relude-0.6.0.0: Custom prelude from Kowainik
Copyright(c) 2016 Stephen Diehl
(c) 2016-2018 Serokell
(c) 2018-2019 Kowainik
LicenseMIT
MaintainerKowainik <xrom.xkov@gmail.com>
Safe HaskellSafe
LanguageHaskell2010

Relude.Applicative

Description

Convenient utils to work with Applicative. There were more functions in this module (see protolude version) but only convenient ans most used are left.

Synopsis

Documentation

class Functor f => Applicative (f :: Type -> Type) where #

A functor with application, providing operations to

  • embed pure expressions (pure), and
  • sequence computations and combine their results (<*> and liftA2).

A minimal complete definition must include implementations of pure and of either <*> or liftA2. If it defines both, then they must behave the same as their default definitions:

(<*>) = liftA2 id
liftA2 f x y = f <$> x <*> y

Further, any definition must satisfy the following:

Identity
pure id <*> v = v
Composition
pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
Homomorphism
pure f <*> pure x = pure (f x)
Interchange
u <*> pure y = pure ($ y) <*> u

The other methods have the following default definitions, which may be overridden with equivalent specialized implementations:

As a consequence of these laws, the Functor instance for f will satisfy

It may be useful to note that supposing

forall x y. p (q x y) = f x . g y

it follows from the above that

liftA2 p (liftA2 q u v) = liftA2 f u . liftA2 g v

If f is also a Monad, it should satisfy

(which implies that pure and <*> satisfy the applicative functor laws).

Minimal complete definition

pure, ((<*>) | liftA2)

Methods

pure :: a -> f a #

Lift a value.

(<*>) :: f (a -> b) -> f a -> f b infixl 4 #

Sequential application.

A few functors support an implementation of <*> that is more efficient than the default one.

liftA2 :: (a -> b -> c) -> f a -> f b -> f c #

Lift a binary function to actions.

Some functors support an implementation of liftA2 that is more efficient than the default one. In particular, if fmap is an expensive operation, it is likely better to use liftA2 than to fmap over the structure and then use <*>.

(*>) :: f a -> f b -> f b infixl 4 #

Sequence actions, discarding the value of the first argument.

(<*) :: f a -> f b -> f a infixl 4 #

Sequence actions, discarding the value of the second argument.

Instances

Instances details
Applicative []

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

pure :: a -> [a] #

(<*>) :: [a -> b] -> [a] -> [b] #

liftA2 :: (a -> b -> c) -> [a] -> [b] -> [c] #

(*>) :: [a] -> [b] -> [b] #

(<*) :: [a] -> [b] -> [a] #

Applicative Maybe

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

pure :: a -> Maybe a #

(<*>) :: Maybe (a -> b) -> Maybe a -> Maybe b #

liftA2 :: (a -> b -> c) -> Maybe a -> Maybe b -> Maybe c #

(*>) :: Maybe a -> Maybe b -> Maybe b #

(<*) :: Maybe a -> Maybe b -> Maybe a #

Applicative IO

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

pure :: a -> IO a #

(<*>) :: IO (a -> b) -> IO a -> IO b #

liftA2 :: (a -> b -> c) -> IO a -> IO b -> IO c #

(*>) :: IO a -> IO b -> IO b #

(<*) :: IO a -> IO b -> IO a #

Applicative Par1

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

pure :: a -> Par1 a #

(<*>) :: Par1 (a -> b) -> Par1 a -> Par1 b #

liftA2 :: (a -> b -> c) -> Par1 a -> Par1 b -> Par1 c #

(*>) :: Par1 a -> Par1 b -> Par1 b #

(<*) :: Par1 a -> Par1 b -> Par1 a #

Applicative Q 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

pure :: a -> Q a #

(<*>) :: Q (a -> b) -> Q a -> Q b #

liftA2 :: (a -> b -> c) -> Q a -> Q b -> Q c #

(*>) :: Q a -> Q b -> Q b #

(<*) :: Q a -> Q b -> Q a #

Applicative Complex

Since: base-4.9.0.0

Instance details

Defined in Data.Complex

Methods

pure :: a -> Complex a #

(<*>) :: Complex (a -> b) -> Complex a -> Complex b #

liftA2 :: (a -> b -> c) -> Complex a -> Complex b -> Complex c #

(*>) :: Complex a -> Complex b -> Complex b #

(<*) :: Complex a -> Complex b -> Complex a #

Applicative Min

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

pure :: a -> Min a #

(<*>) :: Min (a -> b) -> Min a -> Min b #

liftA2 :: (a -> b -> c) -> Min a -> Min b -> Min c #

(*>) :: Min a -> Min b -> Min b #

(<*) :: Min a -> Min b -> Min a #

Applicative Max

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

pure :: a -> Max a #

(<*>) :: Max (a -> b) -> Max a -> Max b #

liftA2 :: (a -> b -> c) -> Max a -> Max b -> Max c #

(*>) :: Max a -> Max b -> Max b #

(<*) :: Max a -> Max b -> Max a #

Applicative First

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

pure :: a -> First a #

(<*>) :: First (a -> b) -> First a -> First b #

liftA2 :: (a -> b -> c) -> First a -> First b -> First c #

(*>) :: First a -> First b -> First b #

(<*) :: First a -> First b -> First a #

Applicative Last

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

pure :: a -> Last a #

(<*>) :: Last (a -> b) -> Last a -> Last b #

liftA2 :: (a -> b -> c) -> Last a -> Last b -> Last c #

(*>) :: Last a -> Last b -> Last b #

(<*) :: Last a -> Last b -> Last a #

Applicative Option

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

pure :: a -> Option a #

(<*>) :: Option (a -> b) -> Option a -> Option b #

liftA2 :: (a -> b -> c) -> Option a -> Option b -> Option c #

(*>) :: Option a -> Option b -> Option b #

(<*) :: Option a -> Option b -> Option a #

Applicative ZipList
f <$> ZipList xs1 <*> ... <*> ZipList xsN
    = ZipList (zipWithN f xs1 ... xsN)

where zipWithN refers to the zipWith function of the appropriate arity (zipWith, zipWith3, zipWith4, ...). For example:

(\a b c -> stimes c [a, b]) <$> ZipList "abcd" <*> ZipList "567" <*> ZipList [1..]
    = ZipList (zipWith3 (\a b c -> stimes c [a, b]) "abcd" "567" [1..])
    = ZipList {getZipList = ["a5","b6b6","c7c7c7"]}

