{-# LANGUAGE CPP #-}
#if __GLASGOW_HASKELL__ >= 902
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
#endif
module Text.Regex.TDFA.NewDFA.Engine(execMatch) where
import Control.Monad(when,forM,forM_,liftM2,foldM,join,filterM)
import Data.Array.Base(unsafeRead,unsafeWrite,STUArray(..))
import GHC.Arr(STArray(..))
import GHC.ST(ST(..))
import GHC.Exts(MutableByteArray#,RealWorld,Int#,sizeofMutableByteArray#,unsafeCoerce#)
import Prelude hiding ((!!))
import Data.Array.MArray(MArray(..))
import Data.Array.Unsafe(unsafeFreeze)
import Data.Array.IArray(Array,bounds,assocs,Ix(rangeSize,range))
import qualified Data.IntMap.CharMap2 as CMap(findWithDefault)
import Data.IntMap(IntMap)
import qualified Data.IntMap as IMap(null,toList,lookup,insert)
import Data.Maybe(catMaybes)
import Data.Monoid as Mon(Monoid(..))
import qualified Data.IntSet as ISet(toAscList)
import Data.Array.IArray((!))
import Data.List(partition,sort,foldl',sortBy,groupBy)
import Data.STRef(STRef,newSTRef,readSTRef,writeSTRef)
import qualified Control.Monad.ST.Lazy as L(ST,runST,strictToLazyST)
import qualified Control.Monad.ST.Strict as S(ST)
import Data.Sequence(Seq,ViewL(..),viewl)
import qualified Data.Sequence as Seq(null)
import qualified Data.ByteString.Char8 as SBS(ByteString)
import qualified Data.ByteString.Lazy.Char8 as LBS(ByteString)
import Text.Regex.Base(MatchArray,MatchOffset,MatchLength)
import qualified Text.Regex.TDFA.IntArrTrieSet as Trie(lookupAsc)
import Text.Regex.TDFA.Common hiding (indent)
import Text.Regex.TDFA.NewDFA.Uncons(Uncons(uncons))
import Text.Regex.TDFA.NewDFA.MakeTest(test_singleline,test_multiline)
import qualified Text.Regex.TDFA.NewDFA.Engine_FA as FA(execMatch)
import qualified Text.Regex.TDFA.NewDFA.Engine_NC as NC(execMatch)
import qualified Text.Regex.TDFA.NewDFA.Engine_NC_FA as NC_FA(execMatch)
err :: String -> a
err :: String -> a
err String
s = String -> String -> a
forall a. String -> String -> a
common_error String
"Text.Regex.TDFA.NewDFA.Engine" String
s
{-# INLINE (!!) #-}
(!!) :: (MArray a e (S.ST s),Ix i) => a i e -> Int -> S.ST s e
!! :: a i e -> Int -> ST s e
(!!) = a i e -> Int -> ST s e
forall (a :: * -> * -> *) e (m :: * -> *) i.
(MArray a e m, Ix i) =>
a i e -> Int -> m e
unsafeRead
{-# INLINE set #-}
set :: (MArray a e (S.ST s),Ix i) => a i e -> Int -> e -> S.ST s ()
set :: a i e -> Int -> e -> ST s ()
set = a i e -> Int -> e -> ST s ()
forall (a :: * -> * -> *) e (m :: * -> *) i.
