.

right :: a b c -> a (Either d b) (Either d c) #

A mirror image of left.

The default definition may be overridden with a more efficient version if desired.

(+++) :: a b c -> a b' c' -> a (Either b b') (Either c c') infixr 2 #

Split the input between the two argument arrows, retagging and merging their outputs. Note that this is in general not a functor.

The default definition may be overridden with a more efficient version if desired.

(|||) :: a b d -> a c d -> a (Either b c) d infixr 2 #

Fanin: Split the input between the two argument arrows and merge their outputs.

The default definition may be overridden with a more efficient version if desired.

Instances
Monad m => ArrowChoice (Kleisli m)

Since: base-2.1

Instance details

Defined in Control.Arrow

Methods

left :: Kleisli m b c -> Kleisli m (Either b d) (Either c d) #

right :: Kleisli m b c -> Kleisli m (Either d b) (Either d c) #

(+++) :: Kleisli m b c -> Kleisli m b' c' -> Kleisli m (Either b b') (Either c c') #

(|||) :: Kleisli m b d -> Kleisli m c d -> Kleisli m (Either b c) d #

ArrowChoice ((->) :: * -> * -> *)

Since: base-2.1

Instance details

Defined in Control.Arrow

Methods

left :: (b -> c) -> Either b d -> Either c d #

right :: (b -> c) -> Either d b -> Either d c #

(+++) :: (b -> c) -> (b' -> c') -> Either b b' -> Either c c' #

(|||) :: (b -> d) -> (c -> d) -> Either b c -> d #

(Applicative f, ArrowChoice p) => ArrowChoice (Tannen f p) 
Instance details

Defined in Data.Bifunctor.Tannen

Methods

left :: Tannen f p b c -> Tannen f p (Either b d) (Either c d) #

right :: Tannen f p b c -> Tannen f p (Either d b) (Either d c) #

(+++) :: Tannen f p b c -> Tannen f p b' c' -> Tannen f p (Either b b') (Either c c') #

(|||) :: Tannen f p b d -> Tannen f p c d -> Tannen f p (Either b c) d #

class Arrow a => ArrowApply (a :: * -> * -> *) where #

Some arrows allow application of arrow inputs to other inputs. Instances should satisfy the following laws:

Such arrows are equivalent to monads (see ArrowMonad).

Minimal complete definition

app

Methods

app :: a (a b c, b) c #

Instances
Monad m => ArrowApply (Kleisli m)

Since: base-2.1

Instance details

Defined in Control.Arrow

Methods

app :: Kleisli m (Kleisli m b c, b) c #

ArrowApply ((->) :: * -> * -> *)

Since: base-2.1

Instance details

Defined in Control.Arrow

Methods

app :: (b -> c, b) -> c #

newtype ArrowMonad (a :: * -> * -> *) b #

The ArrowApply class is equivalent to Monad: any monad gives rise to a Kleisli arrow, and any instance of ArrowApply defines a monad.

Constructors

ArrowMonad (a () b) 
Instances
ArrowApply a => Monad (ArrowMonad a)

Since: base-2.1

Instance details

Defined in Control.Arrow

Methods

(>>=) :: ArrowMonad a a0 -> (a0 -> ArrowMonad a b) -> ArrowMonad a b #

(>>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b #

return :: a0 -> ArrowMonad a a0 #

fail :: String -> ArrowMonad a a0 #

Arrow a => Functor (ArrowMonad a)

Since: base-4.6.0.0

Instance details

Defined in Control.Arrow

Methods

fmap :: (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b #

(<$) :: a0 -> ArrowMonad a b -> ArrowMonad a a0 #

Arrow a => Applicative (ArrowMonad a)

Since: base-4.6.0.0

Instance details

Defined in Control.Arrow

Methods

pure :: a0 -> ArrowMonad a a0 #

(<*>) :: ArrowMonad a (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b #

liftA2 :: (a0 -> b -> c) -> ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a c #

(*>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b #

(<*) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a a0 #

(ArrowApply a, ArrowPlus a) => MonadPlus (ArrowMonad a)

Since: base-4.6.0.0

Instance details

Defined in Control.Arrow

Methods

mzero :: ArrowMonad a a0 #

mplus :: ArrowMonad a a0 -> ArrowMonad a a0 -> ArrowMonad a a0 #

ArrowPlus a => Alternative (ArrowMonad a)

Since: base-4.6.0.0

Instance details

Defined in Control.Arrow

Methods

empty :: ArrowMonad a a0 #

(<|>) :: ArrowMonad a a0 -> ArrowMonad a a0 -> ArrowMonad a a0 #

some :: ArrowMonad a a0 -> ArrowMonad a [a0] #

many :: ArrowMonad a a0 -> ArrowMonad a [a0] #

class Arrow a => ArrowLoop (a :: * -> * -> *) where #

The loop operator expresses computations in which an output value is fed back as input, although the computation occurs only once. It underlies the rec value recursion construct in arrow notation. loop should satisfy the following laws:

extension
loop (arr f) = arr (\ b -> fst (fix (\ (c,d) -> f (b,d))))
left tightening
loop (first h >>> f) = h >>> loop f
right tightening
loop (f >>> first h) = loop f >>> h
sliding
loop (f >>> arr (id *** k)) = loop (arr (id *** k) >>> f)
vanishing
loop (loop f) = loop (arr unassoc >>> f >>> arr assoc)
superposing
second (loop f) = loop (arr assoc >>> second f >>> arr unassoc)

where

assoc ((a,b),c) = (a,(b,c))
unassoc (a,(b,c)) = ((a,b),c)

Minimal complete definition

loop

Methods

loop :: a (b, d) (c, d) -> a b c #

Instances
MonadFix m => ArrowLoop (Kleisli m)

Beware that for many monads (those for which the >>= operation is strict) this instance will not satisfy the right-tightening law required by the ArrowLoop class.

Since: base-2.1

Instance details

Defined in Control.Arrow

Methods

loop :: Kleisli m (b, d) (c, d) -> Kleisli m b c #

ArrowLoop ((->) :: * -> * -> *)

Since: base-2.1

Instance details

Defined in Control.Arrow

Methods

loop :: ((b, d) -> (c, d)) -> b -> c #

(Applicative f, ArrowLoop p) => ArrowLoop (Tannen f p) 
Instance details

Defined in Data.Bifunctor.Tannen

Methods

loop :: Tannen f p (b, d) (c, d) -> Tannen f p b c #

(>>>) :: Category cat => cat a b -> cat b c -> cat a c infixr 1 #

Left-to-right composition

(<<<) :: Category cat => cat b c -> cat a b -> cat a c infixr 1 #

Right-to-left composition

safe :: Monad m => MSF m a b -> MSFExcept m a b e #

An MSF without an ExceptT layer never throws an exception, and can thus have an arbitrary exception type.

safely :: Monad m => MSFExcept m a b Empty -> MSF m a b #

If no exception can occur, the MSF can be executed without the ExceptT layer.

currentInput :: Monad m => MSFExcept m e b e #

Immediately throw the current input as an exception.

exceptS :: Monad m => MSF (ExceptT e m) a b -> MSF m a (Either e b) #

Escape an ExceptT layer by outputting the exception whenever it occurs. If an exception occurs, the current MSF continuation is tested again on the next input.

runMSFExcept :: MSFExcept m a b e -> MSF (ExceptT e m) a b #

data Empty #

The empty type. As an exception type, it encodes "no exception possible".

pauseOn :: Show a => (a -> Bool) -> String -> MSF IO a a #

Outputs every input sample, with a given message prefix, when a condition is met, and waits for some input / enter to continue.

traceWhen :: (Monad m, Show a) => (a -> Bool) -> (String -> m ()) -> String -> MSF m a a #

Outputs every input sample, with a given message prefix, using an auxiliary printing function, when a condition is met.

traceWith :: (Monad m, Show a) => (String -> m ()) -> String -> MSF m a a #

Outputs every input sample, with a given message prefix, using an auxiliary printing function.

trace :: Show a => String -> MSF IO a a #

Outputs every input sample, with a given message prefix.

repeatedly :: Monad m => (a -> a) -> a -> MSF m () a #

Generate outputs using a step-wise generation function and an initial value. Version of unfold in which the output and the new accumulator are the same. Should be equal to f a -> unfold (f >>> dup) a.

unfold :: Monad m => (a -> (b, a)) -> a -> MSF m () b #

Generate outputs using a step-wise generation function and an initial value.

accumulateWith :: Monad m => (a -> s -> s) -> s -> MSF m a s #

Applies a function to the input and an accumulator, outputing the accumulator. Equal to f s0 -> feedback s0 $ arr (uncurry f >>> dup).

mappendFrom :: (Monoid n, Monad m) => n -> MSF m n n #

Accumulate the inputs, starting from an initial monoid value.

mappendS :: (Monoid n, Monad m) => MSF m n n #

Accumulate the inputs, starting from mempty.

sumFrom :: (RModule v, Monad m) => v -> MSF m v v #

Sums the inputs, starting from an initial vector.

sumS :: (RModule v, Monad m) => MSF m v v #

Sums the inputs, starting from zero.

count :: (Num n, Monad m) => MSF m a n #

Count the number of simulation steps. Produces 1, 2, 3,...

fifo :: Monad m => MSF m [a] (Maybe a) #

Buffers and returns the elements in FIFO order, returning Nothing whenever the buffer is empty.

next :: Monad m => b -> MSF m a b -> MSF m a b #

Preprends a fixed output to an MSF, shifting the output.

iPost :: Monad m => b -> MSF m a b -> MSF m a b #

Preprends a fixed output to an MSF. The first input is completely ignored.

withSideEffect_ :: Monad m => m b -> MSF m a a #

Produces an additional side effect and passes the input unchanged.

withSideEffect :: Monad m => (a -> m b) -> MSF m a a #

Applies a function to produce an additional side effect and passes the input unchanged.

mapMaybeS :: Monad m => MSF m a b -> MSF m (Maybe a) (Maybe b) #

Apply an MSF to every input. Freezes temporarily if the input is Nothing, and continues as soon as a Just is received.

mapMSF :: Monad m => MSF m a b -> MSF m [a] [b] #

Apply an MSF to every input.

arrM_ :: Monad m => m b -> MSF m a b #

Lifts a computation into a Stream.

insert :: Monad m => MSF m (m a) a #

Pre-inserts an input sample.

type MStream (m :: * -> *) a = MSF m () a #

A stream is an MSF that produces outputs ignoring the input. It can obtain the values from a monadic context.

type MSink (m :: * -> *) a = MSF m a () #

A stream is an MSF that produces outputs producing no output. It can consume the values with side effects.

class Num (Groundring v) => RModule v where #

R-modules. A module v over a ring Groundring v is an abelian group with a linear multiplication. The hat ^ denotes the side of an operation on which the vector stands, i.e. a *^ v for v a vector.

A minimal definition should include the type Groundring and the implementations of zeroVector, ^+^, and one of *^ or ^*.

The following laws must be satisfied:

  • v1 ^+^ v2 == v2 ^+^ v1
  • a *^ zeroVector == zeroVector
  • @a *^ (v1 ^+^ v2) == a *^ v1 ^+^ a*^ v2
  • a *^ v == v ^* a
  • negateVector v == (-1) *^ v
  • v1 ^-^ v2 == v1 ^+^ negateVector v2

Minimal complete definition

zeroVector, (^+^)

Associated Types

type Groundring v :: * #

Methods

zeroVector :: v #

(*^) :: Groundring v -> v -> v infixr 6 #

(^*) :: v -> Groundring v -> v #

negateVector :: v -> v #

(^+^) :: v -> v -> v infixl 5 #

(^-^) :: v -> v -> v infixl 5 #

class (Fractional (Groundring v), RModule v) => VectorSpace v where #

A vector space is a module over a field, i.e. a commutative ring with inverses.

