{-# LANGUAGE CPP #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE Trustworthy #-}
module RERE.CFG (
CFG,
CFGBase,
cfgToRE,
) where
import Data.Fin (Fin (..))
import Data.Nat (Nat (..))
import Data.Vec.Lazy (Vec (..))
import qualified Data.Type.Nat as N
import qualified Data.Vec.Lazy as V
import RERE.Type
import RERE.Var
#if !MIN_VERSION_base(4,8,0)
import Data.Traversable (Traversable (..))
#endif
type CFG n a = Vec n (CFGBase n a)
type CFGBase n a = RE (Either (Fin n) a)
cfgToRE :: (N.SNatI n, Ord a) => Vec ('S n) Name -> CFG ('S n) a -> RE a
cfgToRE :: Vec ('S n) Name -> CFG ('S n) a -> RE a
cfgToRE = CfgToRE n a -> Vec ('S n) Name -> CFG ('S n) a -> RE a
forall (n :: Nat) a.
CfgToRE n a -> Vec ('S n) Name -> CFG ('S n) a -> RE a
getCfgToRE (CfgToRE 'Z a
-> (forall (m :: Nat). SNatI m => CfgToRE m a -> CfgToRE ('S m) a)
-> CfgToRE n a
forall (n :: Nat) (f :: Nat -> * -> *) a.
SNatI n =>
f 'Z a
-> (forall (m :: Nat). SNatI m => f m a -> f ('S m) a) -> f n a
N.induction1 CfgToRE 'Z a
start forall a (m :: Nat). Ord a => CfgToRE m a -> CfgToRE ('S m) a
forall (m :: Nat). SNatI m => CfgToRE m a -> CfgToRE ('S m) a
step) where
start :: CfgToRE 'Z a
start = (Vec ('S 'Z) Name -> CFG ('S 'Z) a -> RE a) -> CfgToRE 'Z a
forall (n :: Nat) a.
(Vec ('S n) Name -> CFG ('S n) a -> RE a) -> CfgToRE n a
CfgToRE Vec ('S 'Z) Name -> CFG ('S 'Z) a -> RE a
forall a. Ord a => Vec ('S 'Z) Name -> CFG ('S 'Z) a -> RE a
baseCase
step :: Ord a => CfgToRE m a -> CfgToRE ('S m) a
step :: CfgToRE m a -> CfgToRE ('S m) a
step (CfgToRE Vec ('S m) Name -> CFG ('S m) a -> RE a
rec) = (Vec ('S ('S m)) Name -> CFG ('S ('S m)) a -> RE a)
-> CfgToRE ('S m) a
forall (n :: Nat) a.
(Vec ('S n) Name -> CFG ('S n) a -> RE a) -> CfgToRE n a
CfgToRE ((Vec ('S ('S m)) Name -> CFG ('S ('S m)) a -> RE a)
-> CfgToRE ('S m) a)
-> (Vec ('S ('S m)) Name -> CFG ('S ('S m)) a -> RE a)
-> CfgToRE ('S m) a
forall a b. (a -> b) -> a -> b
$ \Vec ('S ('S m)) Name
names CFG ('S ('S m)) a
cfg ->
Vec ('S m) Name -> CFG ('S m) a -> RE a
rec (Vec ('S ('S m)) Name -> Vec ('S m) Name
forall (n :: Nat) a. Vec ('S n) a -> Vec n a
V.tail Vec ('S ('S m)) Name
names) (Vec ('S ('S m)) Name -> CFG ('S ('S m)) a -> CFG ('S m) a
forall a (n :: Nat).
