Copyright | (c) Juan García-Garland Marcos Viera 2019 2020 |
---|---|
License | GPLv3 |
Maintainer | jpgarcia@fing.edu.uy |
Stability | experimental |
Portability | POSIX |
Safe Haskell | Safe |
Language | Haskell2010 |
This module implements a simple framework to manage Type Errors when doing type-level progamming in Haskell.
- General Description:
This was originally developed for the AspectAG library (attribute
grammars in the form of an EDSL).
Both in AspectAG and in our Record library (which is again, an abstraction
synthesized from the AspectAG) are examples of how to use
Require
.
Some simpler examples are presented in Example modules in this package.
Let us inline one in this documentation file:
Firstly, we define size-indexed vectors, the stapple example of a dependent Haskell type.
data Vec (n :: Nat) (a :: Type) :: Type where VNil :: Vec 0 a (:<) :: a -> Vec n a -> Vec (1 + n) a
And singletons for natutals:
data SNat (n :: Nat) where SZ :: SNat 0 SS :: SNat n -> SNat (1 + n)
With this we can implement a get function, that takes the element in a given index of the vector. There are many ways to do that in a safe way:
- use a value of type 'Fin n' as the input for the index.
get :: Fin n -> Vec n a -> a
- use
SNat
but also define a GADT 'Lt :: Nat -> Nat -> Type' that encodes a proof that the index is smaller than the vector size.
get :: SNat n -> Lt n m -> Vec m a -> a
- use a
SNat
, with no proof argument, and let index overflows to be ill-typed. Since this is Haskell all type information is static, meaning that we will know at compile time if the index is out of bound.
get :: SNat n -> Vec m a -> a
In the latter approach is where |Require| fits. The require infrastructure allows us to have nice type errors when an out of bound lookup occurs, instead of something like 'no instance for ..'
We introduce an operation for the vector, the get operation. This is a product datatype having all information we need: an index and vector:
data OpGet (n :: Nat) (k :: Nat) (a :: Type) :: Type where OpGet :: SNat n -> Vec k a -> OpGet n k a
This operation requires some properties about its arguments, in this case, that the index given is less than vector's length. A well-typed lookup will satisfy the constraint 'Require (OpGet n k a)'
We will decide according on the result of '(<=? (n + 1) k)' . Since typeclass resolution does not backtrack we need to have all informartion on the head of the instance. This is a well known trick. We build a wrapper where the first Boolean argument will contain the result of the comparisson:
data OpGet' (cmp :: Bool) (n :: Nat) (k :: Nat) (a :: Type) :: Type where OpGet' :: Proxy cmp -> SNat n -> Vec k a -> OpGet' cmp n k a
Then, the wrapper instance:
instance Require (OpGet' ((n + 1) <=? k) n k a) ctx => Require (OpGet n k a) ctx where type ReqR (OpGet n k a) = ReqR (OpGet' (n + 1 <=? k) n k a) req proxy (OpGet (n :: SNat n) (v :: Vec k a)) = req proxy (OpGet' (Proxy @ (n + 1 <=? k)) n v)
Now we program the good cases, we show only the base case, the recursive case is an excercise for the reader:
instance Require (OpGet' 'True 0 k a) ctx where type ReqR (OpGet' 'True 0 k a) = a req _ (OpGet' _ SZ (a :< _)) = a
Finally, when (n + 1 <=? k ~ 'False) we have an ill-typed get
operation. We build a |Require| instance for the |OpError|
operation. When defining it, we have in scope n
, k
, and a
,
everything needed to write a good type error using TypeLits
infraestructure.
instance Require (OpError (Text "Type error!" index out of bound")) ctx => Require (OpGet' False n k a) ctx where type ReqR (OpGet' False n k a) = OpError (Text "lala") req = error "unreachable"
Synopsis
- class Require (op :: Type) (ctx :: [ErrorMessage]) where
- data OpError (m :: ErrorMessage) :: Type
- type family IsEmptyCtx (ms :: [ErrorMessage]) :: Bool where ...
- type family IsEmptyMsg (m :: ErrorMessage) :: Bool where ...
- type family ShowCTX (ctx :: [ErrorMessage]) :: ErrorMessage where ...
- type family FromText (t :: ErrorMessage) :: Symbol where ...
- type family ShowTE (t :: k) :: ErrorMessage
- type RequireR (op :: Type) (ctx :: [ErrorMessage]) (res :: Type) = (Require op ctx, ReqR op ~ res)
- type RequireEq (t1 :: k) (t2 :: k) (ctx :: [ErrorMessage]) = (Require (OpEq t1 t2) ctx, t1 ~ t2)
- data OpEq t1 t2
- type family RequireEqRes (t1 :: k) (t2 :: k) (ctx :: [ErrorMessage]) :: Constraint where ...
- type family Equal (a :: k) (b :: k') :: Bool where ...
- type family Equ (a :: k) (b :: k) :: Bool
- emptyCtx :: Proxy (Text "" ': ([] :: [ErrorMessage]))
Documentation
class Require (op :: Type) (ctx :: [ErrorMessage]) where Source #
Require class. Use this when a dependent type (a la Haskell) requires some type level property for a function to be defined to program nice type errors.
Instances
(TypeError ((Text "Error: " :<>: m) :$$: If (IsEmptyCtx ctx) (Text "") (Text "trace: " :<>: ShowCTX ctx)) :: Constraint) => Require (OpError m) ctx Source # | Failing and printing of an |OpError| requirement. |
RequireEqRes t1 t2 ctx => Require (OpEq t1 t2) ctx Source # | implementation of Require instance for equality (the type family in the context implements the logic) |
data OpError (m :: ErrorMessage) :: Type Source #
OpError operation. A Require
call to this operation produces a
type error showing the argument message.
type family IsEmptyCtx (ms :: [ErrorMessage]) :: Bool where ... Source #
IsEmptyCtx '[] = True | |
IsEmptyCtx (m ': ms) = IsEmptyMsg m && IsEmptyCtx ms |
type family IsEmptyMsg (m :: ErrorMessage) :: Bool where ... Source #
IsEmptyMsg (Text "") = True | |
IsEmptyMsg (l :<>: r) = IsEmptyMsg l && IsEmptyMsg r | |
IsEmptyMsg other = False |
type family ShowCTX (ctx :: [ErrorMessage]) :: ErrorMessage where ... Source #
type family ShowTE (t :: k) :: ErrorMessage Source #
Show for types
type RequireR (op :: Type) (ctx :: [ErrorMessage]) (res :: Type) = (Require op ctx, ReqR op ~ res) Source #
A common constraint is to have a |Requirement| to be fullfilled, and something to unify with the result of the operation.
type RequireEq (t1 :: k) (t2 :: k) (ctx :: [ErrorMessage]) = (Require (OpEq t1 t2) ctx, t1 ~ t2) Source #
Equality operator.
Instances
RequireEqRes t1 t2 ctx => Require (OpEq t1 t2) ctx Source # | implementation of Require instance for equality (the type family in the context implements the logic) |
type ReqR (OpEq t1 t2) Source # | |
Defined in Data.Type.Require |
type family RequireEqRes (t1 :: k) (t2 :: k) (ctx :: [ErrorMessage]) :: Constraint where ... Source #
comparisson of types, given a trivially satisfying constraint if they are equal, or requiring an |OpError| otherwise.