It needs to satisfy the axiom v ^ a == (1a) *^ v, which is the default implementation.

Methods

(^/) :: v -> Groundfield v -> v infixl 6 #

type family Groundfield v :: * #

The ground ring of a vector space is required to be commutative and to possess inverses. It is then called the "ground field". Commutativity amounts to the law a * b = b * a, and the existence of inverses is given by the requirement of the Fractional type class.

Instances
type Groundfield v 
Instance details

Defined in Data.VectorSpace

class RModule v => InnerProductSpace v where #

An inner product space is a module with an inner product, i.e. a map dot satisfying

Minimal complete definition

dot

Methods

dot :: v -> v -> Groundfield v infix 6 #

class RModule v => NormedSpace v where #

A normed space is a module with a norm, i.e. a function norm satisfying

  • norm (a ^* v) = a ^* norm v
  • norm (v1 ^+^ v2) <= norm v1 ^+^ norm v2 (the "triangle inequality")

A typical example is sqrt (v dot v), for an inner product space.

Minimal complete definition

norm

Methods

norm :: v -> Groundfield v #

reactimate :: Monad m => MSF m () () -> m () #

Run an MSF indefinitely passing a unit-carrying input stream.

embed :: Monad m => MSF m a b -> [a] -> m [b] #

Apply a monadic stream function to a list.

Because the result is in a monad, it may be necessary to traverse the whole list to evaluate the value in the results to WHNF. For example, if the monad is the maybe monad, this may not produce anything if the MSF produces Nothing at any point, so the output stream cannot consumed progressively.

To explore the output progressively, use liftMSF and '(>>>)'', together with some action that consumes/actuates on the output.

This is called runSF in Liu, Cheng, Hudak, "Causal Commutative Arrows and Their Optimization"

feedback :: Monad m => c -> MSF m (a, c) (b, c) -> MSF m a b #

Well-formed looped connection of an output component as a future input.

switch :: Monad m => MSF m a (b, Maybe c) -> (c -> MSF m a b) -> MSF m a b #

Switching applies one MSF until it produces a Just output, and then "turns on" a continuation and runs it.

A more advanced and comfortable approach to switching is given by Exceptions in Except

delay :: Monad m => a -> MSF m a a #

See iPre.

iPre #

Arguments

:: Monad m 
=> a

First output

-> MSF m a a 

Delay a signal by one sample.

liftMSFPurer :: (Monad m2, Monad m1) => (forall c. m1 c -> m2 c) -> MSF m1 a b -> MSF m2 a b #

Lifting purer monadic actions (in an arbitrary way)

liftMSFBase :: (Monad m2, MonadBase m1 m2) => MSF m1 a b -> MSF m2 a b #

Lift innermost monadic actions in a monad stacks (generalisation of liftIO).

liftMSFTrans :: (MonadTrans t, Monad m, Monad (t m)) => MSF m a b -> MSF (t m) a b #

Lift inner monadic actions in monad stacks.

liftS :: (Monad m2, MonadBase m1 m2) => (a -> m1 b) -> MSF m2 a b #

Monadic lifting from one monad into another

arrM :: Monad m => (a -> m b) -> MSF m a b #

Apply a monadic transformation to every element of the input stream.

Generalisation of arr from Arrow to monadic functions.

data MSF (m :: * -> *) a b #

Stepwise, side-effectful MSFs without implicit knowledge of time.

MSFs should be applied to streams or executed indefinitely or until they terminate. See reactimate and reactimateB for details. In general, calling the value constructor MSF or the function unMSF is discouraged.

Constructors

MSF 

Fields

Instances
Monad m => Arrow (MSF m)

Arrow instance for MSFs.

Instance details

Defined in Data.MonadicStreamFunction.Core

Methods

arr :: (b -> c) -> MSF m b c #

first :: MSF m b c -> MSF m (b, d) (c, d) #

second :: MSF m b c -> MSF m (d, b) (d, c) #

(***) :: MSF m b c -> MSF m b' c' -> MSF m (b, b') (c, c') #

(&&&) :: MSF m b c -> MSF m b c' -> MSF m b (c, c') #

Monad m => Category (MSF m :: * -> * -> *)

Instance definition for Category. Defines id and ..

Instance details

Defined in Data.MonadicStreamFunction.Core

Methods

id :: MSF m a a #

(.) :: MSF m b c -> MSF m a b -> MSF m a c #

Functor m => Functor (MSF m a)

Functor instance for MSFs.

Instance details

Defined in Data.MonadicStreamFunction.Core

Methods

fmap :: (a0 -> b) -> MSF m a a0 -> MSF m a b #

(<$) :: a0 -> MSF m a b -> MSF m a a0 #

(Functor m, Monad m) => Applicative (MSF m a)

Applicative instance for MSFs.

Instance details

Defined in Data.MonadicStreamFunction.Core

Methods

pure :: a0 -> MSF m a a0 #

(<*>) :: MSF m a (a0 -> b) -> MSF m a a0 -> MSF m a b #

liftA2 :: (a0 -> b -> c) -> MSF m a a0 -> MSF m a b -> MSF m a c #

(*>) :: MSF m a a0 -> MSF m a b -> MSF m a b #

(<*) :: MSF m a a0 -> MSF m a b -> MSF m a a0 #

type Groundring (MSF m a v) 
Instance details

Defined in Data.MonadicStreamFunction.Instances.VectorSpace

type Groundring (MSF m a v) = Groundring v

except :: Either e a -> Except e a #

Constructor for computations in the exception monad. (The inverse of runExcept).

throwE :: Monad m => e -> ExceptT e m a #

Signal an exception value e.

catchE #

Arguments

:: Monad m 
=> ExceptT e m a

the inner computation

-> (e -> ExceptT e' m a)

a handler for exceptions in the inner computation

-> ExceptT e' m a 

Handle an exception.

withExceptT :: Functor m => (e -> e') -> ExceptT e m a -> ExceptT e' m a #

Transform any exceptions thrown by the computation using the given function.

mapExceptT :: (m (Either e a) -> n (Either e' b)) -> ExceptT e m a -> ExceptT e' n b #

Map the unwrapped computation using the given function.

runExceptT :: ExceptT e m a -> m (Either e a) #

The inverse of ExceptT.

withExcept :: (e -> e') -> Except e a -> Except e' a #

Transform any exceptions thrown by the computation using the given function (a specialization of withExceptT).

mapExcept :: (Either e a -> Either e' b) -> Except e a -> Except e' b #

Map the unwrapped computation using the given function.

runExcept :: Except e a -> Either e a #

Extractor for computations in the exception monad. (The inverse of except).

type Except e = ExceptT e Identity #

The parameterizable exception monad.

Computations are either exceptions or normal values.

The return function returns a normal value, while >>= exits on the first exception. For a variant that continues after an error and collects all the errors, see Errors.

newtype ExceptT e (m :: * -> *) a #

A monad transformer that adds exceptions to other monads.

ExceptT constructs a monad parameterized over two things:

  • e - The exception type.
  • m - The inner monad.

The return function yields a computation that produces the given value, while >>= sequences two subcomputations, exiting on the first exception.

Constructors

ExceptT (m (Either e a)) 
Instances
(Functor f, MonadFree f m) => MonadFree f (ExceptT e m) 
Instance details

Defined in Control.Monad.Free.Class

Methods

wrap :: f (ExceptT e m a) -> ExceptT e m a #

MonadBase b m => MonadBase b (ExceptT e m) 
Instance details

Defined in Control.Monad.Base

Methods

liftBase :: b α -> ExceptT e m α #

MonadTrans (ExceptT e) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

lift :: Monad m => m a -> ExceptT e m a #

Monad m => Monad (ExceptT e m) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

(>>=) :: ExceptT e m a -> (a -> ExceptT e m b) -> ExceptT e m b #

(>>) :: ExceptT e m a -> ExceptT e m b -> ExceptT e m b #

return :: a -> ExceptT e m a #

fail :: String -> ExceptT e m a #

Functor m => Functor (ExceptT e m) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

fmap :: (a -> b) -> ExceptT e m a -> ExceptT e m b #

(<$) :: a -> ExceptT e m b -> ExceptT e m a #

MonadFix m => MonadFix (ExceptT e m) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

mfix :: (a -> ExceptT e m a) -> ExceptT e m a #

MonadFail m => MonadFail (ExceptT e m) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

fail :: String -> ExceptT e m a #

(Functor m, Monad m) => Applicative (ExceptT e m) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

pure :: a -> ExceptT e m a #

(<*>) :: ExceptT e m (a -> b) -> ExceptT e m a -> ExceptT e m b #

liftA2 :: (a -> b -> c) -> ExceptT e m a -> ExceptT e m b -> ExceptT e m c #

(*>) :: ExceptT e m a -> ExceptT e m b -> ExceptT e m b #

(<*) :: ExceptT e m a -> ExceptT e m b -> ExceptT e m a #

Foldable f => Foldable (ExceptT e f) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

fold :: Monoid m => ExceptT e f m -> m #

foldMap :: Monoid m => (a -> m) -> ExceptT e f a -> m #

foldr :: (a -> b -> b) -> b -> ExceptT e f a -> b #

foldr' :: (a -> b -> b) -> b -> ExceptT e f a -> b #

foldl :: (b -> a -> b) -> b -> ExceptT e f a -> b #

foldl' :: (b -> a -> b) -> b -> ExceptT e f a -> b #

foldr1 :: (a -> a -> a) -> ExceptT e f a -> a #

foldl1 :: (a -> a -> a) -> ExceptT e f a -> a #

toList :: ExceptT e f a -> [a] #

null :: ExceptT e f a -> Bool #

length :: ExceptT e f a -> Int #

elem :: Eq a => a -> ExceptT e f a -> Bool #

maximum :: Ord a => ExceptT e f a -> a #

minimum :: Ord a => ExceptT e f a -> a #

sum :: Num a => ExceptT e f a -> a #

product :: Num a => ExceptT e f a -> a #

Traversable f => Traversable (ExceptT e f) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

traverse :: Applicative f0 => (a -> f0 b) -> ExceptT e f a -> f0 (ExceptT e f b) #

sequenceA :: Applicative f0 => ExceptT e f (f0 a) -> f0 (ExceptT e f a) #

mapM :: Monad m => (a -> m b) -> ExceptT e f a -> m (ExceptT e f b) #

sequence :: Monad m => ExceptT e f (m a) -> m (ExceptT e f a) #

(Monad m, Monoid e) => MonadPlus (ExceptT e m) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

mzero :: ExceptT e m a #

mplus :: ExceptT e m a -> ExceptT e m a -> ExceptT e m a #

MonadIO m => MonadIO (ExceptT e m) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

liftIO :: IO a -> ExceptT e m a #

(Eq e, Eq1 m) => Eq1 (ExceptT e m) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

liftEq :: (a -> b -> Bool) -> ExceptT e m a -> ExceptT e m b -> Bool #

(Ord e, Ord1 m) => Ord1 (ExceptT e m) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

liftCompare :: (a -> b -> Ordering) -> ExceptT e m a -> ExceptT e m b -> Ordering #

(Read e, Read1 m) => Read1 (ExceptT e m) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (ExceptT e m a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [ExceptT e m a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (ExceptT e m a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [ExceptT e m a] #

(Show e, Show1 m) => Show1 (ExceptT e m) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> ExceptT e m a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [ExceptT e m a] -> ShowS #