Since: base-2.1

Instance details

Defined in Control.Applicative

Methods

pure :: a -> ZipList a #

(<*>) :: ZipList (a -> b) -> ZipList a -> ZipList b #

liftA2 :: (a -> b -> c) -> ZipList a -> ZipList b -> ZipList c #

(*>) :: ZipList a -> ZipList b -> ZipList b #

(<*) :: ZipList a -> ZipList b -> ZipList a #

Applicative Identity

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Identity

Methods

pure :: a -> Identity a #

(<*>) :: Identity (a -> b) -> Identity a -> Identity b #

liftA2 :: (a -> b -> c) -> Identity a -> Identity b -> Identity c #

(*>) :: Identity a -> Identity b -> Identity b #

(<*) :: Identity a -> Identity b -> Identity a #

Applicative STM

Since: base-4.8.0.0

Instance details

Defined in GHC.Conc.Sync

Methods

pure :: a -> STM a #

(<*>) :: STM (a -> b) -> STM a -> STM b #

liftA2 :: (a -> b -> c) -> STM a -> STM b -> STM c #

(*>) :: STM a -> STM b -> STM b #

(<*) :: STM a -> STM b -> STM a #

Applicative First

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

pure :: a -> First a #

(<*>) :: First (a -> b) -> First a -> First b #

liftA2 :: (a -> b -> c) -> First a -> First b -> First c #

(*>) :: First a -> First b -> First b #

(<*) :: First a -> First b -> First a #

Applicative Last

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

pure :: a -> Last a #

(<*>) :: Last (a -> b) -> Last a -> Last b #

liftA2 :: (a -> b -> c) -> Last a -> Last b -> Last c #

(*>) :: Last a -> Last b -> Last b #

(<*) :: Last a -> Last b -> Last a #

Applicative Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

pure :: a -> Dual a #

(<*>) :: Dual (a -> b) -> Dual a -> Dual b #

liftA2 :: (a -> b -> c) -> Dual a -> Dual b -> Dual c #

(*>) :: Dual a -> Dual b -> Dual b #

(<*) :: Dual a -> Dual b -> Dual a #

Applicative Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

pure :: a -> Sum a #

(<*>) :: Sum (a -> b) -> Sum a -> Sum b #

liftA2 :: (a -> b -> c) -> Sum a -> Sum b -> Sum c #

(*>) :: Sum a -> Sum b -> Sum b #

(<*) :: Sum a -> Sum b -> Sum a #

Applicative Product

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

pure :: a -> Product a #

(<*>) :: Product (a -> b) -> Product a -> Product b #

liftA2 :: (a -> b -> c) -> Product a -> Product b -> Product c #

(*>) :: Product a -> Product b -> Product b #

(<*) :: Product a -> Product b -> Product a #

Applicative Down

Since: base-4.11.0.0

Instance details

Defined in Data.Ord

Methods

pure :: a -> Down a #

(<*>) :: Down (a -> b) -> Down a -> Down b #

liftA2 :: (a -> b -> c) -> Down a -> Down b -> Down c #

(*>) :: Down a -> Down b -> Down b #

(<*) :: Down a -> Down b -> Down a #

Applicative ReadPrec

Since: base-4.6.0.0

Instance details

Defined in Text.ParserCombinators.ReadPrec

Methods

pure :: a -> ReadPrec a #

(<*>) :: ReadPrec (a -> b) -> ReadPrec a -> ReadPrec b #

liftA2 :: (a -> b -> c) -> ReadPrec a -> ReadPrec b -> ReadPrec c #

(*>) :: ReadPrec a -> ReadPrec b -> ReadPrec b #

(<*) :: ReadPrec a -> ReadPrec b -> ReadPrec a #

Applicative ReadP

Since: base-4.6.0.0

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

pure :: a -> ReadP a #

(<*>) :: ReadP (a -> b) -> ReadP a -> ReadP b #

liftA2 :: (a -> b -> c) -> ReadP a -> ReadP b -> ReadP c #

(*>) :: ReadP a -> ReadP b -> ReadP b #

(<*) :: ReadP a -> ReadP b -> ReadP a #

Applicative NonEmpty

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

pure :: a -> NonEmpty a #

(<*>) :: NonEmpty (a -> b) -> NonEmpty a -> NonEmpty b #

liftA2 :: (a -> b -> c) -> NonEmpty a -> NonEmpty b -> NonEmpty c #

(*>) :: NonEmpty a -> NonEmpty b -> NonEmpty b #

(<*) :: NonEmpty a -> NonEmpty b -> NonEmpty a #

Applicative Put 
Instance details

Defined in Data.ByteString.Builder.Internal

Methods

pure :: a -> Put a #

(<*>) :: Put (a -> b) -> Put a -> Put b #

liftA2 :: (a -> b -> c) -> Put a -> Put b -> Put c #

(*>) :: Put a -> Put b -> Put b #

(<*) :: Put a -> Put b -> Put a #

Applicative Tree 
Instance details

Defined in Data.Tree

Methods

pure :: a -> Tree a #

(<*>) :: Tree (a -> b) -> Tree a -> Tree b #

liftA2 :: (a -> b -> c) -> Tree a -> Tree b -> Tree c #

(*>) :: Tree a -> Tree b -> Tree b #

(<*) :: Tree a -> Tree b -> Tree a #

Applicative Seq

Since: containers-0.5.4

Instance details

Defined in Data.Sequence.Internal

Methods

pure :: a -> Seq a #

(<*>) :: Seq (a -> b) -> Seq a -> Seq b #

liftA2 :: (a -> b -> c) -> Seq a -> Seq b -> Seq c #

(*>) :: Seq a -> Seq b -> Seq b #

(<*) :: Seq a -> Seq b -> Seq a #

Applicative P

Since: base-4.5.0.0

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

pure :: a -> P a #

(<*>) :: P (a -> b) -> P a -> P b #

liftA2 :: (a -> b -> c) -> P a -> P b -> P c #

(*>) :: P a -> P b -> P b #

(<*) :: P a -> P b -> P a #

Applicative (Either e)

Since: base-3.0

Instance details

Defined in Data.Either

Methods

pure :: a -> Either e a #

(<*>) :: Either e (a -> b) -> Either e a -> Either e b #

liftA2 :: (a -> b -> c) -> Either e a -> Either e b -> Either e c #

(*>) :: Either e a -> Either e b -> Either e b #

(<*) :: Either e a -> Either e b -> Either e a #

Applicative (U1 :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

pure :: a -> U1 a #

(<*>) :: U1 (a -> b) -> U1 a -> U1 b #

liftA2 :: (a -> b -> c) -> U1 a -> U1 b -> U1 c #

(*>) :: U1 a -> U1 b -> U1 b #

(<*) :: U1 a -> U1 b -> U1 a #

Monoid a => Applicative ((,) a)

For tuples, the Monoid constraint on a determines how the first values merge. For example, Strings concatenate:

("hello ", (+15)) <*> ("world!", 2002)
("hello world!",2017)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

pure :: a0 -> (a, a0) #

(<*>) :: (a, a0 -> b) -> (a, a0) -> (a, b) #

liftA2 :: (a0 -> b -> c) -> (a, a0) -> (a, b) -> (a, c) #

(*>) :: (a, a0) -> (a, b) -> (a, b) #

(<*) :: (a, a0) -> (a, b) -> (a, a0) #

Monad m => Applicative (WrappedMonad m)

Since: base-2.1

Instance details

Defined in Control.Applicative

Methods

pure :: a -> WrappedMonad m a #

(<*>) :: WrappedMonad m (a -> b) -> WrappedMonad m a -> WrappedMonad m b #

liftA2 :: (a -> b -> c) -> WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m c #

(*>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b #

(<*) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m a #

Arrow a => Applicative (ArrowMonad a)

Since: base-4.6.0.0

Instance details

Defined in Control.Arrow

Methods

pure :: a0 -> ArrowMonad a a0 #

(<*>) :: ArrowMonad a (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b #

liftA2 :: (a0 -> b -> c) -> ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a c #