(MArray a e m, Ix i) =>
a i e -> Int -> e -> m ()
unsafeWrite
{-# SPECIALIZE execMatch :: Regex -> Position -> Char -> ([] Char) -> [MatchArray] #-}
{-# SPECIALIZE execMatch :: Regex -> Position -> Char -> (Seq Char) -> [MatchArray] #-}
{-# SPECIALIZE execMatch :: Regex -> Position -> Char -> SBS.ByteString -> [MatchArray] #-}
{-# SPECIALIZE execMatch :: Regex -> Position -> Char -> LBS.ByteString -> [MatchArray] #-}
execMatch :: Uncons text => Regex -> Position -> Char -> text -> [MatchArray]
execMatch :: Regex -> Int -> Char -> text -> [MatchArray]
execMatch r :: Regex
r@(Regex { regex_dfa :: Regex -> DFA
regex_dfa = DFA {d_id :: DFA -> SetIndex
d_id=SetIndex
didIn,d_dt :: DFA -> DT
d_dt=DT
dtIn}
, regex_init :: Regex -> Int
regex_init = Int
startState
, regex_b_index :: Regex -> (Int, Int)
regex_b_index = (Int, Int)
b_index
, regex_b_tags :: Regex -> (Int, Int)
regex_b_tags = (Int, Int)
b_tags_all
, regex_trie :: Regex -> TrieSet DFA
regex_trie = TrieSet DFA
trie
, regex_tags :: Regex -> Array Int OP
regex_tags = Array Int OP
aTags
, regex_groups :: Regex -> Array Int [GroupInfo]
regex_groups = Array Int [GroupInfo]
aGroups
, regex_isFrontAnchored :: Regex -> Bool
regex_isFrontAnchored = Bool
frontAnchored
, regex_compOptions :: Regex -> CompOption
regex_compOptions = CompOption { multiline :: CompOption -> Bool
multiline = Bool
newline }
, regex_execOptions :: Regex -> ExecOption
regex_execOptions = ExecOption { captureGroups :: ExecOption -> Bool
captureGroups = Bool
capture }})
Int
offsetIn Char
prevIn text
inputIn = case (Bool
subCapture,Bool
frontAnchored) of
(Bool
True ,Bool
False) -> (forall s. ST s [MatchArray]) -> [MatchArray]
forall a. (forall s. ST s a) -> a
L.runST forall s. ST s [MatchArray]
runCaptureGroup
(Bool
True ,Bool
True) -> Regex -> Int -> Char -> text -> [MatchArray]
forall text.
Uncons text =>
Regex -> Int -> Char -> text -> [MatchArray]
FA.execMatch Regex
r Int
offsetIn Char
prevIn text
inputIn
(Bool
False ,Bool
False) -> Regex -> Int -> Char -> text -> [MatchArray]
forall text.
Uncons text =>
Regex -> Int -> Char -> text -> [MatchArray]
NC.execMatch Regex
r Int
offsetIn Char
prevIn text
inputIn
(Bool
False ,Bool
True) -> Regex -> Int -> Char -> text -> [MatchArray]
forall text.
Uncons text =>
Regex -> Int -> Char -> text -> [MatchArray]
NC_FA.execMatch Regex
r Int
offsetIn Char
prevIn text
inputIn
where
subCapture :: Bool
subCapture :: Bool
subCapture = Bool
capture Bool -> Bool -> Bool
&& (Int
1Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<=(Int, Int) -> Int
forall a. Ix a => (a, a) -> Int
rangeSize (Array Int [GroupInfo] -> (Int, Int)
forall (a :: * -> * -> *) e i.
(IArray a e, Ix i) =>
a i e -> (i, i)
bounds Array Int [GroupInfo]
aGroups))
b_tags :: (Tag,Tag)
!b_tags :: (Int, Int)
b_tags = (Int, Int)
b_tags_all
orbitTags :: [Tag]
!orbitTags :: [Int]
orbitTags = ((Int, OP) -> Int) -> [(Int, OP)] -> [Int]
forall a b. (a -> b) -> [a] -> [b]
map (Int, OP) -> Int
forall a b. (a, b) -> a
fst ([(Int, OP)] -> [Int])
-> (Array Int OP -> [(Int, OP)]) -> Array Int OP -> [Int]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((Int, OP) -> Bool) -> [(Int, OP)] -> [(Int, OP)]
forall a. (a -> Bool) -> [a] -> [a]
filter ((OP
OrbitOP -> OP -> Bool
forall a. Eq a => a -> a -> Bool
==)(OP -> Bool) -> ((Int, OP) -> OP) -> (Int, OP) -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(Int, OP) -> OP
forall a b. (a, b) -> b
snd) ([(Int, OP)] -> [(Int, OP)])
-> (Array Int OP -> [(Int, OP)]) -> Array Int OP -> [(Int, OP)]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Array Int OP -> [(Int, OP)]
forall (a :: * -> * -> *) e i.