MonadZip m => MonadZip (ExceptT e m) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

mzip :: ExceptT e m a -> ExceptT e m b -> ExceptT e m (a, b) #

mzipWith :: (a -> b -> c) -> ExceptT e m a -> ExceptT e m b -> ExceptT e m c #

munzip :: ExceptT e m (a, b) -> (ExceptT e m a, ExceptT e m b) #

(Functor m, Monad m, Monoid e) => Alternative (ExceptT e m) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

empty :: ExceptT e m a #

(<|>) :: ExceptT e m a -> ExceptT e m a -> ExceptT e m a #

some :: ExceptT e m a -> ExceptT e m [a] #

many :: ExceptT e m a -> ExceptT e m [a] #

PrimMonad m => PrimMonad (ExceptT e m) 
Instance details

Defined in Control.Monad.Primitive

Associated Types

type PrimState (ExceptT e m) :: * #

Methods

primitive :: (State# (PrimState (ExceptT e m)) -> (#State# (PrimState (ExceptT e m)), a#)) -> ExceptT e m a #

(Eq e, Eq1 m, Eq a) => Eq (ExceptT e m a) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

(==) :: ExceptT e m a -> ExceptT e m a -> Bool #

(/=) :: ExceptT e m a -> ExceptT e m a -> Bool #

(Ord e, Ord1 m, Ord a) => Ord (ExceptT e m a) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

compare :: ExceptT e m a -> ExceptT e m a -> Ordering #

(<) :: ExceptT e m a -> ExceptT e m a -> Bool #

(<=) :: ExceptT e m a -> ExceptT e m a -> Bool #

(>) :: ExceptT e m a -> ExceptT e m a -> Bool #

(>=) :: ExceptT e m a -> ExceptT e m a -> Bool #

max :: ExceptT e m a -> ExceptT e m a -> ExceptT e m a #

min :: ExceptT e m a -> ExceptT e m a -> ExceptT e m a #

(Read e, Read1 m, Read a) => Read (ExceptT e m a) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

readsPrec :: Int -> ReadS (ExceptT e m a) #

readList :: ReadS [ExceptT e m a] #

readPrec :: ReadPrec (ExceptT e m a) #

readListPrec :: ReadPrec [ExceptT e m a] #

(Show e, Show1 m, Show a) => Show (ExceptT e m a) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

showsPrec :: Int -> ExceptT e m a -> ShowS #

show :: ExceptT e m a -> String #

showList :: [ExceptT e m a] -> ShowS #

type PrimState (ExceptT e m) 
Instance details

Defined in Control.Monad.Primitive

type PrimState (ExceptT e m) = PrimState m

data UTCTime #

This is the simplest representation of UTC. It consists of the day number, and a time offset from midnight. Note that if a day has a leap second added to it, it will have 86401 seconds.

Instances
Eq UTCTime 
Instance details

Defined in Data.Time.Clock.Internal.UTCTime

Methods

(==) :: UTCTime -> UTCTime -> Bool #

(/=) :: UTCTime -> UTCTime -> Bool #

Data UTCTime 
Instance details

Defined in Data.Time.Clock.Internal.UTCTime

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UTCTime -> c UTCTime #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c UTCTime #

toConstr :: UTCTime -> Constr #

dataTypeOf :: UTCTime -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c UTCTime) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c UTCTime) #

gmapT :: (forall b. Data b => b -> b) -> UTCTime -> UTCTime #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UTCTime -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UTCTime -> r #

gmapQ :: (forall d. Data d => d -> u) -> UTCTime -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> UTCTime -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> UTCTime -> m UTCTime #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UTCTime -> m UTCTime #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UTCTime -> m UTCTime #

Ord UTCTime 
Instance details

Defined in Data.Time.Clock.Internal.UTCTime

NFData UTCTime 
Instance details

Defined in Data.Time.Clock.Internal.UTCTime

Methods

rnf :: UTCTime -> () #

ParseTime UTCTime 
Instance details

Defined in Data.Time.Format.Parse

TimeDomain UTCTime Source # 
Instance details

Defined in FRP.Rhine.TimeDomain

Associated Types

type Diff UTCTime :: * Source #

type Diff UTCTime Source # 
Instance details

Defined in FRP.Rhine.TimeDomain

liftPass :: Monad m => Pass w m (Either e a) -> Pass w (ExceptT e m) a #

Lift a pass operation to the new monad.

liftListen :: Monad m => Listen w m (Either e a) -> Listen w (ExceptT e m) a #

Lift a listen operation to the new monad.

liftCallCC :: CallCC m (Either e a) (Either e b) -> CallCC (ExceptT e m) a b #

Lift a callCC operation to the new monad.

duplicateSubtick :: Monad m => MSF m () (time, Either a b) -> MSF m () (time, Either a (Either a b)) Source #

In a composite running clock, duplicate the tick of one subclock.

newtype NumTimeDomain a Source #

Any Num can be wrapped to form a TimeDomain.

Constructors

NumTimeDomain 

Fields

class TimeDomain time where Source #

A time domain is an affine space representing a notion of time, such as real time, simulated time, steps, or a completely different notion.

Minimal complete definition

diffTime

Associated Types

type Diff time Source #

Methods

diffTime :: time -> time -> Diff time Source #

Instances
TimeDomain Double Source # 
Instance details

Defined in FRP.Rhine.TimeDomain

Associated Types

type Diff Double :: * Source #

TimeDomain Float Source # 
Instance details

Defined in FRP.Rhine.TimeDomain

Associated Types

type Diff Float :: * Source #

TimeDomain Integer Source # 
Instance details

Defined in FRP.Rhine.TimeDomain

Associated Types

type Diff Integer :: * Source #

TimeDomain () Source # 
Instance details

Defined in FRP.Rhine.TimeDomain

Associated Types

type Diff () :: * Source #

Methods

diffTime :: () -> () -> Diff () Source #

TimeDomain UTCTime Source # 
Instance details

Defined in FRP.Rhine.TimeDomain

Associated Types

type Diff UTCTime :: * Source #

Num a => TimeDomain (NumTimeDomain a) Source # 
Instance details

Defined in FRP.Rhine.TimeDomain

Associated Types

type Diff (NumTimeDomain a) :: * Source #

type IOClock m cl = HoistClock IO m cl Source #

Lift a clock type into MonadIO.

type LiftClock m t cl = HoistClock m (t m) cl Source #

Lift a clock type into a monad transformer.

data HoistClock m1 m2 cl Source #

Applying a monad morphism yields a new clock.

Constructors

HoistClock 

Fields

Instances
(Monad m1, Monad m2, Clock m1 cl) => Clock m2 (HoistClock m1 m2 cl) Source # 
Instance details

Defined in FRP.Rhine.Clock

Associated Types

type Time (HoistClock m1 m2 cl) :: * Source #

type Tag (HoistClock m1 m2 cl) :: * Source #

Methods

initClock :: HoistClock m1 m2 cl -> RunningClockInit m2 (Time (HoistClock m1 m2 cl)) (Tag (HoistClock m1 m2 cl)) Source #

type Time (HoistClock m1 m2 cl) Source # 
Instance details

Defined in FRP.Rhine.Clock

type Time (HoistClock m1 m2 cl) = Time cl
type Tag (HoistClock m1 m2 cl) Source # 
Instance details

Defined in FRP.Rhine.Clock

type Tag (HoistClock m1 m2 cl) = Tag cl

data RescaledClockS m cl time tag Source #

Instead of a mere function as morphism of time domains, we can transform one time domain into the other with a monadic stream function.

Constructors

RescaledClockS 

Fields

  • unscaledClockS :: cl

    The clock before the rescaling

  • rescaleS :: RescalingSInit m cl time tag

    The rescaling stream function, and rescaled initial time, depending on the initial time before rescaling

Instances
(Monad m, TimeDomain time, Clock m cl) => Clock m (RescaledClockS m cl time tag) Source # 
Instance details

Defined in FRP.Rhine.Clock

Associated Types

type Time (RescaledClockS m cl time tag) :: * Source #

type Tag (RescaledClockS m cl time tag) :: * Source #

Methods

initClock :: RescaledClockS m cl time tag -> RunningClockInit m (Time (RescaledClockS m cl time tag)) (Tag (RescaledClockS m cl time tag)) Source #

type Time (RescaledClockS m cl time tag) Source # 
Instance details

Defined in FRP.Rhine.Clock

type Time (RescaledClockS m cl time tag) = time
type Tag (RescaledClockS m cl time tag) Source # 
Instance details

Defined in FRP.Rhine.Clock

type Tag (RescaledClockS m cl time tag) = tag

data RescaledClockM m cl time Source #

Instead of a mere function as morphism of time domains, we can transform one time domain into the other with an effectful morphism.

Constructors

RescaledClockM 

Fields

Instances
(Monad m, TimeDomain time, Clock m cl) => Clock m (RescaledClockM m cl time) Source # 
Instance details

Defined in FRP.Rhine.Clock

Associated Types

type Time (RescaledClockM m cl time) :: * Source #

type Tag (RescaledClockM m cl time) :: * Source #

Methods

initClock :: RescaledClockM m cl time -> RunningClockInit m (Time (RescaledClockM m cl time)) (Tag (RescaledClockM m cl time)) Source #

type Time (RescaledClockM m cl time) Source # 
Instance details

Defined in FRP.Rhine.Clock

type Time (RescaledClockM m cl time) = time
type Tag (RescaledClockM m cl time) Source # 
Instance details

Defined in FRP.Rhine.Clock

type Tag (RescaledClockM m cl time) = Tag cl

data RescaledClock cl time Source #

Applying a morphism of time domains yields a new clock.

Constructors

RescaledClock 

Fields

Instances
(Monad m, TimeDomain time, Clock m cl) => Clock m (RescaledClock cl time) Source # 
Instance details

Defined in FRP.Rhine.Clock

Associated Types

type Time (RescaledClock cl time) :: * Source #

type Tag (RescaledClock cl time) :: * Source #

Methods

initClock :: RescaledClock cl time -> RunningClockInit m (Time (RescaledClock cl time)) (Tag (RescaledClock cl time)) Source #

type Time (RescaledClock cl time) Source # 
Instance details

Defined in FRP.Rhine.Clock

type Time (RescaledClock cl time) = time
type Tag (RescaledClock cl time) Source # 
Instance details

Defined in FRP.Rhine.Clock

type Tag (RescaledClock cl time) = Tag cl

type RescalingSInit m cl time tag = Time cl -> m (RescalingS m cl time tag, time) Source #

Like RescalingS, but allows for an initialisation of the rescaling morphism, together with the initial time.

type RescalingS m cl time tag = MSF m (Time cl, Tag cl) (time, tag) Source #

An effectful, stateful morphism of time domains is an MSF that uses side effects to rescale a point in one time domain into another one.

type RescalingM m cl time = Time cl -> m time Source #

An effectful morphism of time domains is a Kleisli arrow. It can use a side effect to rescale a point in one time domain into another one.

type Rescaling cl time = Time cl -> time Source #

A pure morphism of time domains is just a function.

data TimeInfo cl Source #

An annotated, rich time stamp.

Constructors

TimeInfo 

Fields

class TimeDomain (Time cl) => Clock m cl where Source #

Since we want to leverage Haskell's type system to annotate signal networks by their clocks, each clock must be an own type, cl. Different values of the same clock type should tick at the same speed, and only differ in implementation details. Often, clocks are singletons.

Minimal complete definition

initClock

Associated Types

type Time cl Source #

The time domain, i.e. type of the time stamps the clock creates.

type Tag cl Source #

Additional information that the clock may output at each tick, e.g. if a realtime promise was met, if an event occurred, if one of its subclocks (if any) ticked.

Methods

initClock Source #

Arguments

:: cl

The clock value, containing e.g. settings or device parameters

-> RunningClockInit m (Time cl) (Tag cl)

The stream of time stamps, and the initial time

The method that produces to a clock value a running clock, i.e. an effectful stream of tagged time stamps together with an initialisation time.