Ord a =>
Vec ('S n) Name -> CFG ('S n) a -> CFG n a
consCase Vec ('S ('S m)) Name
names CFG ('S ('S m)) a
cfg)
newtype CfgToRE n a = CfgToRE { CfgToRE n a -> Vec ('S n) Name -> CFG ('S n) a -> RE a
getCfgToRE :: Vec ('S n) Name -> CFG ('S n) a -> RE a }
baseCase :: Ord a => Vec N.Nat1 Name -> CFG N.Nat1 a -> RE a
baseCase :: Vec ('S 'Z) Name -> CFG ('S 'Z) a -> RE a
baseCase (Name
name ::: Vec n1 Name
VNil) (CFGBase ('S 'Z) a
cfg ::: Vec n1 (CFGBase ('S 'Z) a)
VNil) =
Name -> RE (Var a) -> RE a
forall a. Eq a => Name -> RE (Var a) -> RE a
fix' Name
name ((Either (Fin ('S 'Z)) a -> Var a)
-> CFGBase ('S 'Z) a -> RE (Var a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((Fin ('S 'Z) -> Var a)
-> (a -> Var a) -> Either (Fin ('S 'Z)) a -> Var a
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either (\Fin ('S 'Z)
FZ -> Var a
forall a. Var a
B) a -> Var a
forall a. a -> Var a
F) CFGBase ('S 'Z) a
cfg)
#if __GLASGOW_HASKELL__ <711
baseCase _ _ = error "silly GHC"
#endif
consCase
:: forall a n. Ord a
=> Vec ('S n) Name
-> CFG ('S n) a
-> CFG n a
consCase :: Vec ('S n) Name -> CFG ('S n) a -> CFG n a
consCase (Name
name ::: Vec n1 Name
_names) (CFGBase ('S n) a
f ::: Vec n1 (CFGBase ('S n) a)
gs) =
(CFGBase ('S n) a -> RE (Either (Fin n) a))
-> Vec n1 (CFGBase ('S n) a) -> Vec n1 (RE (Either (Fin n) a))
forall a b (n :: Nat). (a -> b) -> Vec n a -> Vec n b
V.map (\CFGBase ('S n) a
g -> Name
-> RE (Either (Fin n) a)
-> RE (Var (Either (Fin n) a))
-> RE (Either (Fin n) a)
forall a. Eq a => Name -> RE a -> RE (Var a) -> RE a
let' Name
name RE (Either (Fin n) a)
f' ((Either (Fin ('S n)) a -> Var (Either (Fin n) a))
-> CFGBase ('S n) a -> RE (Var (Either (Fin n) a))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Either (Fin ('S n)) a -> Var (Either (Fin n) a)
sub CFGBase ('S n) a
g)) Vec n1 (CFGBase ('S n) a)
gs
where
f' :: RE (Either (Fin n) a)
f' = Name -> RE (Var (Either (Fin n) a)) -> RE (Either (Fin n) a)
forall a. Eq a => Name -> RE (Var a) -> RE a
fix' Name
name ((Either (Fin ('S n)) a -> Var (Either (Fin n) a))
-> CFGBase ('S n) a -> RE (Var (Either (Fin n) a))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Either (Fin ('S n)) a -> Var (Either (Fin n) a)
sub' CFGBase ('S n) a
f)
sub :: Either (Fin ('S n)) a -> Var (Either (Fin n) a)
sub :: Either (Fin ('S n)) a -> Var (Either (Fin n) a)
sub (Right a
a) = Either (Fin n) a -> Var (Either (Fin n) a)
forall a. a -> Var a
F (a -> Either (Fin n) a
forall a b. b -> Either a b
Right a
a)
sub (Left (FS Fin n1
n)) = Either (Fin n1) a -> Var (Either (Fin n1) a)
forall a. a -> Var a
F (Fin n1 -> Either (Fin n1) a
forall a b. a -> Either a b
Left Fin n1
n)
sub (Left Fin ('S n)
FZ) = Var (Either (Fin n) a)
forall a. Var a
B
sub' :: Either (Fin ('S n)) a -> Var (Either (Fin n) a)
sub' :: Either (Fin ('S n)) a -> Var (Either (Fin n) a)
sub' (Right a
a) = Either (Fin n) a -> Var (Either (Fin n) a)
forall a. a -> Var a
F (a -> Either (Fin n) a
forall a b. b -> Either a b
Right a
a)
sub' (Left (FS Fin n1
n)) = Either (Fin n1) a -> Var (Either (Fin n1) a)
forall a. a -> Var a
F (Fin n1 -> Either (Fin n1) a
forall a b. a -> Either a b
Left Fin n1
n)
sub' (Left Fin ('S n)
FZ) = Var (Either (Fin n) a)
forall a. Var a
B
fix' :: Eq a => Name -> RE (Var a) -> RE a
fix' :: Name -> RE (Var a) -> RE a
fix' Name
n RE (Var a)
r
| Just RE a
r' <- RE (Var a)
-> (Var a -> Maybe a)
-> (RE (Var (Var a)) -> RE (Var a))
-> Maybe (RE a)
forall a b.