(*>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b #

(<*) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a a0 #

Applicative (Proxy :: Type -> Type)

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Methods

pure :: a -> Proxy a #

(<*>) :: Proxy (a -> b) -> Proxy a -> Proxy b #

liftA2 :: (a -> b -> c) -> Proxy a -> Proxy b -> Proxy c #

(*>) :: Proxy a -> Proxy b -> Proxy b #

(<*) :: Proxy a -> Proxy b -> Proxy a #

(Functor m, Monad m) => Applicative (MaybeT m) 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

pure :: a -> MaybeT m a #

(<*>) :: MaybeT m (a -> b) -> MaybeT m a -> MaybeT m b #

liftA2 :: (a -> b -> c) -> MaybeT m a -> MaybeT m b -> MaybeT m c #

(*>) :: MaybeT m a -> MaybeT m b -> MaybeT m b #

(<*) :: MaybeT m a -> MaybeT m b -> MaybeT m a #

Semigroup e => Applicative (Validation e) Source #

This instance if the most important instance for the Validation data type. It's responsible for the many implementations. And it allows to accumulate errors while performing validation or combining the results in the applicative style.

Examples

>>> success1 = Success 42 :: Validation [Text] Int
>>> success2 = Success 69 :: Validation [Text] Int
>>> successF = Success (* 2) :: Validation [Text] (Int -> Int)
>>> failure1 = Failure ["WRONG"] :: Validation [Text] Int
>>> failure2 = Failure ["FAIL"]  :: Validation [Text] Int
>>> successF <*> success1
Success 84
>>> successF <*> failure1
Failure ["WRONG"]
>>> (+) <$> success1 <*> success2
Success 111
>>> (+) <$> failure1 <*> failure2
Failure ["WRONG","FAIL"]
>>> liftA2 (+) success1 failure1
Failure ["WRONG"]
>>> liftA3 (,,) failure1 success1 failure2
Failure ["WRONG","FAIL"]

Implementations of all functions are lazy and they correctly work if some arguments are not fully evaluated.

>>> :{
isFailure :: Validation e a -> Bool
isFailure (Failure _) = True
isFailure (Success _) = False
:}
>>> failure1 *> failure2
Failure ["WRONG","FAIL"]
>>> isFailure $ failure1 *> failure2
True
>>> epicFail = error "Impossible validation" :: Validation [Text] Int
>>> isFailure $ failure1 *> epicFail
True
Instance details

Defined in Relude.Extra.Validation

Methods

pure :: a -> Validation e a #

(<*>) :: Validation e (a -> b) -> Validation e a -> Validation e b #

liftA2 :: (a -> b -> c) -> Validation e a -> Validation e b -> Validation e c #

(*>) :: Validation e a -> Validation e b -> Validation e b #

(<*) :: Validation e a -> Validation e b -> Validation e a #

Applicative f => Applicative (Rec1 f)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

pure :: a -> Rec1 f a #

(<*>) :: Rec1 f (a -> b) -> Rec1 f a -> Rec1 f b #

liftA2 :: (a -> b -> c) -> Rec1 f a -> Rec1 f b -> Rec1 f c #

(*>) :: Rec1 f a -> Rec1 f b -> Rec1 f b #

(<*) :: Rec1 f a -> Rec1 f b -> Rec1 f a #

Arrow a => Applicative (WrappedArrow a b)

Since: base-2.1

Instance details

Defined in Control.Applicative

Methods

pure :: a0 -> WrappedArrow a b a0 #

(<*>) :: WrappedArrow a b (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 #

liftA2 :: (a0 -> b0 -> c) -> WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b c #

(*>) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b b0 #

(<*) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 #

Monoid m => Applicative (Const m :: Type -> Type)

Since: base-2.0.1

Instance details

Defined in Data.Functor.Const

Methods

pure :: a -> Const m a #

(<*>) :: Const m (a -> b) -> Const m a -> Const m b #

liftA2 :: (a -> b -> c) -> Const m a -> Const m b -> Const m c #

(*>) :: Const m a -> Const m b -> Const m b #

(<*) :: Const m a -> Const m b -> Const m a #

Applicative f => Applicative (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

pure :: a -> Ap f a #

(<*>) :: Ap f (a -> b) -> Ap f a -> Ap f b #

liftA2 :: (a -> b -> c) -> Ap f a -> Ap f b -> Ap f c #

(*>) :: Ap f a -> Ap f b -> Ap f b #

(<*) :: Ap f a -> Ap f b -> Ap f a #

Applicative f => Applicative (Alt f)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

pure :: a -> Alt f a #

(<*>) :: Alt f (a -> b) -> Alt f a -> Alt f b #

liftA2 :: (a -> b -> c) -> Alt f a -> Alt f b -> Alt f c #

(*>) :: Alt f a -> Alt f b -> Alt f b #

(<*) :: Alt f a -> Alt f b -> Alt f a #

(Applicative f, Monad f) => Applicative (WhenMissing f x)

Equivalent to ReaderT k (ReaderT x (MaybeT f)).

Since: containers-0.5.9

Instance details

Defined in Data.IntMap.Internal

Methods

pure :: a -> WhenMissing f x a #

(<*>) :: WhenMissing f x (a -> b) -> WhenMissing f x a -> WhenMissing f x b #

liftA2 :: (a -> b -> c) -> WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x c #

(*>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b #

(<*) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x a #

Applicative m => Applicative (IdentityT m) 
Instance details

Defined in Control.Monad.Trans.Identity

Methods

pure :: a -> IdentityT m a #

(<*>) :: IdentityT m (a -> b) -> IdentityT m a -> IdentityT m b #

liftA2 :: (a -> b -> c) -> IdentityT m a -> IdentityT m b -> IdentityT m c #

(*>) :: IdentityT m a -> IdentityT m b -> IdentityT m b #

(<*) :: IdentityT m a -> IdentityT m b -> IdentityT m a #

(Functor m, Monad m) => Applicative (ErrorT e m) 
Instance details

Defined in Control.Monad.Trans.Error

Methods

pure :: a -> ErrorT e m a #

(<*>) :: ErrorT e m (a -> b) -> ErrorT e m a -> ErrorT e m b #

liftA2 :: (a -> b -> c) -> ErrorT e m a -> ErrorT e m b -> ErrorT e m c #

(*>) :: ErrorT e m a -> ErrorT e m b -> ErrorT e m b #

(<*) :: ErrorT e m a -> ErrorT e m b -> ErrorT e m a #

(Functor m, Monad m) => Applicative (ExceptT e m) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