Instances
Clock IO Busy Source # 
Instance details

Defined in FRP.Rhine.Clock.Realtime.Busy

Associated Types

type Time Busy :: * Source #

type Tag Busy :: * Source #

MonadIO m => Clock m StdinClock Source # 
Instance details

Defined in FRP.Rhine.Clock.Realtime.Stdin

Associated Types

type Time StdinClock :: * Source #

type Tag StdinClock :: * Source #

Clock IO (Millisecond n) Source # 
Instance details

Defined in FRP.Rhine.Clock.Realtime.Millisecond

Associated Types

type Time (Millisecond n) :: * Source #

type Tag (Millisecond n) :: * Source #

(Monad m, PureAudioClockRate rate) => Clock m (PureAudioClock rate) Source # 
Instance details

Defined in FRP.Rhine.Clock.Realtime.Audio

Associated Types

type Time (PureAudioClock rate) :: * Source #

type Tag (PureAudioClock rate) :: * Source #

Monad m => Clock m (FixedStep n) Source # 
Instance details

Defined in FRP.Rhine.Clock.FixedStep

Associated Types

type Time (FixedStep n) :: * Source #

type Tag (FixedStep n) :: * Source #

(Monad m, TimeDomain time, Clock m cl) => Clock m (RescaledClock cl time) Source # 
Instance details

Defined in FRP.Rhine.Clock

Associated Types

type Time (RescaledClock cl time) :: * Source #

type Tag (RescaledClock cl time) :: * Source #

Methods

initClock :: RescaledClock cl time -> RunningClockInit m (Time (RescaledClock cl time)) (Tag (RescaledClock cl time)) Source #

(Monad m, Clock m cl) => Clock m (SelectClock cl a) Source # 
Instance details

Defined in FRP.Rhine.Clock.Select

Associated Types

type Time (SelectClock cl a) :: * Source #

type Tag (SelectClock cl a) :: * Source #

(MonadIO m, KnownNat bufferSize, AudioClockRate rate) => Clock m (AudioClock rate bufferSize) Source # 
Instance details

Defined in FRP.Rhine.Clock.Realtime.Audio

Associated Types

type Time (AudioClock rate bufferSize) :: * Source #

type Tag (AudioClock rate bufferSize) :: * Source #

Methods

initClock :: AudioClock rate bufferSize -> RunningClockInit m (Time (AudioClock rate bufferSize)) (Tag (AudioClock rate bufferSize)) Source #

(Monad m1, Monad m2, Clock m1 cl) => Clock m2 (HoistClock m1 m2 cl) Source # 
Instance details

Defined in FRP.Rhine.Clock

Associated Types

type Time (HoistClock m1 m2 cl) :: * Source #

type Tag (HoistClock m1 m2 cl) :: * Source #

Methods

initClock :: HoistClock m1 m2 cl -> RunningClockInit m2 (Time (HoistClock m1 m2 cl)) (Tag (HoistClock m1 m2 cl)) Source #

(Monad m, TimeDomain time, Clock m cl) => Clock m (RescaledClockM m cl time) Source # 
Instance details

Defined in FRP.Rhine.Clock

Associated Types

type Time (RescaledClockM m cl time) :: * Source #

type Tag (RescaledClockM m cl time) :: * Source #

Methods

initClock :: RescaledClockM m cl time -> RunningClockInit m (Time (RescaledClockM m cl time)) (Tag (RescaledClockM m cl time)) Source #

(Monad m, Clock m cl1, Clock m cl2) => Clock m (ParallelClock m cl1 cl2) Source # 
Instance details

Defined in FRP.Rhine.Schedule

Associated Types

type Time (ParallelClock m cl1 cl2) :: * Source #

type Tag (ParallelClock m cl1 cl2) :: * Source #

Methods

initClock :: ParallelClock m cl1 cl2 -> RunningClockInit m (Time (ParallelClock m cl1 cl2)) (Tag (ParallelClock m cl1 cl2)) Source #

(Monad m, Clock m cl1, Clock m cl2) => Clock m (SequentialClock m cl1 cl2) Source # 
Instance details

Defined in FRP.Rhine.Schedule

Associated Types

type Time (SequentialClock m cl1 cl2) :: * Source #

type Tag (SequentialClock m cl1 cl2) :: * Source #

Methods

initClock :: SequentialClock m cl1 cl2 -> RunningClockInit m (Time (SequentialClock m cl1 cl2)) (Tag (SequentialClock m cl1 cl2)) Source #

(Monad m, TimeDomain time, Clock m cl) => Clock m (RescaledClockS m cl time tag) Source # 
Instance details

Defined in FRP.Rhine.Clock

Associated Types

type Time (RescaledClockS m cl time tag) :: * Source #

type Tag (RescaledClockS m cl time tag) :: * Source #

Methods

initClock :: RescaledClockS m cl time tag -> RunningClockInit m (Time (RescaledClockS m cl time tag)) (Tag (RescaledClockS m cl time tag)) Source #

(Monad m, NonemptyNatList v) => Clock (ScheduleT Integer m) (Periodic v) Source # 
Instance details

Defined in FRP.Rhine.Clock.Periodic

Associated Types

type Time (Periodic v) :: * Source #

type Tag (Periodic v) :: * Source #

MonadIO m => Clock (EventChanT event m) (EventClock event) Source # 
Instance details

Defined in FRP.Rhine.Clock.Realtime.Event

Associated Types

type Time (EventClock event) :: * Source #

type Tag (EventClock event) :: * Source #

Methods

initClock :: EventClock event -> RunningClockInit (EventChanT event m) (Time (EventClock event)) (Tag (EventClock event)) Source #

type RunningClockInit m time tag = m (RunningClock m time tag, time) Source #

When initialising a clock, the initial time is measured (typically by means of a side effect), and a running clock is returned.

type RunningClock m time tag = MSF m () (time, tag) Source #

A clock creates a stream of time stamps and additional information, possibly together with side effects in a monad m that cause the environment to wait until the specified time is reached.

retag :: Time cl1 ~ Time cl2 => (Tag cl1 -> Tag cl2) -> TimeInfo cl1 -> TimeInfo cl2 Source #

A utility that changes the tag of a TimeInfo.

genTimeInfo :: (Monad m, Clock m cl) => cl -> Time cl -> MSF m (Time cl, Tag cl) (TimeInfo cl) Source #

Given a clock value and an initial time, generate a stream of time stamps.

rescaleMToSInit :: Monad m => (time1 -> m time2) -> time1 -> m (MSF m (time1, tag) (time2, tag), time2) Source #

Convert an effectful morphism of time domains into a stateful one with initialisation. Think of its type as RescalingM m cl time -> RescalingSInit m cl time tag, although this type is ambiguous.

rescaledClockMToS :: Monad m => RescaledClockM m cl time -> RescaledClockS m cl time (Tag cl) Source #

A RescaledClockM is trivially a RescaledClockS.

rescaledClockToS :: Monad m => RescaledClock cl time -> RescaledClockS m cl time (Tag cl) Source #

A RescaledClock is trivially a RescaledClockS.

liftClock :: (Monad m, MonadTrans t) => cl -> LiftClock m t cl Source #

Lift a clock value into a monad transformer.

ioClock :: MonadIO m => cl -> IOClock m cl Source #

Lift a clock value into MonadIO.

data ParClockInclusion clS cl where Source #

An inclusion of a clock into a tree of parallel compositions of clocks.

data LastTime cl where Source #

A tree representing possible last times to which the constituents of a clock may have ticked.

Constructors

SequentialLastTime :: LastTime cl1 -> LastTime cl2 -> LastTime (SequentialClock m cl1 cl2) 
ParallelLastTime :: LastTime cl1 -> LastTime cl2 -> LastTime (ParallelClock m cl1 cl2) 
LeafLastTime :: Time cl -> LastTime cl 

type family Out cl where ... Source #

The clock that represents the rate at which data leaves the system.

Equations

Out (SequentialClock m cl1 cl2) = Out cl2 
Out (ParallelClock m cl1 cl2) = ParallelClock m (Out cl1) (Out cl2) 
Out cl = cl 

type family In cl where ... Source #

The clock that represents the rate at which data enters the system.

Equations

In (SequentialClock m cl1 cl2) = In cl1 
In (ParallelClock m cl1 cl2) = ParallelClock m (In cl1) (In cl2) 
In cl = cl 

type ParClock m cl1 cl2 = ParallelClock m cl1 cl2 Source #

Abbrevation synonym.

data ParallelClock m cl1 cl2 Source #

Two clocks can be combined with a schedule as a clock for an asynchronous parallel composition of signal networks.

Constructors

(Time cl1 ~ Time cl2) => ParallelClock 

Fields

Instances
(Monad m, Clock m cl1, Clock m cl2) => Clock m (ParallelClock m cl1 cl2) Source # 
Instance details

Defined in FRP.Rhine.Schedule

Associated Types

type Time (ParallelClock m cl1 cl2) :: * Source #

type Tag (ParallelClock m cl1 cl2) :: * Source #

Methods

initClock :: ParallelClock m cl1 cl2 -> RunningClockInit m (Time (ParallelClock m cl1 cl2)) (Tag (ParallelClock m cl1 cl2)) Source #

type Time (ParallelClock m cl1 cl2) Source # 
Instance details

Defined in FRP.Rhine.Schedule

type Time (ParallelClock m cl1 cl2) = Time cl1
type Tag (ParallelClock m cl1 cl2) Source # 
Instance details

Defined in FRP.Rhine.Schedule

type Tag (ParallelClock m cl1 cl2) = Either (Tag cl1) (Tag cl2)

type SeqClock m cl1 cl2 = SequentialClock m cl1 cl2 Source #

Abbrevation synonym.

data SequentialClock m cl1 cl2 Source #

Two clocks can be combined with a schedule as a clock for an asynchronous sequential composition of signal networks.

Constructors

(Time cl1 ~ Time cl2) => SequentialClock 

Fields

Instances
(Monad m, Clock m cl1, Clock m cl2) => Clock m (SequentialClock m cl1 cl2) Source # 
Instance details

Defined in FRP.Rhine.Schedule

Associated Types

type Time (SequentialClock m cl1 cl2) :: * Source #

type Tag (SequentialClock m cl1 cl2) :: * Source #

Methods

initClock :: SequentialClock m cl1 cl2 -> RunningClockInit m (Time (SequentialClock m cl1 cl2)) (Tag (SequentialClock m cl1 cl2)) Source #

type Time (SequentialClock m cl1 cl2) Source # 
Instance details

Defined in FRP.Rhine.Schedule

type Time (SequentialClock m cl1 cl2) = Time cl1
type Tag (SequentialClock m cl1 cl2) Source # 
Instance details

Defined in FRP.Rhine.Schedule

type Tag (SequentialClock m cl1 cl2) = Either (Tag cl1) (Tag cl2)

data Schedule m cl1 cl2 Source #

A schedule implements a combination of two clocks. It outputs a time stamp and an Either value, which specifies which of the two subclocks has ticked.