(IArray a e, Ix i) =>
a i e -> [(i, e)]
assocs (Array Int OP -> [Int]) -> Array Int OP -> [Int]
forall a b. (a -> b) -> a -> b
$ Array Int OP
aTags
!test :: WhichTest -> Int -> Char -> text -> Bool
test = Bool -> WhichTest -> Int -> Char -> text -> Bool
forall text.
Uncons text =>
Bool -> WhichTest -> Int -> Char -> text -> Bool
mkTest Bool
newline
comp :: C s
comp :: C s
comp = {-# SCC "matchHere.comp" #-} Array Int OP -> C s
forall s. Array Int OP -> C s
ditzyComp'3 Array Int OP
aTags
runCaptureGroup :: L.ST s [MatchArray]
runCaptureGroup :: ST s [MatchArray]
runCaptureGroup = {-# SCC "runCaptureGroup" #-} do
ST s [MatchArray]
obtainNext <- ST s (ST s [MatchArray]) -> ST s (ST s [MatchArray])
forall s a. ST s a -> ST s a
L.strictToLazyST ST s (ST s [MatchArray])
forall s. ST s (ST s [MatchArray])
constructNewEngine
let loop :: ST s [MatchArray]
loop = do [MatchArray]
vals <- ST s [MatchArray] -> ST s [MatchArray]
forall s a. ST s a -> ST s a
L.strictToLazyST ST s [MatchArray]
obtainNext
if [MatchArray] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [MatchArray]
vals
then [MatchArray] -> ST s [MatchArray]
forall (m :: * -> *) a. Monad m => a -> m a
return []
else do [MatchArray]
valsRest <- ST s [MatchArray]
loop
[MatchArray] -> ST s [MatchArray]
forall (m :: * -> *) a. Monad m => a -> m a
return ([MatchArray]
vals [MatchArray] -> [MatchArray] -> [MatchArray]
forall a. [a] -> [a] -> [a]
++ [MatchArray]
valsRest)
ST s [MatchArray]
loop
constructNewEngine :: S.ST s (S.ST s [MatchArray])
constructNewEngine :: ST s (ST s [MatchArray])
constructNewEngine = {-# SCC "constructNewEngine" #-} do
STRef s (ST s [MatchArray])
storeNext <- ST s [MatchArray] -> ST s (STRef s (ST s [MatchArray]))
forall a s. a -> ST s (STRef s a)
newSTRef ST s [MatchArray]
forall a. HasCallStack => a
undefined
STRef s (ST s [MatchArray]) -> ST s [MatchArray] -> ST s ()
forall s a. STRef s a -> a -> ST s ()
writeSTRef STRef s (ST s [MatchArray])
storeNext (STRef s (ST s [MatchArray]) -> ST s [MatchArray]
forall s. STRef s (ST s [MatchArray]) -> ST s [MatchArray]
goNext STRef s (ST s [MatchArray])
storeNext)
let obtainNext :: ST s [MatchArray]
obtainNext = ST s (ST s [MatchArray]) -> ST s [MatchArray]
forall (m :: * -> *) a. Monad m => m (m a) -> m a
join (STRef s (ST s [MatchArray]) -> ST s (ST s [MatchArray])
forall s a. STRef s a -> ST s a
readSTRef STRef s (ST s [MatchArray])
storeNext)
ST s [MatchArray] -> ST s (ST s [MatchArray])
forall (m :: * -> *) a. Monad m => a -> m a
return ST s [MatchArray]
obtainNext
goNext :: STRef s (ST s [MatchArray]) -> ST s [MatchArray]
goNext :: STRef s (ST s [MatchArray]) -> ST s [MatchArray]
goNext STRef s (ST s [MatchArray])
storeNext = {-# SCC "goNext" #-} do
(SScratch MScratch s
s1In MScratch s
s2In (MQ s
winQ,BlankScratch s
blank,STArray s Int ((Int, Instructions), STUArray s Int Int, OrbitLog)
which)) <- (Int, Int) -> (Int, Int) -> ST s (SScratch s)
forall s. (Int, Int) -> (Int, Int) -> ST s (SScratch s)
newScratch (Int, Int)
b_index (Int, Int)
b_tags
Int
_ <- (Int, Int)
-> BlankScratch s -> Int -> MScratch s -> Int -> ST s Int
forall s.
