{-| Module : Data.Type.Require Description : A small framework to manage user defined type errors. Copyright : (c) Juan García-Garland, Marcos Viera, 2019, 2020 License : GPLv3 Maintainer : jpgarcia@fing.edu.uy Stability : experimental Portability : POSIX This module implements a simple framework to manage Type Errors when doing type-level progamming in Haskell. * General Description: This was originally developed for the AspectAG library (attribute grammars in the form of an EDSL). Both in AspectAG and in our Record library (which is again, an abstraction synthesized from the AspectAG) are examples of how to use 'Require'. Some simpler examples are presented in Example modules in this package. Let us inline one in this documentation file: Firstly, we define size-indexed vectors, the stapple example of a dependent Haskell type. > data Vec (n :: Nat) (a :: Type) :: Type where > VNil :: Vec 0 a > (:<) :: a -> Vec n a -> Vec (1 + n) a And singletons for natutals: > data SNat (n :: Nat) where > SZ :: SNat 0 > SS :: SNat n -> SNat (1 + n) With this we can implement a get function, that takes the element in a given index of the vector. There are many ways to do that in a safe way: * use a value of type 'Fin n' as the input for the index. > get :: Fin n -> Vec n a -> a * use 'SNat' but also define a GADT 'Lt :: Nat -> Nat -> Type' that encodes a proof that the index is smaller than the vector size. > get :: SNat n -> Lt n m -> Vec m a -> a * use a 'SNat', with no proof argument, and let index overflows to be ill-typed. Since this is Haskell all type information is static, meaning that we will know at compile time if the index is out of bound. > get :: SNat n -> Vec m a -> a In the latter approach is where |Require| fits. The require infrastructure allows us to have nice type errors when an out of bound lookup occurs, instead of something like 'no instance for ..' We introduce an /operation/ for the vector, the get operation. This is a product datatype having all information we need: an index and vector: > data OpGet (n :: Nat) (k :: Nat) (a :: Type) :: Type where > OpGet :: SNat n -> Vec k a -> OpGet n k a This operation /requires/ some properties about its arguments, in this case, that the index given is less than vector's length. A well-typed lookup will satisfy the constraint 'Require (OpGet n k a)' We will decide according on the result of '(<=? (n + 1) k)' . Since typeclass resolution does not backtrack we need to have all informartion on the head of the instance. This is a well known trick. We build a wrapper where the first Boolean argument will contain the result of the comparisson: > data OpGet' (cmp :: Bool) (n :: Nat) (k :: Nat) (a :: Type) :: Type where > OpGet' :: Proxy cmp -> SNat n -> Vec k a -> OpGet' cmp n k a Then, the wrapper instance: > instance > Require (OpGet' ((n + 1) <=? k) n k a) ctx > => > Require (OpGet n k a) ctx where > type ReqR (OpGet n k a) = > ReqR (OpGet' (n + 1 <=? k) n k a) > req proxy (OpGet (n :: SNat n) (v :: Vec k a)) = > req proxy (OpGet' (Proxy @ (n + 1 <=? k)) n v) Now we program the good cases, we show only the base case, the recursive case is an excercise for the reader: > instance > Require (OpGet' 'True 0 k a) ctx where > type ReqR (OpGet' 'True 0 k a) = a > req _ (OpGet' _ SZ (a :< _)) = a Finally, when (n + 1 <=? k ~ 'False) we have an ill-typed get operation. We build a |Require| instance for the |OpError| operation. When defining it, we have in scope 'n', 'k', and 'a', everything needed to write a good type error using 'GHC.TypeLits' infraestructure. > instance > Require (OpError (Text "Type error!" index out of bound")) ctx > => > Require (OpGet' False n k a) ctx where > type ReqR (OpGet' False n k a) = OpError (Text "lala") > req = error "unreachable" -} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE PolyKinds #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE ScopedTypeVariables #-} module Data.Type.Require where import Data.Kind import Data.Proxy import GHC.TypeLits import Data.Type.Bool import Data.Type.Equality -- | Require class. Use this when a /dependent type/ (/a la/ Haskell) -- /requires/ some type level property for a function to be defined to -- program nice type errors. class Require (op :: Type) (ctx :: [ErrorMessage]) where type ReqR op :: Type req :: Proxy ctx -> op -> ReqR op -- | OpError operation. A 'Require' call to this operation produces a -- type error showing the argument message. data OpError (m :: ErrorMessage) :: Type where {} -- | Failing and printing of an |OpError| requirement. instance (TypeError (Text "Error: " :<>: m :$$: (Text "trace: " :<>: ShowCTX ctx))) => Require (OpError m) ctx where type ReqR (OpError m) = () req :: Proxy ctx -> OpError m -> ReqR (OpError m) req Proxy ctx _ OpError m _ = [Char] -> () forall a. HasCallStack => [Char] -> a error [Char] "unreachable" type family IsEmptyCtx (ms :: [ErrorMessage]) :: Bool where IsEmptyCtx '[] = True IsEmptyCtx (m ': ms) = False -- IsEmptyMsg m && IsEmptyCtx ms IsEmptyCtx _ = True type family IsEmptyMsg (m :: ErrorMessage) :: Bool where IsEmptyMsg (Text "") = True IsEmptyMsg (l :<>: r) = IsEmptyMsg l && IsEmptyMsg r IsEmptyMsg other = False -- -- | Formatting of context printing. type family ShowCTX (ctx :: k) :: ErrorMessage where ShowCTX ('[] :: [ErrorMessage]) = Text "" ShowCTX ((m :: ErrorMessage) ': (ms :: [ErrorMessage])) = m :$$: ShowCTX ms ShowCTX (m :: [ErrorMessage]) = Text "" type family FromEM (t :: ErrorMessage) :: Symbol where FromEM (Text t) = t FromEM _ = "" -- | Show for types type family ShowTE (t :: k) :: ErrorMessage type instance ShowTE (t :: Type) = ShowType t type instance ShowTE (t :: Symbol) = Text t -- | A common constraint is to have a |Requirement| to be fullfilled, -- and something to unify with the result of the operation. type RequireR (op :: Type) (ctx:: [ErrorMessage]) (res :: Type) = (Require op ctx, ReqR op ~ res) -- | --type RequireEq (t1 :: k )(t2 :: k) (ctx:: [ErrorMessage]) -- = (Require (OpEq t1 t2) ctx ) --0, -- IfStuck (Equal t1 t2) (DelayError ('Text "error coso")) (NoErrorFcf)) -- Exported operators. -- | Equality operator. --data OpEq t1 t2 data OpEq' (cmp :: Bool) t1 t2 type RequireEq (t1 :: k )(t2 :: k) (ctx:: [ErrorMessage]) = (AssertEq t1 t2 ctx , t1 ~ t2) type family AssertEq (t1 :: k)(t2 :: k) ctx :: Constraint where AssertEq a a ctx = () AssertEq a b ctx = Require (OpError (Text "\n " :<>: ShowTE a :<>: Text "\n/= " :<>: ShowTE b)) ctx data Exp (a :: k) where Exp :: a -> Exp a type family Eval (exp :: Type) :: k data CondEq (a ::k) (b :: k) where CondEq :: a -> b -> CondEq a b data RequireEqResF (a ::k) (b :: k) where RequireEqResF :: a -> b -> RequireEqResF a b data EqMsg (a::k)(b::k) where EqMsg :: a -> b -> EqMsg a b type instance Eval (EqMsg t1 t2) = (Text "\nEQMSG" :<>: ShowTE t1 :<>: Text "\n/= " :<>: ShowTE t2) type family RequireEqWithMsg (t :: k) (t' :: k) (msg :: k -> k -> Type) (ctx :: [ErrorMessage]) :: Constraint type instance RequireEqWithMsg t t' f ctx = (AssertEq' t t' f ctx, t ~ t') --If (t `Equal` t') (()::Constraint) (Require (OpError (Eval (f t t'))) ctx)) type family AssertEq' (t1 :: k)(t2 :: k) (f :: k -> k -> Type) ctx :: Constraint where AssertEq' a a f ctx = () AssertEq' a b f ctx = Require (OpError (Eval (f a b)) ) ctx -- Exported operators. -- | Equality operator. data OpEq t1 t2 -- | implementation of Require instance for equality (the type family -- in the context implements the logic) --instance RequireEqRes t1 t2 ctx -- => Require (OpEq t1 t2) ctx where -- type ReqR (OpEq t1 t2) = () -- req = undefined -- | comparisson of types, given a trivially satisfying constraint if -- they are equal, or requiring an |OpError| otherwise. type family RequireEqRes (t1 :: k) (t2 :: k) (ctx :: [ErrorMessage]) :: Constraint where RequireEqRes t1 t2 ctx = If (t1 `Equal` t2) (() :: Constraint) (Require (OpError (Text "\n " :<>: ShowTE t1 :<>: Text "\n/= " :<>: ShowTE t2)) ctx) type family Equal (a :: k) (b :: k') :: Bool where Equal a a = True Equal a b = False -- | overloaded type equality type family Equ (a :: k) (b :: k) :: Bool emptyCtx :: Proxy '[ 'Text ""] emptyCtx = Proxy '[ 'Text ""] forall k (t :: k). Proxy t Proxy :: Proxy '[ Text ""] appendCtx :: Proxy ctx -> Proxy ctx' -> Proxy (ctx :++ ctx') appendCtx :: Proxy ctx -> Proxy ctx' -> Proxy (ctx :++ ctx') appendCtx Proxy ctx Proxy Proxy ctx' Proxy = Proxy (ctx :++ ctx') forall k (t :: k). Proxy t Proxy type family (:++) xs ys where '[] :++ ys = ys (x ': xs) :++ ys = x ': (xs :++ ys)