Constructors

Time cl1 ~ Time cl2 => Schedule 

Fields

hoistSchedule :: (Monad m1, Monad m2) => (forall a. m1 a -> m2 a) -> Schedule m1 cl1 cl2 -> Schedule m2 cl1 cl2 Source #

Lift a schedule along a monad morphism.

flipSchedule :: Monad m => Schedule m cl1 cl2 -> Schedule m cl2 cl1 Source #

Swaps the clocks for a given schedule.

rescaledSchedule :: Monad m => Schedule m cl1 cl2 -> Schedule m (RescaledClock cl1 time) (RescaledClock cl2 time) Source #

If a schedule works for two clocks, a rescaling of the clocks also applies to the schedule.

rescaledScheduleS :: Monad m => Schedule m cl1 cl2 -> Schedule m (RescaledClockS m cl1 time tag1) (RescaledClockS m cl2 time tag2) Source #

As rescaledSchedule, with a stateful rescaling

readerSchedule :: (Monad m, Clock (ReaderT r m) cl1, Clock (ReaderT r m) cl2, Time cl1 ~ Time cl2) => Schedule m (HoistClock (ReaderT r m) m cl1) (HoistClock (ReaderT r m) m cl2) -> Schedule (ReaderT r m) cl1 cl2 Source #

Lifts a schedule into the ReaderT transformer, supplying the same environment to its scheduled clocks.

schedSeq1 :: (Monad m, Semigroup cl1) => Schedule m cl1 (SequentialClock m cl1 cl2) Source #

cl1 is a subclock of SequentialClock m cl1 cl2, therefore it is always possible to schedule these two clocks deterministically. The left subclock of the combined clock always ticks instantly after cl1.

schedSeq2 :: (Monad m, Semigroup cl2, Time cl1 ~ Time cl2) => Schedule m (SequentialClock m cl1 cl2) cl2 Source #

As schedSeq1, but for the right subclock. The right subclock of the combined clock always ticks instantly before cl2.

schedPar1 :: (Monad m, Semigroup cl1) => Schedule m cl1 (ParallelClock m cl1 cl2) Source #

Like schedSeq1, but for parallel clocks. The left subclock of the combined clock always ticks instantly after cl1.

schedPar1' :: (Monad m, Semigroup cl1) => Schedule m cl1 (ParallelClock m cl1 cl2) Source #

Like schedPar1, but the left subclock of the combined clock always ticks instantly before cl1.

schedPar2 :: (Monad m, Semigroup cl2, Time cl1 ~ Time cl2) => Schedule m (ParallelClock m cl1 cl2) cl2 Source #

Like schedPar1, but for the right subclock. The right subclock of the combined clock always ticks instantly before cl2.

schedPar2' :: (Monad m, Semigroup cl2, Time cl1 ~ Time cl2) => Schedule m (ParallelClock m cl1 cl2) cl2 Source #

Like schedPar1, but the right subclock of the combined clock always ticks instantly after cl2.

parClockTagInclusion :: ParClockInclusion clS cl -> Tag clS -> Tag cl Source #

Generates a tag for the composite clock from a tag of a leaf clock, given a parallel clock inclusion.

schedule :: (Monad m, Clock (ScheduleT (Diff (Time cl1)) m) cl1, Clock (ScheduleT (Diff (Time cl1)) m) cl2, Time cl1 ~ Time cl2, Ord (Diff (Time cl1)), Num (Diff (Time cl1))) => Schedule (ScheduleT (Diff (Time cl1)) m) cl1 cl2 Source #

Two clocks in the ScheduleT monad transformer can always be canonically scheduled. Indeed, this is the purpose for which ScheduleT was defined.

concurrently :: (Clock IO cl1, Clock IO cl2, Time cl1 ~ Time cl2) => Schedule IO cl1 cl2 Source #

Runs two clocks in separate GHC threads and collects the results in the foreground thread. Caution: The data processing will still happen in the same thread (since data processing and scheduling are separated concerns).

concurrentlyWriter :: (Monoid w, Clock (WriterT w IO) cl1, Clock (WriterT w IO) cl2, Time cl1 ~ Time cl2) => Schedule (WriterT w IO) cl1 cl2 Source #

As concurrently, but in the WriterT w IO monad. Both background threads share a joint variable with the foreground to which the writer effect writes.

concurrentlyExcept :: (Clock (ExceptT e IO) cl1, Clock (ExceptT e IO) cl2, Time cl1 ~ Time cl2) => Schedule (ExceptT e IO) cl1 cl2 Source #

Schedule in the ExceptT e IO monad. Whenever one clock encounters an exception in ExceptT, this exception is thrown in the other clock's ExceptT layer as well, and in the schedule's (i.e. in the main clock's) thread.

concurrentlyMaybe :: (Clock (MaybeT IO) cl1, Clock (MaybeT IO) cl2, Time cl1 ~ Time cl2) => Schedule (MaybeT IO) cl1 cl2 Source #

As concurrentlyExcept, with a single possible exception value.

type ResBuf m cla clb a b = ResamplingBuffer m cla clb a b Source #

A type synonym to allow for abbreviation.

data ResamplingBuffer m cla clb a b Source #

A stateful buffer from which one may get a value, or to which one may put a value, depending on the clocks. ResamplingBuffers can be clock-polymorphic, or specific to certain clocks.

  • m: Monad in which the ResamplingBuffer may have side effects
  • cla: The clock at which data enters the buffer
  • clb: The clock at which data leaves the buffer
  • a: The input type
  • b: The output type

Constructors

ResamplingBuffer 

Fields

  • put :: TimeInfo cla -> a -> m (ResamplingBuffer m cla clb a b)

    Store one input value of type a at a given time stamp, and return a continuation.

  • get :: TimeInfo clb -> m (b, ResamplingBuffer m cla clb a b)

    Retrieve one output value of type b at a given time stamp, and a continuation.

hoistResamplingBuffer :: (Monad m1, Monad m2) => (forall c. m1 c -> m2 c) -> ResamplingBuffer m1 cla clb a b -> ResamplingBuffer m2 cla clb a b Source #

Hoist a ResamplingBuffer along a monad morphism.

data AsyncMealy m s a b Source #

An asynchronous, effectful Mealy machine description. (Input and output do not happen simultaneously.) It can be used to create ResamplingBuffers.

Constructors

AsyncMealy 

Fields

  • amPut :: s -> a -> m s

    Given the previous state and an input value, return the new state.

  • amGet :: s -> m (b, s)

    Given the previous state, return an output value and a new state.

timelessResamplingBuffer Source #

Arguments

:: Monad m 
=> AsyncMealy m s a b 
-> s

The initial state

-> ResamplingBuffer m cl1 cl2 a b 

A resampling buffer that is unaware of the time information of the clock, and thus clock-polymorphic. It is built from an asynchronous Mealy machine description. Whenever get is called on timelessResamplingBuffer machine s, the method amGet is called on machine with state s, discarding the time stamp. Analogously for put.

trivialResamplingBuffer :: Monad m => ResamplingBuffer m cl1 cl2 () () Source #

A resampling buffer that only accepts and emits units.

msfBuffer Source #

Arguments

:: Monad m 
=> MSF m (TimeInfo cl2, [(TimeInfo cl1, a)]) b

The monadic stream function that consumes a single time stamp for the moment when an output value is required, and a list of timestamped inputs, and outputs a single value. The list will contain the newest element in the head.

-> ResamplingBuffer m cl1 cl2 a b 

Given a monadic stream function that accepts a varying number of inputs (a list), a ResamplingBuffer can be formed that collects all input in a timestamped list.

lifoUnbounded :: Monad m => ResamplingBuffer m cl1 cl2 a (Maybe a) Source #

An unbounded LIFO buffer. If the buffer is empty, it will return Nothing.

lifoBounded :: Monad m => Int -> ResamplingBuffer m cl1 cl2 a (Maybe a) Source #

A bounded LIFO buffer that forgets the oldest values when the size is above a given threshold. If the buffer is empty, it will return Nothing.

lifoWatch :: Monad m => ResamplingBuffer m cl1 cl2 a (Maybe a, Int) Source #

An unbounded LIFO buffer that also returns its current size.

keepLast :: Monad m => a -> ResamplingBuffer m cl1 cl2 a a Source #

Always keeps the last input value, or in case of no input an initialisation value. If cl2 approximates continuity, this behaves like a zero-order hold.

fifoUnbounded :: Monad m => ResamplingBuffer m cl1 cl2 a (Maybe a) Source #

An unbounded FIFO buffer. If the buffer is empty, it will return Nothing.

fifoBounded :: Monad m => Int -> ResamplingBuffer m cl1 cl2 a (Maybe a) Source #

A bounded FIFO buffer that forgets the oldest values when the size is above a given threshold. If the buffer is empty, it will return Nothing.

fifoWatch :: Monad m => ResamplingBuffer m cl1 cl2 a (Maybe a, Int) Source #

An unbounded FIFO buffer that also returns its current size.

collect :: Monad m => ResamplingBuffer m cl1 cl2 a [a] Source #

Collects all input in a list, with the newest element at the head, which is returned and emptied upon get.

collectSequence :: Monad m => ResamplingBuffer m cl1 cl2 a (Seq a) Source #

Reimplementation of collect with sequences, which gives a performance benefit if the sequence needs to be reversed or searched.

pureBuffer :: Monad m => ([a] -> b) -> ResamplingBuffer m cl1 cl2 a b Source #

pureBuffer collects all input values lazily in a list and processes it when output is required. Semantically, pureBuffer f == collect >>-^ arr f, but pureBuffer is slightly more efficient.

foldBuffer Source #

Arguments

:: Monad m 
=> (a -> b -> b)

The folding function

-> b

The initial value

-> ResamplingBuffer m cl1 cl2 a b 

A buffer collecting all incoming values with a folding function. It is strict, i.e. the state value b is calculated on every put.

data SelectClock cl a Source #

A clock that selects certain subevents of type a, from the tag of a main clock.

If two SelectClocks would tick on the same type of subevents, but should not have the same type, one should newtype the subevent.

Constructors

SelectClock 

Fields

  • mainClock :: cl

    The main clock | Return Nothing if no tick of the subclock is required, or 'Just a' if the subclock should tick, with tag a.

  • select :: Tag cl -> Maybe a
     
Instances
(Monad m, Clock m cl) => Clock m (SelectClock cl a) Source # 
Instance details

Defined in FRP.Rhine.Clock.Select

Associated Types

type Time (SelectClock cl a) :: * Source #

type Tag (SelectClock cl a) :: * Source #

type Time (SelectClock cl a) Source # 
Instance details

Defined in FRP.Rhine.Clock.Select

type Time (SelectClock cl a) = Time cl
type Tag (SelectClock cl a) Source # 
Instance details

Defined in FRP.Rhine.Clock.Select

type Tag (SelectClock cl a) = a

schedSelectClocks :: (Monad m, Semigroup cl, Clock m cl) => Schedule m (SelectClock cl a) (SelectClock cl b) Source #

A universal schedule for two subclocks of the same main clock. The main clock must be a Semigroup (e.g. a singleton).

schedSelectClockAndMain :: (Monad m, Semigroup cl, Clock m cl) => Schedule m cl (SelectClock cl a) Source #

A universal schedule for a subclock and its main clock.

filterS :: Monad m => MSF m () (Maybe b) -> MSF m () b Source #

Helper function that runs an MSF with Maybe output until it returns a value.

data StdinClock Source #

A clock that ticks for every line entered on the console, outputting the entered line as its Tag.

Constructors

StdinClock 

data Busy Source #

A clock that ticks without waiting. All time passed between ticks amounts to computation time, side effects, time measurement and framework overhead.

Constructors

Busy 
Instances
Clock IO Busy Source # 
Instance details

Defined in FRP.Rhine.Clock.Realtime.Busy

Associated Types

type Time Busy :: * Source #

type Tag Busy :: * Source #

type Time Busy Source # 
Instance details

Defined in FRP.Rhine.Clock.Realtime.Busy

type Tag Busy Source # 
Instance details

Defined in FRP.Rhine.Clock.Realtime.Busy

type Tag Busy = ()

data PureAudioClock (rate :: AudioRate) Source #

A side-effect free clock for audio synthesis and analysis. The sample rate is given by rate (of type AudioRate). Since this clock does not wait for the completion of buffers, the producer or the consumer of the signal has the obligation to synchronise the signal with the system clock, if realtime is desired. Otherwise, the clock is also suitable e.g. for batch processing of audio files.