(Int, Int)
-> BlankScratch s -> Int -> MScratch s -> Int -> ST s Int
spawnStart (Int, Int)
b_tags BlankScratch s
blank Int
startState MScratch s
s1In Int
offsetIn
STRef s Bool
eliminatedStateFlag <- Bool -> ST s (STRef s Bool)
forall a s. a -> ST s (STRef s a)
newSTRef Bool
False
STRef s Bool
eliminatedRespawnFlag <- Bool -> ST s (STRef s Bool)
forall a s. a -> ST s (STRef s a)
newSTRef Bool
False
let next :: MScratch s
-> MScratch s
-> SetIndex
-> DT
-> Int
-> Char
-> text
-> ST s [MatchArray]
next MScratch s
s1 MScratch s
s2 SetIndex
did DT
dt Int
offset Char
prev text
input = {-# SCC "goNext.next" #-}
case DT
dt of
Testing' {dt_test :: DT -> WhichTest
dt_test=WhichTest
wt,dt_a :: DT -> DT
dt_a=DT
a,dt_b :: DT -> DT
dt_b=DT
b} ->
if WhichTest -> Int -> Char -> text -> Bool
test WhichTest
wt Int
offset Char
prev text
input
then MScratch s
-> MScratch s
-> SetIndex
-> DT
-> Int
-> Char
-> text
-> ST s [MatchArray]
next MScratch s
s1 MScratch s
s2 SetIndex
did DT
a Int
offset Char
prev text
input
else MScratch s
-> MScratch s
-> SetIndex
-> DT
-> Int
-> Char
-> text
-> ST s [MatchArray]
next MScratch s
s1 MScratch s
s2 SetIndex
did DT
b Int
offset Char
prev text
input
Simple' {dt_win :: DT -> IntMap Instructions
dt_win=IntMap Instructions
w,dt_trans :: DT -> CharMap Transition
dt_trans=CharMap Transition
t, dt_other :: DT -> Transition
dt_other=Transition
o}
| IntMap Instructions -> Bool
forall a. IntMap a -> Bool
IMap.null IntMap Instructions
w ->
case text -> Maybe (Char, text)
forall a. Uncons a => a -> Maybe (Char, a)
uncons text
input of
Maybe (Char, text)
Nothing -> ST s [MatchArray]
finalizeWinners
Just (Char
c,text
input') ->
case Transition -> Char -> CharMap Transition -> Transition
forall a. a -> Char -> CharMap a -> a
CMap.findWithDefault Transition
o Char
c CharMap Transition
t of
Transition {trans_many :: Transition -> DFA
trans_many=DFA {d_id :: DFA -> SetIndex
d_id=SetIndex
did',d_dt :: DFA -> DT
d_dt=DT
dt'},trans_how :: Transition -> DTrans
trans_how=DTrans
dtrans} ->
MScratch s
-> MScratch s
-> SetIndex
-> SetIndex
-> DT
-> DTrans
-> Int
-> Char
-> text
-> ST s [MatchArray]
findTrans MScratch s
s1 MScratch s
s2 SetIndex
did SetIndex
did' DT
dt' DTrans
dtrans Int
offset Char
c text
input'
| Bool
otherwise -> do
(SetIndex
did',DT
dt') <- MScratch s
-> SetIndex
-> DT
-> IntMap Instructions
-> Int
-> ST s (SetIndex, DT)
processWinner MScratch s
s1 SetIndex
did DT
dt IntMap Instructions
w Int
offset
MScratch s
-> MScratch s
-> SetIndex
-> DT
-> Int
-> Char
-> text
-> ST s [MatchArray]
next' MScratch s
s1 MScratch s
s2 SetIndex
did' DT
dt' Int
offset Char
prev text
input
next' :: MScratch s
-> MScratch s
-> SetIndex
-> DT
-> Int
-> Char
-> text
-> ST s [MatchArray]
next' MScratch s
s1 MScratch s
s2 SetIndex
did DT
dt Int
offset Char
prev text
