repa-3.4.0.1: High performance, regular, shape polymorphic parallel arrays.

Safe HaskellNone
LanguageHaskell98

Data.Array.Repa.Index

Contents

Description

Index types.

Synopsis

Index types

data Z Source

An index of dimension zero

Constructors

Z 

Instances

Eq Z Source 
Ord Z Source 
Read Z Source 
Show Z Source 
Shape Z Source 
Slice Z Source 
Elt e => LoadRange D DIM2 e Source

Compute a range of elements in a rank-2 array.

Elt e => LoadRange C DIM2 e Source

Compute a range of elements in a rank-2 array.

Elt e => Load C DIM2 e Source

Compute all elements in an rank-2 array.

type SliceShape Z = Z Source 
type FullShape Z = Z Source 

data tail :. head infixl 3 Source

Our index type, used for both shapes and indices.

Constructors

!tail :. !head infixl 3 

Instances

Elt e => LoadRange D DIM2 e Source

Compute a range of elements in a rank-2 array.

Elt e => LoadRange C DIM2 e Source

Compute a range of elements in a rank-2 array.

Elt e => Load C DIM2 e Source

Compute all elements in an rank-2 array.

(Eq tail, Eq head) => Eq ((:.) tail head) Source 
(Ord tail, Ord head) => Ord ((:.) tail head) Source 
(Read tail, Read head) => Read ((:.) tail head) Source 
(Show tail, Show head) => Show ((:.) tail head) Source 
Shape sh => Shape ((:.) sh Int) Source 
Slice sl => Slice ((:.) sl All) Source 
Slice sl => Slice ((:.) sl Int) Source 
type SliceShape ((:.) sl All) = (:.) (SliceShape sl) Int Source 
type SliceShape ((:.) sl Int) = SliceShape sl Source 
type FullShape ((:.) sl All) = (:.) (FullShape sl) Int Source 
type FullShape ((:.) sl Int) = (:.) (FullShape sl) Int Source 

Common dimensions.

type DIM0 = Z Source

ix1 :: Int -> DIM1 Source

Helper for index construction.

Use this instead of explicit constructors like (Z :. (x :: Int)). The this is sometimes needed to ensure that x is constrained to be in Int.

ix2 :: Int -> Int -> DIM2 Source

ix3 :: Int -> Int -> Int -> DIM3 Source

ix4 :: Int -> Int -> Int -> Int -> DIM4 Source

ix5 :: Int -> Int -> Int -> Int -> Int -> DIM5 Source