Constructors

PureAudioClock 
Instances
(Monad m, PureAudioClockRate rate) => Clock m (PureAudioClock rate) Source # 
Instance details

Defined in FRP.Rhine.Clock.Realtime.Audio

Associated Types

type Time (PureAudioClock rate) :: * Source #

type Tag (PureAudioClock rate) :: * Source #

type Time (PureAudioClock rate) Source # 
Instance details

Defined in FRP.Rhine.Clock.Realtime.Audio

type Time (PureAudioClock rate) = Double
type Tag (PureAudioClock rate) Source # 
Instance details

Defined in FRP.Rhine.Clock.Realtime.Audio

type Tag (PureAudioClock rate) = ()

data AudioClock (rate :: AudioRate) (bufferSize :: Nat) Source #

A clock for audio analysis and synthesis. It internally processes samples in buffers of size bufferSize, (the programmer does not have to worry about this), at a sample rate of rate (of type AudioRate). Both these parameters are in the type signature, so it is not possible to compose signals with different buffer sizes or sample rates.

After processing a buffer, the clock will wait the remaining time until the next buffer must be processed, using system UTC time. The tag of the clock specifies whether the attempt to finish the last buffer in real time was successful. A value of Nothing represents success, a value of Just double represents a lag of double seconds.

Constructors

AudioClock 
Instances
(MonadIO m, KnownNat bufferSize, AudioClockRate rate) => Clock m (AudioClock rate bufferSize) Source # 
Instance details

Defined in FRP.Rhine.Clock.Realtime.Audio

Associated Types

type Time (AudioClock rate bufferSize) :: * Source #

type Tag (AudioClock rate bufferSize) :: * Source #

Methods

initClock :: AudioClock rate bufferSize -> RunningClockInit m (Time (AudioClock rate bufferSize)) (Tag (AudioClock rate bufferSize)) Source #

type Time (AudioClock rate bufferSize) Source # 
Instance details

Defined in FRP.Rhine.Clock.Realtime.Audio

type Time (AudioClock rate bufferSize) = UTCTime
type Tag (AudioClock rate bufferSize) Source # 
Instance details

Defined in FRP.Rhine.Clock.Realtime.Audio

type Tag (AudioClock rate bufferSize) = Maybe Double

data AudioRate Source #

Rates at which audio signals are typically sampled.

Constructors

Hz44100 
Hz48000 
Hz96000 

pureAudioClockF :: PureAudioClockF rate Source #

A rescaled version of PureAudioClock with TimeDomain Float, using double2Float to rescale.

data Periodic (v :: [Nat]) where Source #

A clock whose tick lengths cycle through a (nonempty) list of type-level natural numbers. E.g. Periodic '[1, 2] ticks at times 1, 3, 4, 5, 7, 8, etc.

The waiting side effect is formal, in ScheduleT. You can use e.g. runScheduleIO to produce an actual delay.

Constructors

Periodic :: Periodic (n ': ns) 
Instances
(Monad m, NonemptyNatList v) => Clock (ScheduleT Integer m) (Periodic v) Source # 
Instance details

Defined in FRP.Rhine.Clock.Periodic

Associated Types

type Time (Periodic v) :: * Source #

type Tag (Periodic v) :: * Source #

type Time (Periodic v) Source # 
Instance details

Defined in FRP.Rhine.Clock.Periodic

type Time (Periodic v) = Integer
type Tag (Periodic v) Source # 
Instance details

Defined in FRP.Rhine.Clock.Periodic

type Tag (Periodic v) = ()

type BehaviorF m time a b = BehaviourF m time a b Source #

Compatibility to U.S. american spelling.

type BehaviourF m time a b = forall cl. time ~ Time cl => ClSF m cl a b Source #

A (side-effectful) behaviour function is a time-aware synchronous stream function that doesn't depend on a particular clock. time denotes the TimeDomain.

type Behavior m time a = Behaviour m time a Source #

Compatibility to U.S. american spelling.

type Behaviour m time a = forall cl. time ~ Time cl => ClSignal m cl a Source #

A (side-effectful) behaviour is a time-aware stream that doesn't depend on a particular clock. time denotes the TimeDomain.

type ClSignal m cl a = forall arbitrary. ClSF m cl arbitrary a Source #

A clocked signal is a ClSF with no input required. It produces its output on its own.

type ClSF m cl a b = MSF (ReaderT (TimeInfo cl) m) a b Source #

A (synchronous, clocked) monadic stream function with the additional side effect of being time-aware, that is, reading the current TimeInfo of the clock cl.

hoistClSF :: (Monad m1, Monad m2) => (forall c. m1 c -> m2 c) -> ClSF m1 cl a b -> ClSF m2 cl a b Source #

Hoist a ClSF along a monad morphism.

hoistClSFAndClock :: (Monad m1, Monad m2) => (forall c. m1 c -> m2 c) -> ClSF m1 cl a b -> ClSF m2 (HoistClock m1 m2 cl) a b Source #

Hoist a ClSF and its clock along a monad morphism.

liftClSF :: (Monad m, MonadTrans t, Monad (t m)) => ClSF m cl a b -> ClSF (t m) cl a b Source #

Lift a ClSF into a monad transformer.

liftClSFAndClock :: (Monad m, MonadTrans t, Monad (t m)) => ClSF m cl a b -> ClSF (t m) (LiftClock m t cl) a b Source #

Lift a ClSF and its clock into a monad transformer.

timeless :: Monad m => MSF m a b -> ClSF m cl a b Source #

A monadic stream function without dependency on time is a ClSF for any clock.

arrMCl :: Monad m => (a -> m b) -> ClSF m cl a b Source #

Utility to lift Kleisli arrows directly to ClSFs.

constMCl :: Monad m => m b -> ClSF m cl a b Source #

Version without input.

mapMaybe :: Monad m => ClSF m cl a b -> ClSF m cl (Maybe a) (Maybe b) Source #

Call a ClSF every time the input is 'Just a'.

Caution: This will not change the time differences since the last tick. For example, while integrate 1 is approximately the same as timeInfoOf sinceInit, mapMaybe $ integrate 1 is very different from mapMaybe $ timeInfoOf sinceInit. The former only integrates when the input is Just 1, whereas the latter always returns the correct time since initialisation.

data SN m cl a b where Source #

An SN is a side-effectful asynchronous signal network, where input, data processing (including side effects) and output need not happen at the same time.

The type parameters are:

  • m: The monad in which side effects take place.
  • cl: The clock of the whole signal network. It may be sequentially or parallely composed from other clocks.
  • a: The input type. Input arrives at the rate In cl.
  • b: The output type. Output arrives at the rate Out cl.

Constructors

Synchronous :: (cl ~ In cl, cl ~ Out cl) => ClSF m cl a b -> SN m cl a b

A synchronous monadic stream function is the basic building block. For such an SN, data enters and leaves the system at the same rate as it is processed.

Sequential :: (Clock m clab, Clock m clcd, Time clab ~ Time clcd, Time clab ~ Time (Out clab), Time clcd ~ Time (In clcd)) => SN m clab a b -> ResamplingBuffer m (Out clab) (In clcd) b c -> SN m clcd c d -> SN m (SequentialClock m clab clcd) a d

Two SNs may be sequentially composed if there is a matching ResamplingBuffer between them.

Parallel :: (Clock m cl1, Clock m cl2, Time cl1 ~ Time (Out cl1), Time cl2 ~ Time (Out cl2), Time cl1 ~ Time cl2, Time cl1 ~ Time (In cl1), Time cl2 ~ Time (In cl2)) => SN m cl1 a b -> SN m cl2 a b -> SN m (ParallelClock m cl1 cl2) a b

Two SNs with the same input and output data may be parallely composed.

commuteReaders :: ReaderT r1 (ReaderT r2 m) a -> ReaderT r2 (ReaderT r1 m) a Source #

Commute two ReaderT transformer layers past each other

readerS :: Monad m => ClSF m cl (a, r) b -> ClSF (ReaderT r m) cl a b Source #

Create ("wrap") a ReaderT layer in the monad stack of a behaviour. Each tick, the ReaderT side effect is performed by passing the original behaviour the extra r input.

runReaderS :: Monad m => ClSF (ReaderT r m) cl a b -> ClSF m cl (a, r) b Source #

Remove ("run") a ReaderT layer from the monad stack by making it an explicit input to the behaviour.

runReaderS_ :: Monad m => ClSF (ReaderT r m) cl a b -> r -> ClSF m cl a b Source #

Remove a ReaderT layer by passing the readonly environment explicitly.

type BehaviorFExcept m time a b e = BehaviourFExcept m time a b e Source #

Compatibility to U.S. american spelling.

type BehaviourFExcept m time a b e = forall cl. time ~ Time cl => ClSFExcept m cl a b e Source #

A clock polymorphic ClSFExcept, or equivalently an exception-throwing behaviour. Any clock with time domain time may occur.

type ClSFExcept m cl a b e = MSFExcept (ReaderT (TimeInfo cl) m) a b e Source #

A synchronous exception-throwing signal function. It is based on a newtype from Dunai, MSFExcept, to exhibit a monad interface in the exception type. return then corresponds to throwing an exception, and `(>>=)` is exception handling. (For more information, see the documentation of MSFExcept.)

  • m: The monad that the signal function may take side effects in
  • cl: The clock on which the signal function ticks
  • a: The input type
  • b: The output type
  • e: The type of exceptions that can be thrown

throwS :: Monad m => ClSF (ExceptT e m) cl e a Source #

Immediately throw the incoming exception.

throw :: Monad m => e -> MSF (ExceptT e m) a b Source #

Immediately throw the given exception.

pass :: Monad m => MSF (ExceptT e m) a a Source #

Do not throw an exception.

throwOn :: Monad m => e -> ClSF (ExceptT e m) cl Bool () Source #

Throw the given exception when the Bool turns true.

throwOn' :: Monad m => ClSF (ExceptT e m) cl (Bool, e) () Source #

Variant of throwOn, where the exception can vary every tick.

throwOnCond :: Monad m => (a -> Bool) -> e -> ClSF (ExceptT e m) cl a a Source #

Throw the exception e whenever the function evaluates to True.

throwOnCondM :: Monad m => (a -> m Bool) -> e -> ClSF (ExceptT e m) cl a a Source #

Variant of throwOnCond for Kleisli arrows. | Throws the exception when the input is True.

throwMaybe :: Monad m => ClSF (ExceptT e m) cl (Maybe e) (Maybe a) Source #

When the input is Just e, throw the exception e.

runClSFExcept :: Monad m => ClSFExcept m cl a b e -> ClSF (ExceptT e m) cl a b Source #

Leave the monad context, to use the ClSFExcept as an Arrow.

try :: Monad m => ClSF (ExceptT e m) cl a b -> ClSFExcept m cl a b e Source #

Enter the monad context in the exception for ClSFs in the ExceptT monad. The ClSF will be run until it encounters an exception.

once :: Monad m => (a -> m e) -> ClSFExcept m cl a b e Source #

Within the same tick, perform a monadic action, and immediately throw the value as an exception.

once_ :: Monad m => m e -> ClSFExcept m cl a b e Source #

A variant of once without input.

step :: Monad m => (a -> m (b, e)) -> ClSFExcept m cl a b e Source #

Advances a single tick with the given Kleisli arrow, and then throws an exception.

timeInfo :: Monad m => ClSF m cl a (TimeInfo cl) Source #

Read the environment variable, i.e. the TimeInfo.

timeInfoOf :: Monad m => (TimeInfo cl -> b) -> ClSF m cl a b Source #

Utility to apply functions to the current TimeInfo, such as record selectors: printAbsoluteTime :: ClSF IO cl () () printAbsoluteTime = timeInfoOf absolute >>> arrMCl print

sinceLastS :: Monad m => ClSF m cl a (Diff (Time cl)) Source #

Continuously return the time difference since the last tick.

sinceInitS :: Monad m => ClSF m cl a (Diff (Time cl)) Source #

Continuously return the time difference since clock initialisation.

absoluteS :: Monad m => ClSF m cl a (Time cl) Source #

Continuously return the absolute time.

tagS :: Monad m => ClSF m cl a (Tag cl) Source #

Continuously return the tag of the current tick.

sinceStart :: (Monad m, TimeDomain time) => BehaviourF m time a (Diff time) Source #

Calculate the time passed since this ClSF was instantiated. This is _not_ the same as sinceInitS, which measures the time since clock initialisation.