pure :: a -> ExceptT e m a #

(<*>) :: ExceptT e m (a -> b) -> ExceptT e m a -> ExceptT e m b #

liftA2 :: (a -> b -> c) -> ExceptT e m a -> ExceptT e m b -> ExceptT e m c #

(*>) :: ExceptT e m a -> ExceptT e m b -> ExceptT e m b #

(<*) :: ExceptT e m a -> ExceptT e m b -> ExceptT e m a #

Applicative m => Applicative (ReaderT r m) 
Instance details

Defined in Control.Monad.Trans.Reader

Methods

pure :: a -> ReaderT r m a #

(<*>) :: ReaderT r m (a -> b) -> ReaderT r m a -> ReaderT r m b #

liftA2 :: (a -> b -> c) -> ReaderT r m a -> ReaderT r m b -> ReaderT r m c #

(*>) :: ReaderT r m a -> ReaderT r m b -> ReaderT r m b #

(<*) :: ReaderT r m a -> ReaderT r m b -> ReaderT r m a #

(Functor m, Monad m) => Applicative (StateT s m) 
Instance details

Defined in Control.Monad.Trans.State.Strict

Methods

pure :: a -> StateT s m a #

(<*>) :: StateT s m (a -> b) -> StateT s m a -> StateT s m b #

liftA2 :: (a -> b -> c) -> StateT s m a -> StateT s m b -> StateT s m c #

(*>) :: StateT s m a -> StateT s m b -> StateT s m b #

(<*) :: StateT s m a -> StateT s m b -> StateT s m a #

Applicative ((->) a :: Type -> Type)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

pure :: a0 -> a -> a0 #

(<*>) :: (a -> (a0 -> b)) -> (a -> a0) -> a -> b #

liftA2 :: (a0 -> b -> c) -> (a -> a0) -> (a -> b) -> a -> c #

(*>) :: (a -> a0) -> (a -> b) -> a -> b #

(<*) :: (a -> a0) -> (a -> b) -> a -> a0 #

Monoid c => Applicative (K1 i c :: Type -> Type)

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

pure :: a -> K1 i c a #

(<*>) :: K1 i c (a -> b) -> K1 i c a -> K1 i c b #

liftA2 :: (a -> b -> c0) -> K1 i c a -> K1 i c b -> K1 i c c0 #

(*>) :: K1 i c a -> K1 i c b -> K1 i c b #

(<*) :: K1 i c a -> K1 i c b -> K1 i c a #

(Applicative f, Applicative g) => Applicative (f :*: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

pure :: a -> (f :*: g) a #

(<*>) :: (f :*: g) (a -> b) -> (f :*: g) a -> (f :*: g) b #

liftA2 :: (a -> b -> c) -> (f :*: g) a -> (f :*: g) b -> (f :*: g) c #

(*>) :: (f :*: g) a -> (f :*: g) b -> (f :*: g) b #

(<*) :: (f :*: g) a -> (f :*: g) b -> (f :*: g) a #

(Applicative f, Applicative g) => Applicative (Product f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

pure :: a -> Product f g a #

(<*>) :: Product f g (a -> b) -> Product f g a -> Product f g b #

liftA2 :: (a -> b -> c) -> Product f g a -> Product f g b -> Product f g c #

(*>) :: Product f g a -> Product f g b -> Product f g b #

(<*) :: Product f g a -> Product f g b -> Product f g a #

(Monad f, Applicative f) => Applicative (WhenMatched f x y)

Equivalent to ReaderT Key (ReaderT x (ReaderT y (MaybeT f)))

Since: containers-0.5.9

Instance details

Defined in Data.IntMap.Internal

Methods

pure :: a -> WhenMatched f x y a #

(<*>) :: WhenMatched f x y (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b #

liftA2 :: (a -> b -> c) -> WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y c #

(*>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b #

(<*) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y a #

(Applicative f, Monad f) => Applicative (WhenMissing f k x)

Equivalent to ReaderT k (ReaderT x (MaybeT f)) .

Since: containers-0.5.9

Instance details

Defined in Data.Map.Internal

Methods

pure :: a -> WhenMissing f k x a #

(<*>) :: WhenMissing f k x (a -> b) -> WhenMissing f k x a -> WhenMissing f k x b #

liftA2 :: (a -> b -> c) -> WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x c #

(*>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b #

(<*) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x a #

Applicative f => Applicative (M1 i c f)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

pure :: a -> M1 i c f a #

(<*>) :: M1 i c f (a -> b) -> M1 i c f a -> M1 i c f b #

liftA2 :: (a -> b -> c0) -> M1 i c f a -> M1 i c f b -> M1 i c f c0 #

(*>) :: M1 i c f a -> M1 i c f b -> M1 i c f b #

(<*) :: M1 i c f a -> M1 i c f b -> M1 i c f a #

(Applicative f, Applicative g) => Applicative (f :.: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

pure :: a -> (f :.: g) a #

(<*>) :: (f :.: g) (a -> b) -> (f :.: g) a -> (f :.: g) b #

liftA2 :: (a -> b -> c) -> (f :.: g) a -> (f :.: g) b -> (f :.: g) c #

(*>) :: (f :.: g) a -> (f :.: g) b -> (f :.: g) b #

(<*) :: (f :.: g) a -> (f :.: g) b -> (f :.: g) a #

(Applicative f, Applicative g) => Applicative (Compose f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

pure :: a -> Compose f g a #

(<*>) :: Compose f g (a -> b) -> Compose f g a -> Compose f g b #

liftA2 :: (a -> b -> c) -> Compose f g a -> Compose f g b -> Compose f g c #

(*>) :: Compose f g a -> Compose f g b -> Compose f g b #

(<*) :: Compose f g a -> Compose f g b -> Compose f g a #

(Monad f, Applicative f) => Applicative (WhenMatched f k x y)

Equivalent to ReaderT k (ReaderT x (ReaderT y (MaybeT f)))

Since: containers-0.5.9

Instance details

Defined in Data.Map.Internal

Methods

pure :: a -> WhenMatched f k x y a #

(<*>) :: WhenMatched f k x y (a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b #

liftA2 :: (a -> b -> c) -> WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y c #

(*>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b #

(<*) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y a #

optional :: Alternative f => f a -> f (Maybe a) #

One or none.

newtype ZipList a #

Lists, but with an Applicative functor based on zipping.

Constructors

ZipList 

Fields

Instances

Instances details
Functor ZipList

Since: base-2.1

Instance details

Defined in Control.Applicative

Methods

fmap :: (a -> b) -> ZipList a -> ZipList b #

(<$) :: a -> ZipList b -> ZipList a #

Applicative ZipList
f <$> ZipList xs1 <*> ... <*> ZipList xsN
    = ZipList (zipWithN f xs1 ... xsN)

where zipWithN refers to the zipWith function of the appropriate arity (zipWith, zipWith3, zipWith4, ...). For example:

(\a b c -> stimes c [a, b]) <$> ZipList "abcd" <*> ZipList "567" <*> ZipList [1..]
    = ZipList (zipWith3 (\a b c -> stimes c [a, b]) "abcd" "567" [1..])
    = ZipList {getZipList = ["a5","b6b6","c7c7c7"]}