(Eq a, Eq b) =>
RE (Var a)
-> (Var a -> Maybe b)
-> (RE (Var (Var a)) -> RE (Var b))
-> Maybe (RE b)
floatOut RE (Var a)
r (Maybe a -> (a -> Maybe a) -> Var a -> Maybe a
forall r a. r -> (a -> r) -> Var a -> r
unvar Maybe a
forall a. Maybe a
Nothing a -> Maybe a
forall a. a -> Maybe a
Just) (Name -> RE (Var (Var a)) -> RE (Var a)
forall a. Eq a => Name -> RE (Var a) -> RE a
fix' Name
n)
= RE a
r'
| Just RE a
r' <- (Var a -> Maybe a) -> RE (Var a) -> Maybe (RE a)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (Maybe a -> (a -> Maybe a) -> Var a -> Maybe a
forall r a. r -> (a -> r) -> Var a -> r
unvar Maybe a
forall a. Maybe a
Nothing a -> Maybe a
forall a. a -> Maybe a
Just) RE (Var a)
r
= RE a
r'
fix' Name
n RE (Var a)
r = Name -> RE (Var a) -> RE a
forall a. Name -> RE (Var a) -> RE a
Fix Name
n RE (Var a)
r
floatOut
:: (Eq a, Eq b)
=> RE (Var a)
-> (Var a -> Maybe b)
-> (RE (Var (Var a)) -> RE (Var b))
-> Maybe (RE b)
floatOut :: RE (Var a)
-> (Var a -> Maybe b)
-> (RE (Var (Var a)) -> RE (Var b))
-> Maybe (RE b)
floatOut (Let Name
m RE (Var a)
r RE (Var (Var a))
s) Var a -> Maybe b
un RE (Var (Var a)) -> RE (Var b)
mk
| Just RE b
r' <- (Var a -> Maybe b) -> RE (Var a) -> Maybe (RE b)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse Var a -> Maybe b
un RE (Var a)
r
= RE b -> Maybe (RE b)
forall a. a -> Maybe a
Just
(RE b -> Maybe (RE b)) -> RE b -> Maybe (RE b)
forall a b. (a -> b) -> a -> b
$ Name -> RE b -> RE (Var b) -> RE b
forall a. Eq a => Name -> RE a -> RE (Var a) -> RE a
let' Name
m RE b
r' (RE (Var b) -> RE b) -> RE (Var b) -> RE b
forall a b. (a -> b) -> a -> b
$ RE (Var (Var a)) -> RE (Var b)
mk (RE (Var (Var a)) -> RE (Var b)) -> RE (Var (Var a)) -> RE (Var b)
forall a b. (a -> b) -> a -> b
$ (Var (Var a) -> Var (Var a))
-> RE (Var (Var a)) -> RE (Var (Var a))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Var (Var a) -> Var (Var a)
forall a. Var (Var a) -> Var (Var a)
swapVar RE (Var (Var a))
s
| Bool
otherwise
= RE (Var (Var a))
-> (Var (Var a) -> Maybe b)
-> (RE (Var (Var (Var a))) -> RE (Var b))
-> Maybe (RE b)
forall a b.
(Eq a, Eq b) =>
RE (Var a)
-> (Var a -> Maybe b)
-> (RE (Var (Var a)) -> RE (Var b))
-> Maybe (RE b)
floatOut
RE (Var (Var a))
s
(Maybe b -> (Var a -> Maybe b) -> Var (Var a) -> Maybe b
forall r a. r -> (a -> r) -> Var a -> r
unvar Maybe b
forall a. Maybe a
Nothing Var a -> Maybe b
un)
(RE (Var (Var a)) -> RE (Var b)
mk (RE (Var (Var a)) -> RE (Var b))
-> (RE (Var (Var (Var a))) -> RE (Var (Var a)))
-> RE (Var (Var (Var a)))
-> RE (Var b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Name
-> RE (Var (Var a)) -> RE (Var (Var (Var a))) -> RE (Var (Var a))
forall a. Eq a => Name -> RE a -> RE (Var a) -> RE a
let' Name
m ((Var a -> Var (Var a)) -> RE (Var a) -> RE (Var (Var a))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((a -> Var a) -> Var a -> Var (Var a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> Var a
forall a. a -> Var a
F) RE (Var a)
r) (RE (Var (Var (Var a))) -> RE (Var (Var a)))
-> (RE (Var (Var (Var a))) -> RE (Var (Var (Var a))))
-> RE (Var (Var (Var a)))
-> RE (Var (Var a))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Var (Var (Var a)) -> Var (Var (Var a)))
-> RE (Var (Var (Var a))) -> RE (Var (Var (Var a)))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((Var (Var a) -> Var (Var a))
-> Var (Var (Var a)) -> Var (Var (Var a))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Var (Var a) -> Var (Var a)
forall a. Var (Var a) -> Var (Var a)
swapVar))
floatOut RE (Var a)
_ Var a -> Maybe b