For example, the following gives a sawtooth signal:

sawtooth = safely $ do
  try $ sinceStart >>> proc time -> do
    throwOn () -time 1
    returnA    -< time
  safe sawtooth

If you replace sinceStart by sinceInitS, it will usually hang after one second, since it doesn't reset after restarting the sawtooth.

(>->) :: Category cat => cat a b -> cat b c -> cat a c infixr 6 Source #

Alias for >>> (sequential composition) with higher operator precedence, designed to work with the other operators, e.g.:

clsf1 >-> clsf2 @@ clA ||@ sched @|| clsf3 >-> clsf4 @@ clB

The type signature specialises e.g. to

(>->) :: Monad m => ClSF m cl a b -> ClSF m cl b c -> ClSF m cl a c

(<-<) :: Category cat => cat b c -> cat a b -> cat a c infixl 6 Source #

Alias for <<<.

arr_ :: Arrow a => b -> a c b Source #

Output a constant value. Specialises e.g. to this type signature:

arr_ :: Monad m => b -> ClSF m cl a b

clId :: Monad m => ClSF m cl a a Source #

The identity synchronous stream function.

integralFrom :: (Monad m, VectorSpace v, Groundfield v ~ Diff td) => v -> BehaviorF m td v v Source #

The output of integralFrom v0 is the numerical Euler integral of the input, with initial offset v0.

integral :: (Monad m, VectorSpace v, Groundfield v ~ Diff td) => BehaviorF m td v v Source #

Euler integration, with zero initial offset.

derivativeFrom :: (Monad m, VectorSpace v, Groundfield v ~ Diff td) => v -> BehaviorF m td v v Source #

The output of derivativeFrom v0 is the numerical derivative of the input, with a Newton difference quotient. The input is initialised with v0.

derivative :: (Monad m, VectorSpace v, Groundfield v ~ Diff td) => BehaviorF m td v v Source #

Numerical derivative with input initialised to zero.

threePointDerivativeFrom Source #

Arguments

:: (Monad m, VectorSpace v, Groundfield v ~ Diff td) 
=> v

The initial position

-> BehaviorF m td v v 

Like derivativeFrom, but uses three samples to compute the derivative. Consequently, it is delayed by one sample.

threePointDerivative :: (Monad m, VectorSpace v, Groundfield v ~ Diff td) => BehaviorF m td v v Source #

Like threePointDerivativeFrom, but with the initial position initialised to zeroVector.

weightedAverageFrom Source #

Arguments

:: (Monad m, VectorSpace v, Groundfield v ~ Diff td) 
=> v

The initial position

-> BehaviorF m td (v, Groundfield v) v 

A weighted moving average signal function. The output is the average of the first input, weighted by the second input (which is assumed to be always between 0 and 1). The weight is applied to the average of the last tick, so a weight of 1 simply repeats the past value unchanged, whereas a weight of 0 outputs the current value.

averageFrom Source #

Arguments

:: (Monad m, VectorSpace v, Floating (Groundfield v), Groundfield v ~ Diff td) 
=> v

The initial position

-> Diff td

The time scale on which the signal is averaged

-> BehaviorF m td v v 

An exponential moving average, or low pass. It will average out, or filter, all features below a given time constant t. (Equivalently, it filters out frequencies above 1 / (2 * pi * t).)

average Source #

Arguments

:: (Monad m, VectorSpace v, Floating (Groundfield v), Groundfield v ~ Diff td) 
=> Diff td

The time scale on which the signal is averaged

-> BehaviourF m td v v 

An average, or low pass, initialised to zero.

averageLinFrom Source #

Arguments

:: (Monad m, VectorSpace v, Groundfield v ~ Diff td) 
=> v

The initial position

-> Diff td

The time scale on which the signal is averaged

-> BehaviourF m td v v 

A linearised version of averageFrom. It is more efficient, but only accurate if the supplied time scale is much bigger than the average time difference between two ticks.

averageLin Source #

Arguments

:: (Monad m, VectorSpace v, Groundfield v ~ Diff td) 
=> Diff td

The time scale on which the signal is averaged

-> BehaviourF m td v v 

Linearised version of average.

lowPass :: (Monad m, VectorSpace v, Floating (Groundfield v), Groundfield v ~ Diff td) => Diff td -> BehaviourF m td v v Source #

Alias for average.

highPass Source #

Arguments

:: (Monad m, VectorSpace v, Floating (Groundfield v), Groundfield v ~ Diff td) 
=> Diff td

The time constant t

-> BehaviourF m td v v 

Filters out frequencies below 1 / (2 * pi * t).

bandPass Source #

Arguments

:: (Monad m, VectorSpace v, Floating (Groundfield v), Groundfield v ~ Diff td) 
=> Diff td

The time constant t

-> BehaviourF m td v v 

Filters out frequencies other than 1 / (2 * pi * t).

bandStop Source #

Arguments

:: (Monad m, VectorSpace v, Floating (Groundfield v), Groundfield v ~ Diff td) 
=> Diff td

The time constant t

-> BehaviourF m td v v 

Filters out the frequency 1 / (2 * pi * t).

keepFirst :: Monad m => ClSF m cl a a Source #

Remembers and indefinitely outputs ("holds") the first input value.

historySince Source #

Arguments

:: (Monad m, Ord (Diff (Time cl)), TimeDomain (Time cl)) 
=> Diff (Time cl)

The size of the time window

-> ClSF m cl a (Seq (TimeInfo cl, a)) 

Remembers all input values that arrived within a given time window. New values are appended left.

delayBy Source #

Arguments

:: (Monad m, Ord (Diff (Time cl)), TimeDomain (Time cl)) 
=> Diff (Time cl)

The time span to delay the signal

-> ClSF m cl a a 

Delay a signal by certain time span.

timer :: (Monad m, TimeDomain td, Ord (Diff td)) => Diff td -> BehaviorF (ExceptT () m) td a (Diff td) Source #

Throws an exception after the specified time difference, outputting the time passed since the timer was instantiated.

timer_ :: (Monad m, TimeDomain td, Ord (Diff td)) => Diff td -> BehaviorF (ExceptT () m) td a () Source #

Like timer_, but doesn't output the remaining time at all.

scaledTimer :: (Monad m, TimeDomain td, Fractional (Diff td), Ord (Diff td)) => Diff td -> BehaviorF (ExceptT () m) td a (Diff td) Source #

Like timer, but divides the remaining time by the total time.

lastS :: Monad m => a -> MSF m (Maybe a) a Source #

Remembers the last Just value, defaulting to the given initialisation value.

(>>-^) :: Monad m => ResamplingBuffer m cl1 cl2 a b -> ClSF m cl2 b c -> ResamplingBuffer m cl1 cl2 a c infix 2 Source #

Postcompose a ResamplingBuffer with a matching ClSF.

(^->>) :: Monad m => ClSF m cl1 a b -> ResamplingBuffer m cl1 cl2 b c -> ResamplingBuffer m cl1 cl2 a c infix 1 Source #

Precompose a ResamplingBuffer with a matching ClSF.

(*-*) :: Monad m => ResamplingBuffer m cl1 cl2 a b -> ResamplingBuffer m cl1 cl2 c d -> ResamplingBuffer m cl1 cl2 (a, c) (b, d) infixl 4 Source #

Parallely compose two ResamplingBuffers.

(&-&) :: Monad m => ResamplingBuffer m cl1 cl2 a b -> ResamplingBuffer m cl1 cl2 a c -> ResamplingBuffer m cl1 cl2 a (b, c) infixl 4 Source #

Parallely compose two ResamplingBuffers, duplicating the input.

timestamped :: Monad m => (forall b. ResamplingBuffer m cl clf b (f b)) -> ResamplingBuffer m cl clf a (f (a, TimeInfo cl)) Source #

Given a ResamplingBuffer where the output type depends on the input type polymorphically, we can produce a timestamped version that simply annotates every input value with the TimeInfo when it arrived.

(>>>^) :: Monad m => SN m cl a b -> (b -> c) -> SN m cl a c Source #

Postcompose a signal network with a pure function.

(^>>>) :: Monad m => (a -> b) -> SN m cl b c -> SN m cl a c Source #

Precompose a signal network with a pure function.

(****) :: Monad m => SN m cl a b -> SN m cl c d -> SN m cl (a, c) (b, d) Source #

Compose two signal networks on the same clock in data-parallel. At one tick of cl, both networks are stepped.

(||||) :: (Monad m, Clock m clL, Clock m clR, Time clL ~ Time clR, Time clL ~ Time (Out clL), Time clL ~ Time (In clL), Time clR ~ Time (Out clR), Time clR ~ Time (In clR)) => SN m clL a b -> SN m clR a b -> SN m (ParClock m clL clR) a b Source #

Compose two signal networks on different clocks in clock-parallel. At one tick of ParClock m cl1 cl2, one of the networks is stepped, dependent on which constituent clock has ticked.

Note: This is essentially an infix synonym of Parallel

(++++) :: (Monad m, Clock m clL, Clock m clR, Time clL ~ Time clR, Time clL ~ Time (Out clL), Time clL ~ Time (In clL), Time clR ~ Time (Out clR), Time clR ~ Time (In clR)) => SN m clL a b -> SN m clR a c -> SN m (ParClock m clL clR) a (Either b c) Source #

Compose two signal networks on different clocks in clock-parallel. At one tick of ParClock m cl1 cl2, one of the networks is stepped, dependent on which constituent clock has ticked.

type Count = FixedStep 1 Source #

A singleton clock that counts the ticks.

data FixedStep (n :: Nat) where Source #

A pure (side effect free) clock with fixed step size, i.e. ticking at multiples of n. The tick rate is in the type signature, which prevents composition of signals at different rates.

Constructors

FixedStep :: KnownNat n => FixedStep n 
Instances
Monad m => Clock m (FixedStep n) Source # 
Instance details

Defined in FRP.Rhine.Clock.FixedStep

Associated Types

type Time (FixedStep n) :: * Source #

type Tag (FixedStep n) :: * Source #

type Time (FixedStep n) Source # 
Instance details

Defined in FRP.Rhine.Clock.FixedStep

type Tag (FixedStep n) Source # 
Instance details

Defined in FRP.Rhine.Clock.FixedStep

type Tag (FixedStep n) = ()

stepsize :: FixedStep n -> Integer Source #

Extract the type-level natural number as an integer.

scheduleFixedStep :: Monad m => Schedule m (FixedStep n1) (FixedStep n2) Source #

Two FixedStep clocks can always be scheduled without side effects.

newtype Millisecond (n :: Nat) Source #

A clock ticking every n milliseconds, in real time. Since n is in the type signature, it is ensured that when composing two signals on a Millisecond clock, they will be driven at the same rate.

The tag of this clock is Bool, where True represents successful realtime, and False a lag.