Since: base-2.1

Instance details

Defined in Control.Applicative

Methods

pure :: a -> ZipList a #

(<*>) :: ZipList (a -> b) -> ZipList a -> ZipList b #

liftA2 :: (a -> b -> c) -> ZipList a -> ZipList b -> ZipList c #

(*>) :: ZipList a -> ZipList b -> ZipList b #

(<*) :: ZipList a -> ZipList b -> ZipList a #

Foldable ZipList

Since: base-4.9.0.0

Instance details

Defined in Control.Applicative

Methods

fold :: Monoid m => ZipList m -> m #

foldMap :: Monoid m => (a -> m) -> ZipList a -> m #

foldMap' :: Monoid m => (a -> m) -> ZipList a -> m #

foldr :: (a -> b -> b) -> b -> ZipList a -> b #

foldr' :: (a -> b -> b) -> b -> ZipList a -> b #

foldl :: (b -> a -> b) -> b -> ZipList a -> b #

foldl' :: (b -> a -> b) -> b -> ZipList a -> b #

foldr1 :: (a -> a -> a) -> ZipList a -> a #

foldl1 :: (a -> a -> a) -> ZipList a -> a #

toList :: ZipList a -> [a] #

null :: ZipList a -> Bool #

length :: ZipList a -> Int #

elem :: Eq a => a -> ZipList a -> Bool #

maximum :: Ord a => ZipList a -> a #

minimum :: Ord a => ZipList a -> a #

sum :: Num a => ZipList a -> a #

product :: Num a => ZipList a -> a #

Traversable ZipList

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> ZipList a -> f (ZipList b) #

sequenceA :: Applicative f => ZipList (f a) -> f (ZipList a) #

mapM :: Monad m => (a -> m b) -> ZipList a -> m (ZipList b) #

sequence :: Monad m => ZipList (m a) -> m (ZipList a) #

Alternative ZipList

Since: base-4.11.0.0

Instance details

Defined in Control.Applicative

Methods

empty :: ZipList a #

(<|>) :: ZipList a -> ZipList a -> ZipList a #

some :: ZipList a -> ZipList [a] #

many :: ZipList a -> ZipList [a] #

NFData1 ZipList

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

liftRnf :: (a -> ()) -> ZipList a -> () #

Eq a => Eq (ZipList a)

Since: base-4.7.0.0

Instance details

Defined in Control.Applicative

Methods

(==) :: ZipList a -> ZipList a -> Bool #

(/=) :: ZipList a -> ZipList a -> Bool #

Ord a => Ord (ZipList a)

Since: base-4.7.0.0

Instance details

Defined in Control.Applicative

Methods

compare :: ZipList a -> ZipList a -> Ordering #

(<) :: ZipList a -> ZipList a -> Bool #

(<=) :: ZipList a -> ZipList a -> Bool #

(>) :: ZipList a -> ZipList a -> Bool #

(>=) :: ZipList a -> ZipList a -> Bool #

max :: ZipList a -> ZipList a -> ZipList a #

min :: ZipList a -> ZipList a -> ZipList a #

Read a => Read (ZipList a)

Since: base-4.7.0.0

Instance details

Defined in Control.Applicative

Show a => Show (ZipList a)

Since: base-4.7.0.0

Instance details

Defined in Control.Applicative

Methods

showsPrec :: Int -> ZipList a -> ShowS #

show :: ZipList a -> String #

showList :: [ZipList a] -> ShowS #

Generic (ZipList a)

Since: base-4.7.0.0

Instance details

Defined in Control.Applicative

Associated Types

type Rep (ZipList a) :: Type -> Type #

Methods

from :: ZipList a -> Rep (ZipList a) x #

to :: Rep (ZipList a) x -> ZipList a #

NFData a => NFData (ZipList a)

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: ZipList a -> () #

Generic1 ZipList

Since: base-4.7.0.0

Instance details

Defined in Control.Applicative

Associated Types

type Rep1 ZipList :: k -> Type #

Methods

from1 :: forall (a :: k). ZipList a -> Rep1 ZipList a #

to1 :: forall (a :: k). Rep1 ZipList a -> ZipList a #

type Rep (ZipList a) 
Instance details

Defined in Control.Applicative

type Rep (ZipList a) = D1 ('MetaData "ZipList" "Control.Applicative" "base" 'True) (C1 ('MetaCons "ZipList" 'PrefixI 'True) (S1 ('MetaSel ('Just "getZipList") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [a])))
type Rep1 ZipList 
Instance details

Defined in Control.Applicative

type Rep1 ZipList = D1 ('MetaData "ZipList" "Control.Applicative" "base" 'True) (C1 ('MetaCons "ZipList" 'PrefixI 'True) (S1 ('MetaSel ('Just "getZipList") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 [])))

newtype Const a (b :: k) #

The Const functor.

Constructors

Const 

Fields

Instances

Instances details
Generic1 (Const a :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Associated Types

type Rep1 (Const a) :: k -> Type #

Methods

from1 :: forall (a0 :: k0). Const a a0 -> Rep1 (Const a) a0 #

to1 :: forall (a0 :: k0). Rep1 (Const a) a0 -> Const a a0 #

Bitraversable (Const :: Type -> Type -> Type)

Since: base-4.10.0.0

Instance details

Defined in Data.Bitraversable

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Const a b -> f (Const c d) #

Bifoldable (Const :: Type -> Type -> Type)

Since: base-4.10.0.0

Instance details

Defined in Data.Bifoldable

Methods

bifold :: Monoid m => Const m m -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> Const a b -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> Const a b -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> Const a b -> c #

Bifunctor (Const :: Type -> Type -> Type)

Since: base-4.8.0.0

Instance details

Defined in Data.Bifunctor

Methods

bimap :: (a -> b) -> (c -> d) -> Const a c -> Const b d #

first :: (a -> b) -> Const a c -> Const b c #

second :: (b -> c) -> Const a b -> Const a c #

Eq2 (Const :: Type -> Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftEq2 :: (a -> b -> Bool) -> (c -> d -> Bool) -> Const a c -> Const b d -> Bool #

Ord2 (Const :: Type -> Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftCompare2 :: (a -> b -> Ordering) -> (c -> d -> Ordering) -> Const a c -> Const b d -> Ordering #

Read2 (Const :: Type -> Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (Const a b) #

liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [Const a b] #

liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (Const a b) #

liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [Const a b] #

Show2 (Const :: Type -> Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftShowsPrec2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> Int -> Const a b -> ShowS #

liftShowList2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> [Const a b] -> ShowS #

NFData2 (Const :: Type -> Type -> Type)

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

liftRnf2 :: (a -> ()) -> (b -> ()) -> Const a b -> () #

Hashable2 (Const :: Type -> Type -> Type) 
Instance details

Defined in Data.Hashable.Class

Methods

liftHashWithSalt2 :: (Int -> a -> Int) -> (Int -> b -> Int) -> Int -> Const a b -> Int

Functor (Const m :: Type -> Type)

Since: base-2.1

Instance details

Defined in Data.Functor.Const

Methods

fmap :: (a -> b) -> Const m a -> Const m b #

(<$) :: a -> Const m b -> Const m a #

Monoid m => Applicative (Const m :: Type -> Type)

Since: base-2.0.1

Instance details

Defined in Data.Functor.Const

Methods

pure :: a -> Const m a #

(<*>) :: Const m (a -> b) -> Const m a -> Const m b #

liftA2 :: (a -> b -> c) -> Const m a -> Const m b -> Const m c #

(*>) :: Const m a -> Const m b -> Const m b #

(<*) :: Const m a -> Const m b -> Const m a #

Foldable (Const m :: Type -> Type)