input = {-# SCC "goNext.next'" #-}
case DT
dt of
Testing' {dt_test :: DT -> WhichTest
dt_test=WhichTest
wt,dt_a :: DT -> DT
dt_a=DT
a,dt_b :: DT -> DT
dt_b=DT
b} ->
if WhichTest -> Int -> Char -> text -> Bool
test WhichTest
wt Int
offset Char
prev text
input
then MScratch s
-> MScratch s
-> SetIndex
-> DT
-> Int
-> Char
-> text
-> ST s [MatchArray]
next' MScratch s
s1 MScratch s
s2 SetIndex
did DT
a Int
offset Char
prev text
input
else MScratch s
-> MScratch s
-> SetIndex
-> DT
-> Int
-> Char
-> text
-> ST s [MatchArray]
next' MScratch s
s1 MScratch s
s2 SetIndex
did DT
b Int
offset Char
prev text
input
Simple' {dt_trans :: DT -> CharMap Transition
dt_trans=CharMap Transition
t, dt_other :: DT -> Transition
dt_other=Transition
o} ->
case text -> Maybe (Char, text)
forall a. Uncons a => a -> Maybe (Char, a)
uncons text
input of
Maybe (Char, text)
Nothing -> ST s [MatchArray]
finalizeWinners
Just (Char
c,text
input') ->
case Transition -> Char -> CharMap Transition -> Transition
forall a. a -> Char -> CharMap a -> a
CMap.findWithDefault Transition
o Char
c CharMap Transition
t of
Transition {trans_many :: Transition -> DFA
trans_many=DFA {d_id :: DFA -> SetIndex
d_id=SetIndex
did',d_dt :: DFA -> DT
d_dt=DT
dt'},trans_how :: Transition -> DTrans
trans_how=DTrans
dtrans} ->
MScratch s
-> MScratch s
-> SetIndex
-> SetIndex
-> DT
-> DTrans
-> Int
-> Char
-> text
-> ST s [MatchArray]
findTrans MScratch s
s1 MScratch s
s2 SetIndex
did SetIndex
did' DT
dt' DTrans
dtrans Int
offset Char
c text
input'
compressOrbits :: MScratch s -> SetIndex -> Int -> ST s ()
compressOrbits MScratch s
s1 SetIndex
did Int
offset = do
let getStart :: Int -> ST s (Int, Int)
getStart Int
state = do Int
start <- ST s Int
-> (STUArray s Int Int -> ST s Int)
-> Maybe (STUArray s Int Int)
-> ST s Int
forall b a. b -> (a -> b) -> Maybe a -> b
maybe (String -> ST s Int
forall a. String -> a
err String
"compressOrbit,1") (STUArray s Int Int -> Int -> ST s Int
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> ST s e
!! Int
0) (Maybe (STUArray s Int Int) -> ST s Int)
-> ST s (Maybe (STUArray s Int Int)) -> ST s Int
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< MScratch s -> STArray s Int (Maybe (STUArray s Int Int))
forall s. MScratch s -> STArray s Int (Maybe (STUArray s Int Int))
m_pos MScratch s
s1 STArray s Int (Maybe (STUArray s Int Int))
-> Int -> ST s (Maybe (STUArray s Int Int))
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> ST s e
!! Int
state
(Int, Int) -> ST s (Int, Int)
forall (m :: * -> *) a. Monad m => a -> m a
return (Int
state,Int
start)
cutoff :: Int
cutoff = Int
offset Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
50
[(Int, Int)]
ss <- (Int -> ST s (Int, Int)) -> [Int] -> ST s [(Int, Int)]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM Int -> ST s (Int, Int)
forall s.