Instances
Clock IO (Millisecond n) Source # 
Instance details

Defined in FRP.Rhine.Clock.Realtime.Millisecond

Associated Types

type Time (Millisecond n) :: * Source #

type Tag (Millisecond n) :: * Source #

type Time (Millisecond n) Source # 
Instance details

Defined in FRP.Rhine.Clock.Realtime.Millisecond

type Tag (Millisecond n) Source # 
Instance details

Defined in FRP.Rhine.Clock.Realtime.Millisecond

type Tag (Millisecond n) = Bool

waitClock :: KnownNat n => Millisecond n Source #

This implementation measures the time after each tick, and waits for the remaining time until the next tick. If the next tick should already have occurred, the tag is set to False, representing a failed real time attempt.

scheduleMillisecond :: Schedule IO (Millisecond n1) (Millisecond n2) Source #

Two Millisecond clocks can always be scheduled deterministically.

linear Source #

Arguments

:: (Monad m, Clock m cl1, Clock m cl2, VectorSpace v, Groundfield v ~ Diff (Time cl1), Groundfield v ~ Diff (Time cl2)) 
=> v

The initial velocity (derivative of the signal)

-> v

The initial position

-> ResamplingBuffer m cl1 cl2 v v 

A simple linear interpolation based on the last calculated position and velocity.

sinc Source #

Arguments

:: (Monad m, Clock m cl1, Clock m cl2, VectorSpace v, Ord (Groundfield v), Floating (Groundfield v), Groundfield v ~ Diff (Time cl1), Groundfield v ~ Diff (Time cl2)) 
=> Groundfield v

The size of the interpolation window (for how long in the past to remember incoming values)

-> ResamplingBuffer m cl1 cl2 v v 

sinc-Interpolation, or Whittaker-Shannon-Interpolation.

The incoming signal is strictly bandlimited by the frequency at which cl1 ticks. Each incoming value is hulled in a sinc function, these are added and sampled at cl2's ticks. In order not to produce a space leak, the buffer only remembers the past values within a given window, which should be chosen much larger than the average time between cl1's ticks.

cubic :: (Monad m, VectorSpace v, Groundfield v ~ Diff (Time cl1), Groundfield v ~ Diff (Time cl2)) => ResamplingBuffer m cl1 cl2 v v Source #

Interpolates the signal with Hermite splines, using threePointDerivative.

Caution: In order to calculate the derivatives of the incoming signal, it has to be delayed by two ticks of cl1. In a non-realtime situation, a higher quality is achieved if the ticks of cl2 are delayed by two ticks of cl1.

data EventClock event Source #

A clock that ticks whenever an event is emitted. It is not yet bound to a specific channel, since ideally, the correct channel is created automatically by runEventChanT. If you want to create the channel manually and bind the clock to it, use eventClockOn.

Constructors

EventClock 
Instances
Semigroup (EventClock event) Source # 
Instance details

Defined in FRP.Rhine.Clock.Realtime.Event

Methods

(<>) :: EventClock event -> EventClock event -> EventClock event #

sconcat :: NonEmpty (EventClock event) -> EventClock event #

stimes :: Integral b => b -> EventClock event -> EventClock event #

MonadIO m => Clock (EventChanT event m) (EventClock event) Source # 
Instance details

Defined in FRP.Rhine.Clock.Realtime.Event

Associated Types

type Time (EventClock event) :: * Source #

type Tag (EventClock event) :: * Source #

Methods

initClock :: EventClock event -> RunningClockInit (EventChanT event m) (Time (EventClock event)) (Tag (EventClock event)) Source #

type Time (EventClock event) Source # 
Instance details

Defined in FRP.Rhine.Clock.Realtime.Event

type Time (EventClock event) = UTCTime
type Tag (EventClock event) Source # 
Instance details

Defined in FRP.Rhine.Clock.Realtime.Event

type Tag (EventClock event) = event

type EventChanT event m = ReaderT (Chan event) m Source #

A monad transformer in which events can be emitted onto a Chan.

withChan :: Chan event -> EventChanT event m a -> m a Source #

Escape the EventChanT layer by explicitly providing a channel over which events are sent. Often this is not needed, and runEventChanT can be used instead.

runEventChanT :: MonadIO m => EventChanT event m a -> m a Source #

Create a channel across which events can be communicated, and subsequently execute all event effects on this channel.

Ideally, this action is run _outside_ of flow, e.g. runEventChanT $ flow myRhine. This way, exactly one channel is created.

Caution: Don't use this with liftMSFPurer, since it would create a new channel every tick. Instead, create one chan :: Chan c, e.g. with newChan, and then use withChanS.

withChanS :: Monad m => Chan event -> ClSF (EventChanT event m) cl a b -> ClSF m cl a b Source #

Remove ("run") an EventChanT layer from the monad stack by passing it explicitly the channel over which events are sent.

This is usually only needed if you can't use runEventChanT to create the channel. Typically, create a chan :: Chan c in your main program before the main loop (e.g. flow) would be run, then, by using this function, pass the channel to every behaviour or ClSF that wants to emit events, and, by using eventClockOn, to every clock that should tick on the event.

emit :: MonadIO m => event -> EventChanT event m () Source #

Emit a single event. This causes every EventClock on the same monad to tick immediately.

Be cautious when emitting events from a signal clocked by an EventClock. Nothing prevents you from emitting more events than are handled, causing the event buffer to grow indefinitely.

emitS :: MonadIO m => ClSF (EventChanT event m) cl event () Source #

Emit an event on every tick.

emitSMaybe :: MonadIO m => ClSF (EventChanT event m) cl (Maybe event) () Source #

Emit an event whenever the input value is Just event.

emit' :: (NFData event, MonadIO m) => event -> EventChanT event m () Source #

Like emit, but completely evaluates the event before emitting it.

emitS' :: (NFData event, MonadIO m) => ClSF (EventChanT event m) cl event () Source #

Like emitS, but completely evaluates the event before emitting it.

emitSMaybe' :: (NFData event, MonadIO m) => ClSF (EventChanT event m) cl (Maybe event) () Source #

Like emitSMaybe, but completely evaluates the event before emitting it.

eventClockOn :: MonadIO m => Chan event -> HoistClock (EventChanT event m) m (EventClock event) Source #

Create an event clock that is bound to a specific event channel. This is usually only useful if you can't apply runEventChanT to the main loop (see withChanS).

concurrentlyWithEvents :: (Time cl1 ~ Time cl2, Clock (EventChanT event IO) cl1, Clock (EventChanT event IO) cl2) => Schedule (EventChanT event IO) cl1 cl2 Source #

Given two clocks with an EventChanT layer directly atop the IO monad, you can schedule them using concurrent GHC threads, and share the event channel.

Typical use cases:

  • Different subevent selection clocks (implemented i.e. with Select) on top of the same main event source.
  • An event clock and other event-unaware clocks in the IO monad, which are lifted using liftClock.

data Rhine m cl a b Source #

A Rhine consists of un SN together with a clock of matching type cl. It is a reactive program, possibly with open inputs and outputs. If the input and output types a and b are both '()', that is, the Rhine is "closed", then it is a standalone reactive program that can be run with the function flow.

Constructors

Rhine 

Fields

data RhineParallelAndSchedule m clL clR a b Source #

A purely syntactical convenience construction allowing for ternary syntax for parallel composition, described below.

Constructors

RhineParallelAndSchedule (Rhine m clL a b) (Schedule m clL clR) 

data RhineAndResamplingPoint m cl1 cl2 a c Source #

A purely syntactical convenience construction enabling quadruple syntax for sequential composition, as described below.

Constructors

RhineAndResamplingPoint (Rhine m cl1 a b) (ResamplingPoint m cl1 cl2 b c) 

data ResamplingPoint m cla clb a b Source #

A point at which sequential asynchronous composition ("resampling") of signal networks can happen.

Constructors

ResamplingPoint (ResamplingBuffer m (Out cla) (In clb) a b) (Schedule m cla clb) 

(@@) :: (cl ~ In cl, cl ~ Out cl) => ClSF m cl a b -> cl -> Rhine m cl a b infix 5 Source #

Create a synchronous Rhine by combining a clocked signal function with a matching clock. Synchronicity is ensured by requiring that data enters (In cl) and leaves (Out cl) the system at the same as it is processed (cl).

(-@-) :: ResamplingBuffer m (Out cl1) (In cl2) a b -> Schedule m cl1 cl2 -> ResamplingPoint m cl1 cl2 a b infix 8 Source #

Syntactic sugar for ResamplingPoint.

(>--) :: Rhine m cl1 a b -> ResamplingPoint m cl1 cl2 b c -> RhineAndResamplingPoint m cl1 cl2 a c infix 2 Source #

Syntactic sugar for RhineAndResamplingPoint.

(-->) :: (Clock m cl1, Clock m cl2, Time cl1 ~ Time cl2, Time (Out cl1) ~ Time cl1, Time (In cl2) ~ Time cl2, Clock m (Out cl1), Clock m (In cl2)) => RhineAndResamplingPoint m cl1 cl2 a b -> Rhine m cl2 b c -> Rhine m (SequentialClock m cl1 cl2) a c infixr 1 Source #

The combinators for sequential composition allow for the following syntax:

rh1   :: Rhine            m      cl1           a b
rh1   =  ...

rh2   :: Rhine            m               cl2      c d
rh2   =  ...

rb    :: ResamplingBuffer m (Out cl1) (In cl2)   b c
rb    =  ...

sched :: Schedule         m      cl1      cl2
sched =  ...

rh    :: Rhine m (SequentialClock m cl1   cl2) a     d
rh    =  rh1 >-- rb -@- sched --> rh2

(++@) :: Rhine m clL a b -> Schedule m clL clR -> RhineParallelAndSchedule m clL clR a b infix 4 Source #

Syntactic sugar for RhineParallelAndSchedule.

(@++) :: (Monad m, Clock m clL, Clock m clR, Time clL ~ Time (Out clL), Time clR ~ Time (Out clR), Time clL ~ Time (In clL), Time clR ~ Time (In clR), Time clL ~ Time clR) => RhineParallelAndSchedule m clL clR a b -> Rhine m clR a c -> Rhine m (ParallelClock m clL clR) a (Either b c) infix 3 Source #

The combinators for parallel composition allow for the following syntax:

rh1   :: Rhine    m                clL      a         b
rh1   =  ...

rh2   :: Rhine    m                    clR  a           c
rh2   =  ...

sched :: Schedule m                clL clR
sched =  ...

rh    :: Rhine    m (ParallelClock clL clR) a (Either b c)
rh    =  rh1 ++@ sched @++ rh2

(||@) :: Rhine m clL a b -> Schedule m clL clR -> RhineParallelAndSchedule m clL clR a b infix 4 Source #

Further syntactic sugar for RhineParallelAndSchedule.

(@||) :: (Monad m, Clock m clL, Clock m clR, Time clL ~ Time (Out clL), Time clR ~ Time (Out clR), Time clL ~ Time (In clL), Time clR ~ Time (In clR), Time clL ~ Time clR) => RhineParallelAndSchedule m clL clR a b -> Rhine m clR a b -> Rhine m (ParallelClock m clL clR) a b infix 3 Source #

The combinators for parallel composition allow for the following syntax:

rh1   :: Rhine    m                clL      a b
rh1   =  ...

rh2   :: Rhine    m                    clR  a b
rh2   =  ...

sched :: Schedule m                clL clR
sched =  ...

rh    :: Rhine    m (ParallelClock clL clR) a b
rh    =  rh1 ||@ sched @|| rh2

flow :: (Monad m, Clock m cl, Time cl ~ Time (In cl), Time cl ~ Time (Out cl)) => Rhine m cl () () -> m () Source #

Takes a closed Rhine (with trivial input and output), and runs it indefinitely. This is typically the main loop.

All input has to be created, and all output has to be consumed by means of side effects in a monad m.

Basic usage (synchronous case):

sensor :: ClSF MyMonad MyClock () a
sensor = constMCl produceData

processing :: ClSF MyMonad MyClock a b
processing = ...

actuator :: ClSF MyMonad MyClock b ()
actuator = arrMCl consumeData

mainSF :: ClSF MyMonad MyClock () ()
mainSF = sensor >-> processing >-> actuator

main :: MyMonad ()
main = flow $ mainSF @@ clock

reactimateCl :: (Monad m, Clock m cl, cl ~ In cl, cl ~ Out cl) => cl -> ClSF m cl () () -> m () Source #

Run a synchronous ClSF with its clock as a main loop, similar to Yampa's, or Dunai's, reactimate.