Since: base-4.7.0.0

Instance details

Defined in Data.Functor.Const

Methods

fold :: Monoid m0 => Const m m0 -> m0 #

foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 #

foldMap' :: Monoid m0 => (a -> m0) -> Const m a -> m0 #

foldr :: (a -> b -> b) -> b -> Const m a -> b #

foldr' :: (a -> b -> b) -> b -> Const m a -> b #

foldl :: (b -> a -> b) -> b -> Const m a -> b #

foldl' :: (b -> a -> b) -> b -> Const m a -> b #

foldr1 :: (a -> a -> a) -> Const m a -> a #

foldl1 :: (a -> a -> a) -> Const m a -> a #

toList :: Const m a -> [a] #

null :: Const m a -> Bool #

length :: Const m a -> Int #

elem :: Eq a => a -> Const m a -> Bool #

maximum :: Ord a => Const m a -> a #

minimum :: Ord a => Const m a -> a #

sum :: Num a => Const m a -> a #

product :: Num a => Const m a -> a #

Traversable (Const m :: Type -> Type)

Since: base-4.7.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Const m a -> f (Const m b) #

sequenceA :: Applicative f => Const m (f a) -> f (Const m a) #

mapM :: Monad m0 => (a -> m0 b) -> Const m a -> m0 (Const m b) #

sequence :: Monad m0 => Const m (m0 a) -> m0 (Const m a) #

Contravariant (Const a :: Type -> Type) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a0 -> b) -> Const a b -> Const a a0 #

(>$) :: b -> Const a b -> Const a a0 #

Eq a => Eq1 (Const a :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftEq :: (a0 -> b -> Bool) -> Const a a0 -> Const a b -> Bool #

Ord a => Ord1 (Const a :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftCompare :: (a0 -> b -> Ordering) -> Const a a0 -> Const a b -> Ordering #

Read a => Read1 (Const a :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftReadsPrec :: (Int -> ReadS a0) -> ReadS [a0] -> Int -> ReadS (Const a a0) #

liftReadList :: (Int -> ReadS a0) -> ReadS [a0] -> ReadS [Const a a0] #

liftReadPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec (Const a a0) #

liftReadListPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec [Const a a0] #

Show a => Show1 (Const a :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftShowsPrec :: (Int -> a0 -> ShowS) -> ([a0] -> ShowS) -> Int -> Const a a0 -> ShowS #

liftShowList :: (Int -> a0 -> ShowS) -> ([a0] -> ShowS) -> [Const a a0] -> ShowS #

NFData a => NFData1 (Const a :: Type -> Type)

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

liftRnf :: (a0 -> ()) -> Const a a0 -> () #

Hashable a => Hashable1 (Const a :: Type -> Type) 
Instance details

Defined in Data.Hashable.Class

Methods

liftHashWithSalt :: (Int -> a0 -> Int) -> Int -> Const a a0 -> Int

Bounded a => Bounded (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

minBound :: Const a b #

maxBound :: Const a b #

Enum a => Enum (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

succ :: Const a b -> Const a b #

pred :: Const a b -> Const a b #

toEnum :: Int -> Const a b #

fromEnum :: Const a b -> Int #

enumFrom :: Const a b -> [Const a b] #

enumFromThen :: Const a b -> Const a b -> [Const a b] #

enumFromTo :: Const a b -> Const a b -> [Const a b] #

enumFromThenTo :: Const a b -> Const a b -> Const a b -> [Const a b] #

Eq a => Eq (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

(==) :: Const a b -> Const a b -> Bool #

(/=) :: Const a b -> Const a b -> Bool #

Floating a => Floating (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

pi :: Const a b #

exp :: Const a b -> Const a b #

log :: Const a b -> Const a b #

sqrt :: Const a b -> Const a b #

(**) :: Const a b -> Const a b -> Const a b #

logBase :: Const a b -> Const a b -> Const a b #

sin :: Const a b -> Const a b #

cos :: Const a b -> Const a b #

tan :: Const a b -> Const a b #

asin :: Const a b -> Const a b #

acos :: Const a b -> Const a b #

atan :: Const a b -> Const a b #

sinh :: Const a b -> Const a b #

cosh :: Const a b -> Const a b #

tanh :: Const a b -> Const a b #

asinh :: Const a b -> Const a b #

acosh :: Const a b -> Const a b #

atanh :: Const a b -> Const a b #

log1p :: Const a b -> Const a b #

expm1 :: Const a b -> Const a b #

log1pexp :: Const a b -> Const a b #

log1mexp :: Const a b -> Const a b #

Fractional a => Fractional (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

(/) :: Const a b -> Const a b -> Const a b #

recip :: Const a b -> Const a b #

fromRational :: Rational -> Const a b #

Integral a => Integral (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

quot :: Const a b -> Const a b -> Const a b #

rem :: Const a b -> Const a b -> Const a b #

div :: Const a b -> Const a b -> Const a b #

mod :: Const a b -> Const a b -> Const a b #

quotRem :: Const a b -> Const a b -> (Const a b, Const a b) #

divMod :: Const a b -> Const a b -> (Const a b, Const a b) #

toInteger :: Const a b -> Integer #

(Typeable k, Data a, Typeable b) => Data (Const a b)

Since: base-4.10.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Const a b -> c (Const a b) #

gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Const a b) #

toConstr :: Const a b -> Constr #

dataTypeOf :: Const a b -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Const a b)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Const a b)) #

gmapT :: (forall b0. Data b0 => b0 -> b0) -> Const a b -> Const a b #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r #

gmapQ :: (forall d. Data d => d -> u) -> Const a b -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Const a b -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) #

Num a => Num (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

(+) :: Const a b -> Const a b -> Const a b #

(-) :: Const a b -> Const a b -> Const a b #

(*) :: Const a b -> Const a b -> Const a b #

negate :: Const a b -> Const a b #

abs :: Const a b -> Const a b #

signum :: Const a b -> Const a b #

fromInteger :: Integer -> Const a b #

Ord a => Ord (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

compare :: Const a b -> Const a b -> Ordering #

(<) :: Const a b -> Const a b -> Bool #

(<=) :: Const a b -> Const a b -> Bool #

(>) :: Const a b -> Const a b -> Bool #

(>=) :: Const a b -> Const a b -> Bool #

max :: Const a b -> Const a b -> Const a b #

min :: Const a b -> Const a b -> Const a b #

Read a => Read (Const a b)

This instance would be equivalent to the derived instances of the Const newtype if the getConst field were removed

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Const

Real a => Real (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

toRational :: Const a b -> Rational #

RealFloat a => RealFloat (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

floatRadix :: Const a b -> Integer #

floatDigits :: Const a b -> Int #

floatRange :: Const a b -> (Int, Int) #

decodeFloat :: Const a b -> (Integer, Int) #

encodeFloat :: Integer -> Int -> Const a b #

exponent :: Const a b -> Int #

significand :: Const a b -> Const a b #

scaleFloat :: Int -> Const a b -> Const a b #

isNaN :: Const a b -> Bool #

isInfinite :: Const a b -> Bool #

isDenormalized :: Const a b -> Bool #

isNegativeZero :: Const a b -> Bool #

isIEEE :: Const a b -> Bool #

atan2 :: Const a b -> Const a b -> Const a b #

RealFrac a => RealFrac (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

properFraction :: Integral b0 => Const a b -> (b0, Const a b) #

truncate :: Integral b0 => Const a b -> b0 #

round :: Integral b0 => Const a b -> b0 #

ceiling :: Integral b0 => Const a b -> b0 #

floor :: Integral b0 => Const a b -> b0 #

Show a => Show (Const a b)