(MArray (STUArray s) Int (ST s),
MArray (STArray s) (Maybe (STUArray s Int Int)) (ST s)) =>
Int -> ST s (Int, Int)
getStart (SetIndex -> [Int]
ISet.toAscList SetIndex
did)
let compressOrbit :: Int -> ST s ()
compressOrbit Int
tag = do
[Maybe ((Int, Int), Orbits)]
mos <- [(Int, Int)]
-> ((Int, Int) -> ST s (Maybe ((Int, Int), Orbits)))
-> ST s [Maybe ((Int, Int), Orbits)]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
t a -> (a -> m b) -> m (t b)
forM [(Int, Int)]
ss ( \ p :: (Int, Int)
p@(Int
state,Int
_start) -> do
Maybe Orbits
mo <- (OrbitLog -> Maybe Orbits) -> ST s OrbitLog -> ST s (Maybe Orbits)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Int -> OrbitLog -> Maybe Orbits
forall a. Int -> IntMap a -> Maybe a
IMap.lookup Int
tag) (MScratch s -> STArray s Int OrbitLog
forall s. MScratch s -> STArray s Int OrbitLog
m_orbit MScratch s
s1 STArray s Int OrbitLog -> Int -> ST s OrbitLog
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> ST s e
!! Int
state)
case Maybe Orbits
mo of
Just Orbits
orbits | Orbits -> Int
basePos Orbits
orbits Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
cutoff -> Maybe ((Int, Int), Orbits) -> ST s (Maybe ((Int, Int), Orbits))
forall (m :: * -> *) a. Monad m => a -> m a
return (((Int, Int), Orbits) -> Maybe ((Int, Int), Orbits)
forall a. a -> Maybe a
Just ((Int, Int)
p,Orbits
orbits))
| Bool
otherwise -> Maybe ((Int, Int), Orbits) -> ST s (Maybe ((Int, Int), Orbits))
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe ((Int, Int), Orbits)
forall a. Maybe a
Nothing
Maybe Orbits
_ -> Maybe ((Int, Int), Orbits) -> ST s (Maybe ((Int, Int), Orbits))
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe ((Int, Int), Orbits)
forall a. Maybe a
Nothing )
let compressGroup :: [((Int, b), Orbits)] -> ST s ()
compressGroup [((Int
state,b
_),Orbits
orbit)] | Seq Int -> Bool
forall a. Seq a -> Bool
Seq.null (Orbits -> Seq Int
getOrbits Orbits
orbit) = () -> ST s ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
| Bool
otherwise =
STArray s Int OrbitLog -> Int -> OrbitLog -> ST s ()
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> e -> ST s ()
set (MScratch s -> STArray s Int OrbitLog
forall s. MScratch s -> STArray s Int OrbitLog
m_orbit MScratch s
s1) Int
state
(OrbitLog -> ST s ())
-> (OrbitLog -> OrbitLog) -> OrbitLog -> ST s ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Int -> Orbits -> OrbitLog -> OrbitLog
forall a. Int -> a -> IntMap a -> IntMap a
IMap.insert Int
tag (Orbits -> OrbitLog -> OrbitLog) -> Orbits -> OrbitLog -> OrbitLog
forall a b. (a -> b) -> a -> b
$! (Orbits
orbit { ordinal :: Maybe Int
ordinal = Maybe Int
forall a. Maybe a
Nothing, getOrbits :: Seq Int
getOrbits = Seq Int
forall a. Monoid a => a
mempty}))
(OrbitLog -> ST s ()) -> ST s OrbitLog -> ST s ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< MScratch s -> STArray s Int OrbitLog
forall s. MScratch s -> STArray s Int OrbitLog
m_orbit MScratch s
s1 STArray s Int OrbitLog -> Int -> ST s OrbitLog
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> ST s e
!! Int
state
compressGroup [((Int, b), Orbits)]
gs = do
let sortPos :: (a, Orbits) -> (a, Orbits) -> Ordering
sortPos (a