_ RE (Var (Var a)) -> RE (Var b)
_ = Maybe (RE b)
forall a. Maybe a
Nothing
let' :: Eq a => Name -> RE a -> RE (Var a) -> RE a
let' :: Name -> RE a -> RE (Var a) -> RE a
let' Name
n (Let Name
m RE a
x RE (Var a)
r) RE (Var a)
s
= Name -> RE a -> RE (Var a) -> RE a
forall a. Eq a => Name -> RE a -> RE (Var a) -> RE a
let' Name
m RE a
x
(RE (Var a) -> RE a) -> RE (Var a) -> RE a
forall a b. (a -> b) -> a -> b
$ Name -> RE (Var a) -> RE (Var (Var a)) -> RE (Var a)
forall a. Eq a => Name -> RE a -> RE (Var a) -> RE a
let' Name
n RE (Var a)
r ((Var a -> Var (Var a)) -> RE (Var a) -> RE (Var (Var a))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Var (Var a) -> (a -> Var (Var a)) -> Var a -> Var (Var a)
forall r a. r -> (a -> r) -> Var a -> r
unvar Var (Var a)
forall a. Var a
B (Var a -> Var (Var a)
forall a. a -> Var a
F (Var a -> Var (Var a)) -> (a -> Var a) -> a -> Var (Var a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Var a
forall a. a -> Var a
F)) RE (Var a)
s)
let' Name
n RE a
r RE (Var a)
s = Name -> RE a -> RE (Var a) -> RE a
forall a. Name -> RE a -> RE (Var a) -> RE a
postlet' Name
n RE a
r (Var a -> RE (Var a) -> RE (Var a) -> RE (Var a)
forall b. Eq b => b -> RE b -> RE b -> RE b
go Var a
forall a. Var a
B ((a -> Var a) -> RE a -> RE (Var a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> Var a
forall a. a -> Var a
F RE a
r) RE (Var a)
s) where
go :: Eq b => b -> RE b -> RE b -> RE b
go :: b -> RE b -> RE b -> RE b
go b
v RE b
x (Let Name
m RE b
a RE (Var b)
b)
| RE b
x RE b -> RE b -> Bool
forall a. Eq a => a -> a -> Bool
== RE b
a = b -> RE b -> RE b -> RE b
forall b. Eq b => b -> RE b -> RE b -> RE b
go b
v RE b
x ((Var b -> b) -> RE (Var b) -> RE b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (b -> (b -> b) -> Var b -> b
forall r a. r -> (a -> r) -> Var a -> r
unvar b
v b -> b
forall a. a -> a
id) RE (Var b)
b)
| Bool
otherwise = Name -> RE b -> RE (Var b) -> RE b
forall a. Name -> RE a -> RE (Var a) -> RE a
Let Name
m (b -> RE b -> RE b -> RE b
forall b. Eq b => b -> RE b -> RE b -> RE b
go b
v RE b
x RE b
a) (Var b -> RE (Var b) -> RE (Var b) -> RE (Var b)
forall b. Eq b => b -> RE b -> RE b -> RE b
go (b -> Var b
forall a. a -> Var a
F b
v) ((b -> Var b) -> RE b -> RE (Var b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> Var b
forall a. a -> Var a
F RE b
x) RE (Var b)
b)
go b
v RE b
x (Fix Name
m RE (Var b)
a) = Name -> RE (Var b) -> RE b
forall a. Name -> RE (Var a) -> RE a
Fix Name
m (Var b -> RE (Var b) -> RE (Var b) -> RE (Var b)
forall b. Eq b => b -> RE b -> RE b -> RE b
go (b -> Var b
forall a. a -> Var a
F b
v) ((b -> Var b) -> RE b -> RE (Var b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> Var b
forall a. a -> Var a
F RE b
x) RE (Var b)
a)
go b
_ RE b
_ RE b
r' = RE b
r'
postlet' :: Name -> RE a -> RE (Var a) -> RE a
postlet' :: Name -> RE a -> RE (Var a) -> RE a
postlet' Name
_ RE a
r (Var Var a
B) = RE a
r
postlet' Name
_ RE a
_ RE (Var a)
s | Just RE a
s' <- RE (Var a) -> Maybe (RE a)
forall a. RE (Var a) -> Maybe (RE a)
unused RE (Var a)
s = RE a
s'
postlet' Name
n RE a
r RE (Var a)
s = Name -> RE a -> RE (Var a) -> RE a
forall a. Name -> RE a -> RE (Var a) -> RE a
Let Name
n RE a
r RE (Var a)
s
unused :: RE (Var a) -> Maybe (RE a)
unused :: RE (Var a) -> Maybe (RE a)
unused = (Var a -> Maybe a) -> RE (Var a) -> Maybe (RE a)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (Maybe a -> (a -> Maybe a) -> Var a -> Maybe a
forall r a. r -> (a -> r) -> Var a -> r
unvar Maybe a
forall a. Maybe a
Nothing a -> Maybe a
forall a. a -> Maybe a
Just)