This instance would be equivalent to the derived instances of the Const newtype if the getConst field were removed

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Const

Methods

showsPrec :: Int -> Const a b -> ShowS #

show :: Const a b -> String #

showList :: [Const a b] -> ShowS #

Ix a => Ix (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

range :: (Const a b, Const a b) -> [Const a b] #

index :: (Const a b, Const a b) -> Const a b -> Int #

unsafeIndex :: (Const a b, Const a b) -> Const a b -> Int #

inRange :: (Const a b, Const a b) -> Const a b -> Bool #

rangeSize :: (Const a b, Const a b) -> Int #

unsafeRangeSize :: (Const a b, Const a b) -> Int #

IsString a => IsString (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.String

Methods

fromString :: String -> Const a b #

Generic (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Associated Types

type Rep (Const a b) :: Type -> Type #

Methods

from :: Const a b -> Rep (Const a b) x #

to :: Rep (Const a b) x -> Const a b #

Semigroup a => Semigroup (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

(<>) :: Const a b -> Const a b -> Const a b #

sconcat :: NonEmpty (Const a b) -> Const a b #

stimes :: Integral b0 => b0 -> Const a b -> Const a b #

Monoid a => Monoid (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

mempty :: Const a b #

mappend :: Const a b -> Const a b -> Const a b #

mconcat :: [Const a b] -> Const a b #

Storable a => Storable (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

sizeOf :: Const a b -> Int #

alignment :: Const a b -> Int #

peekElemOff :: Ptr (Const a b) -> Int -> IO (Const a b) #

pokeElemOff :: Ptr (Const a b) -> Int -> Const a b -> IO () #

peekByteOff :: Ptr b0 -> Int -> IO (Const a b) #

pokeByteOff :: Ptr b0 -> Int -> Const a b -> IO () #

peek :: Ptr (Const a b) -> IO (Const a b) #

poke :: Ptr (Const a b) -> Const a b -> IO () #

Bits a => Bits (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

(.&.) :: Const a b -> Const a b -> Const a b #

(.|.) :: Const a b -> Const a b -> Const a b #

xor :: Const a b -> Const a b -> Const a b #

complement :: Const a b -> Const a b #

shift :: Const a b -> Int -> Const a b #

rotate :: Const a b -> Int -> Const a b #

zeroBits :: Const a b #

bit :: Int -> Const a b #

setBit :: Const a b -> Int -> Const a b #

clearBit :: Const a b -> Int -> Const a b #

complementBit :: Const a b -> Int -> Const a b #

testBit :: Const a b -> Int -> Bool #

bitSizeMaybe :: Const a b -> Maybe Int #

bitSize :: Const a b -> Int #

isSigned :: Const a b -> Bool #

shiftL :: Const a b -> Int -> Const a b #

unsafeShiftL :: Const a b -> Int -> Const a b #

shiftR :: Const a b -> Int -> Const a b #

unsafeShiftR :: Const a b -> Int -> Const a b #

rotateL :: Const a b -> Int -> Const a b #

rotateR :: Const a b -> Int -> Const a b #

popCount :: Const a b -> Int #

FiniteBits a => FiniteBits (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

NFData a => NFData (Const a b)

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Const a b -> () #

Hashable a => Hashable (Const a b) 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Const a b -> Int #

hash :: Const a b -> Int

type Rep1 (Const a :: k -> Type) 
Instance details

Defined in Data.Functor.Const

type Rep1 (Const a :: k -> Type) = D1 ('MetaData "Const" "Data.Functor.Const" "base" 'True) (C1 ('MetaCons "Const" 'PrefixI 'True) (S1 ('MetaSel ('Just "getConst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))
type Rep (Const a b) 
Instance details

Defined in Data.Functor.Const

type Rep (Const a b) = D1 ('MetaData "Const" "Data.Functor.Const" "base" 'True) (C1 ('MetaCons "Const" 'PrefixI 'True) (S1 ('MetaSel ('Just "getConst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d #

Lift a ternary function to actions.

(<**>) :: Applicative f => f a -> f (a -> b) -> f b infixl 4 #

A variant of <*> with the arguments reversed.

class Applicative f => Alternative (f :: Type -> Type) where #

A monoid on applicative functors.

If defined, some and many should be the least solutions of the equations:

Minimal complete definition

empty, (<|>)

Methods

empty :: f a #

The identity of <|>

(<|>) :: f a -> f a -> f a infixl 3 #

An associative binary operation

some :: f a -> f [a] #

One or more.

many :: f a -> f [a] #

Zero or more.

Instances

Instances details
Alternative []

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

empty :: [a] #

(<|>) :: [a] -> [a] -> [a] #

some :: [a] -> [[a]] #

many :: [a] -> [[a]] #

Alternative Maybe

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

empty :: Maybe a #

(<|>) :: Maybe a -> Maybe a -> Maybe a #

some :: Maybe a -> Maybe [a] #

many :: Maybe a -> Maybe [a] #

Alternative IO

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

empty :: IO a #

(<|>) :: IO a -> IO a -> IO a #

some :: IO a -> IO [a] #

many :: IO a -> IO [a] #

Alternative Option

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

empty :: Option a #

(<|>) :: Option a -> Option a -> Option a #

some :: Option a -> Option [a] #

many :: Option a -> Option [a] #

Alternative ZipList

Since: base-4.11.0.0

Instance details

Defined in Control.Applicative

Methods

empty :: ZipList a #

(<|>) :: ZipList a -> ZipList a -> ZipList a #

some :: ZipList a -> ZipList [a] #

many :: ZipList a -> ZipList [a] #

Alternative STM

Since: base-4.8.0.0

Instance details

Defined in GHC.Conc.Sync

Methods

empty :: STM a #

(<|>) :: STM a -> STM a -> STM a #

some :: STM a -> STM [a] #

many :: STM a -> STM [a] #

Alternative ReadPrec

Since: base-4.6.0.0

Instance details

Defined in Text.ParserCombinators.ReadPrec

Methods

empty :: ReadPrec a #

(<|>) :: ReadPrec a -> ReadPrec a -> ReadPrec a #

some :: ReadPrec a -> ReadPrec [a] #

many :: ReadPrec a -> ReadPrec [a] #

Alternative ReadP

Since: base-4.6.0.0

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

empty :: ReadP a #

(<|>) :: ReadP a -> ReadP a -> ReadP a #

some :: ReadP a -> ReadP [a] #

many :: ReadP a -> ReadP [a] #

Alternative Seq

Since: containers-0.5.4

Instance details

Defined in Data.Sequence.Internal

Methods

empty :: Seq a #

(<|>) :: Seq a -> Seq a -> Seq a #

some :: Seq a -> Seq [a] #

many :: Seq a -> Seq [a] #

Alternative P

Since: base-4.5.0.0

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

empty :: P a #

(<|>) :: P a -> P a -> P a #

some :: P a -> P [a] #

many :: P a -> P [a] #

Alternative (U1 :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

empty :: U1 a #

(<|>) :: U1 a -> U1 a -> U1 a #

some :: U1 a -> U1 [a] #

many :: U1 a -> U1 [a] #

MonadPlus m => Alternative (WrappedMonad m)