_,Orbits
b1) (a
_,Orbits
b2) = Maybe Int -> Maybe Int -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (Orbits -> Maybe Int
ordinal Orbits
b1) (Orbits -> Maybe Int
ordinal Orbits
b2) Ordering -> Ordering -> Ordering
forall a. Monoid a => a -> a -> a
`mappend`
Bool -> Bool -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (Orbits -> Bool
inOrbit Orbits
b2) (Orbits -> Bool
inOrbit Orbits
b1) Ordering -> Ordering -> Ordering
forall a. Monoid a => a -> a -> a
`mappend`
ViewL Int -> ViewL Int -> Ordering
comparePos (Seq Int -> ViewL Int
forall a. Seq a -> ViewL a
viewl (Orbits -> Seq Int
getOrbits Orbits
b1)) (Seq Int -> ViewL Int
forall a. Seq a -> ViewL a
viewl (Orbits -> Seq Int
getOrbits Orbits
b2))
groupPos :: (a, Orbits) -> (a, Orbits) -> Bool
groupPos (a
_,Orbits
b1) (a
_,Orbits
b2) = Orbits -> Maybe Int
ordinal Orbits
b1 Maybe Int -> Maybe Int -> Bool
forall a. Eq a => a -> a -> Bool
== Orbits -> Maybe Int
ordinal Orbits
b2 Bool -> Bool -> Bool
&& Orbits -> Seq Int
getOrbits Orbits
b1 Seq Int -> Seq Int -> Bool
forall a. Eq a => a -> a -> Bool
== Orbits -> Seq Int
getOrbits Orbits
b2
gs' :: [(Int, [((Int, b), Orbits)])]
gs' = [Int] -> [[((Int, b), Orbits)]] -> [(Int, [((Int, b), Orbits)])]
forall a b. [a] -> [b] -> [(a, b)]
zip [(Int
1::Int)..] ((((Int, b), Orbits) -> ((Int, b), Orbits) -> Bool)
-> [((Int, b), Orbits)] -> [[((Int, b), Orbits)]]
forall a. (a -> a -> Bool) -> [a] -> [[a]]
groupBy ((Int, b), Orbits) -> ((Int, b), Orbits) -> Bool
forall a a. (a, Orbits) -> (a, Orbits) -> Bool
groupPos ([((Int, b), Orbits)] -> [[((Int, b), Orbits)]])
-> ([((Int, b), Orbits)] -> [((Int, b), Orbits)])
-> [((Int, b), Orbits)]
-> [[((Int, b), Orbits)]]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (((Int, b), Orbits) -> ((Int, b), Orbits) -> Ordering)
-> [((Int, b), Orbits)] -> [((Int, b), Orbits)]
forall a. (a -> a -> Ordering) -> [a] -> [a]
sortBy ((Int, b), Orbits) -> ((Int, b), Orbits) -> Ordering
forall a a. (a, Orbits) -> (a, Orbits) -> Ordering
sortPos ([((Int, b), Orbits)] -> [[((Int, b), Orbits)]])
-> [((Int, b), Orbits)] -> [[((Int, b), Orbits)]]
forall a b. (a -> b) -> a -> b
$ [((Int, b), Orbits)]
gs)
[(Int, [((Int, b), Orbits)])]
-> ((Int, [((Int, b), Orbits)]) -> ST s ()) -> ST s ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ [(Int, [((Int, b), Orbits)])]
gs' (((Int, [((Int, b), Orbits)]) -> ST s ()) -> ST s ())
-> ((Int, [((Int, b), Orbits)]) -> ST s ()) -> ST s ()
forall a b. (a -> b) -> a -> b
$ \ (!Int
n,[((Int, b), Orbits)]
eqs) -> do
[((Int, b), Orbits)] -> (((Int, b), Orbits) -> ST s ()) -> ST s ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ [((Int, b), Orbits)]
eqs ((((Int, b), Orbits) -> ST s ()) -> ST s ())
-> (((Int, b), Orbits) -> ST s ()) -> ST s ()
forall a b. (a -> b) -> a -> b
$ \ ((Int
state,b
_),Orbits
orbit) ->
STArray s Int OrbitLog -> Int -> OrbitLog -> ST s ()
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> e -> ST s ()
set (MScratch s -> STArray s Int OrbitLog
forall s. MScratch s -> STArray s Int OrbitLog
m_orbit MScratch s
s1) Int
state
(OrbitLog -> ST s ())
-> (OrbitLog -> OrbitLog) -> OrbitLog -> ST s ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Int -> Orbits -> OrbitLog -> OrbitLog