Since: base-2.1

Instance details

Defined in Control.Applicative

Methods

empty :: WrappedMonad m a #

(<|>) :: WrappedMonad m a -> WrappedMonad m a -> WrappedMonad m a #

some :: WrappedMonad m a -> WrappedMonad m [a] #

many :: WrappedMonad m a -> WrappedMonad m [a] #

ArrowPlus a => Alternative (ArrowMonad a)

Since: base-4.6.0.0

Instance details

Defined in Control.Arrow

Methods

empty :: ArrowMonad a a0 #

(<|>) :: ArrowMonad a a0 -> ArrowMonad a a0 -> ArrowMonad a a0 #

some :: ArrowMonad a a0 -> ArrowMonad a [a0] #

many :: ArrowMonad a a0 -> ArrowMonad a [a0] #

Alternative (Proxy :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Proxy

Methods

empty :: Proxy a #

(<|>) :: Proxy a -> Proxy a -> Proxy a #

some :: Proxy a -> Proxy [a] #

many :: Proxy a -> Proxy [a] #

(Functor m, Monad m) => Alternative (MaybeT m) 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

empty :: MaybeT m a #

(<|>) :: MaybeT m a -> MaybeT m a -> MaybeT m a #

some :: MaybeT m a -> MaybeT m [a] #

many :: MaybeT m a -> MaybeT m [a] #

(Semigroup e, Monoid e) => Alternative (Validation e) Source #

This instance implements the following behavior for the binary operator:

  1. Both Failure: combine values inside Failure using <>.
  2. At least is Success: return the left Success (the earliest Success).
  3. empty is Failure mempty.

Examples

>>> success1 = Success [42] :: Validation [Text] [Int]
>>> success2 = Success [69] :: Validation [Text] [Int]
>>> failure1 = Failure ["WRONG"] :: Validation [Text] [Int]
>>> failure2 = Failure ["FAIL"]  :: Validation [Text] [Int]
>>> success1 <|> success2
Success [42]
>>> failure1 <|> failure2
Failure ["WRONG","FAIL"]
>>> failure2 <|> success2
Success [69]
Instance details

Defined in Relude.Extra.Validation

Methods

empty :: Validation e a #

(<|>) :: Validation e a -> Validation e a -> Validation e a #

some :: Validation e a -> Validation e [a] #

many :: Validation e a -> Validation e [a] #

Alternative f => Alternative (Rec1 f)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

empty :: Rec1 f a #

(<|>) :: Rec1 f a -> Rec1 f a -> Rec1 f a #

some :: Rec1 f a -> Rec1 f [a] #

many :: Rec1 f a -> Rec1 f [a] #

(ArrowZero a, ArrowPlus a) => Alternative (WrappedArrow a b)

Since: base-2.1

Instance details

Defined in Control.Applicative

Methods

empty :: WrappedArrow a b a0 #

(<|>) :: WrappedArrow a b a0 -> WrappedArrow a b a0 -> WrappedArrow a b a0 #

some :: WrappedArrow a b a0 -> WrappedArrow a b [a0] #

many :: WrappedArrow a b a0 -> WrappedArrow a b [a0] #

Alternative f => Alternative (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

empty :: Ap f a #

(<|>) :: Ap f a -> Ap f a -> Ap f a #

some :: Ap f a -> Ap f [a] #

many :: Ap f a -> Ap f [a] #

Alternative f => Alternative (Alt f)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

empty :: Alt f a #

(<|>) :: Alt f a -> Alt f a -> Alt f a #

some :: Alt f a -> Alt f [a] #

many :: Alt f a -> Alt f [a] #

Alternative m => Alternative (IdentityT m) 
Instance details

Defined in Control.Monad.Trans.Identity

Methods

empty :: IdentityT m a #

(<|>) :: IdentityT m a -> IdentityT m a -> IdentityT m a #

some :: IdentityT m a -> IdentityT m [a] #

many :: IdentityT m a -> IdentityT m [a] #

(Functor m, Monad m, Error e) => Alternative (ErrorT e m) 
Instance details

Defined in Control.Monad.Trans.Error

Methods

empty :: ErrorT e m a #

(<|>) :: ErrorT e m a -> ErrorT e m a -> ErrorT e m a #

some :: ErrorT e m a -> ErrorT e m [a] #

many :: ErrorT e m a -> ErrorT e m [a] #

(Functor m, Monad m, Monoid e) => Alternative (ExceptT e m) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

empty :: ExceptT e m a #

(<|>) :: ExceptT e m a -> ExceptT e m a -> ExceptT e m a #

some :: ExceptT e m a -> ExceptT e m [a] #

many :: ExceptT e m a -> ExceptT e m [a] #

Alternative m => Alternative (ReaderT r m) 
Instance details

Defined in Control.Monad.Trans.Reader

Methods

empty :: ReaderT r m a #

(<|>) :: ReaderT r m a -> ReaderT r m a -> ReaderT r m a #

some :: ReaderT r m a -> ReaderT r m [a] #

many :: ReaderT r m a -> ReaderT r m [a] #

(Functor m, MonadPlus m) => Alternative (StateT s m) 
Instance details

Defined in Control.Monad.Trans.State.Strict

Methods

empty :: StateT s m a #

(<|>) :: StateT s m a -> StateT s m a -> StateT s m a #

some :: StateT s m a -> StateT s m [a] #

many :: StateT s m a -> StateT s m [a] #

(Alternative f, Alternative g) => Alternative (f :*: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

empty :: (f :*: g) a #

(<|>) :: (f :*: g) a -> (f :*: g) a -> (f :*: g) a #

some :: (f :*: g) a -> (f :*: g) [a] #

many :: (f :*: g) a -> (f :*: g) [a] #

(Alternative f, Alternative g) => Alternative (Product f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

empty :: Product f g a #

(<|>) :: Product f g a -> Product f g a -> Product f g a #

some :: Product f g a -> Product f g [a] #

many :: Product f g a -> Product f g [a] #

Alternative f => Alternative (M1 i c f)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

empty :: M1 i c f a #

(<|>) :: M1 i c f a -> M1 i c f a -> M1 i c f a #

some :: M1 i c f a -> M1 i c f [a] #

many :: M1 i c f a -> M1 i c f [a] #

(Alternative f, Applicative g) => Alternative (f :.: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

empty :: (f :.: g) a #

(<|>) :: (f :.: g) a -> (f :.: g) a -> (f :.: g) a #

some :: (f :.: g) a -> (f :.: g) [a] #

many :: (f :.: g) a -> (f :.: g) [a] #

(Alternative f, Applicative g) => Alternative (Compose f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

empty :: Compose f g a #

(<|>) :: Compose f g a -> Compose f g a -> Compose f g a #

some :: Compose f g a -> Compose f g [a] #

many :: Compose f g a -> Compose f g [a] #

pass :: Applicative f => f () Source #

Shorter alias for pure ().

>>> pass :: Maybe ()
Just ()

appliedTo :: Applicative f => f a -> f (a -> b) -> f b Source #

Named version of the <**> operator, which is <*> but flipped. For chaining applicative operations in forward applications using &.

>>> Just (+ 1) & appliedTo (Just 2)
Just 3
>>> Just (+) & appliedTo (Just 1) & appliedTo (Just 2)
Just 3
>>> Nothing & appliedTo (Just 2)
Nothing