forall a. Int -> a -> IntMap a -> IntMap a
IMap.insert Int
tag (Orbits -> OrbitLog -> OrbitLog) -> Orbits -> OrbitLog -> OrbitLog
forall a b. (a -> b) -> a -> b
$! (Orbits
orbit { ordinal :: Maybe Int
ordinal = Int -> Maybe Int
forall a. a -> Maybe a
Just Int
n, getOrbits :: Seq Int
getOrbits = Seq Int
forall a. Monoid a => a
mempty }))
(OrbitLog -> ST s ()) -> ST s OrbitLog -> ST s ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< MScratch s -> STArray s Int OrbitLog
forall s. MScratch s -> STArray s Int OrbitLog
m_orbit MScratch s
s1 STArray s Int OrbitLog -> Int -> ST s OrbitLog
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> ST s e
!! Int
state
let sorter :: ((a, a), Orbits) -> ((a, a), Orbits) -> Ordering
sorter ((a
_,a
a1),Orbits
b1) ((a
_,a
a2),Orbits
b2) = a -> a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare a
a1 a
a2 Ordering -> Ordering -> Ordering
forall a. Monoid a => a -> a -> a
`mappend` Int -> Int -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (Orbits -> Int
basePos Orbits
b1) (Orbits -> Int
basePos Orbits
b2)
grouper :: ((a, a), Orbits) -> ((a, a), Orbits) -> Bool
grouper ((a
_,a
a1),Orbits
b1) ((a
_,a
a2),Orbits
b2) = a
a1a -> a -> Bool
forall a. Eq a => a -> a -> Bool
==a
a2 Bool -> Bool -> Bool
&& Orbits -> Int
basePos Orbits
b1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Orbits -> Int
basePos Orbits
b2
orbitGroups :: [[((Int, Int), Orbits)]]
orbitGroups = (((Int, Int), Orbits) -> ((Int, Int), Orbits) -> Bool)
-> [((Int, Int), Orbits)] -> [[((Int, Int), Orbits)]]
forall a. (a -> a -> Bool) -> [a] -> [[a]]
groupBy ((Int, Int), Orbits) -> ((Int, Int), Orbits) -> Bool
forall a a a. Eq a => ((a, a), Orbits) -> ((a, a), Orbits) -> Bool
grouper ([((Int, Int), Orbits)] -> [[((Int, Int), Orbits)]])
-> ([Maybe ((Int, Int), Orbits)] -> [((Int, Int), Orbits)])
-> [Maybe ((Int, Int), Orbits)]
-> [[((Int, Int), Orbits)]]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (((Int, Int), Orbits) -> ((Int, Int), Orbits) -> Ordering)
-> [((Int, Int), Orbits)] -> [((Int, Int), Orbits)]
forall a. (a -> a -> Ordering) -> [a] -> [a]
sortBy ((Int, Int), Orbits) -> ((Int, Int), Orbits) -> Ordering
forall a a a.
Ord a =>
((a, a), Orbits) -> ((a, a), Orbits) -> Ordering
sorter ([((Int, Int), Orbits)] -> [((Int, Int), Orbits)])
-> ([Maybe ((Int, Int), Orbits)] -> [((Int, Int), Orbits)])
-> [Maybe ((Int, Int), Orbits)]
-> [((Int, Int), Orbits)]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Maybe ((Int, Int), Orbits)] -> [((Int, Int), Orbits)]
forall a. [Maybe a] -> [a]
catMaybes ([Maybe ((Int, Int), Orbits)] -> [[((Int, Int), Orbits)]])
-> [Maybe ((Int, Int), Orbits)] -> [[((Int, Int), Orbits)]]
forall a b. (a -> b) -> a -> b
$ [Maybe ((Int, Int), Orbits)]
mos
([((Int, Int), Orbits)] -> ST s ())
-> [[((Int, Int), Orbits)]] -> ST s ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ [((Int, Int), Orbits)] -> ST s ()
forall s b.
(MArray (STArray s) OrbitLog (ST s),
MArray (STArray s) OrbitLog (ST s),
MArray (STArray s) OrbitLog (ST s),
MArray (STArray s) OrbitLog (ST s)) =>
[((Int, b), Orbits)] -> ST s ()
compressGroup [[((Int, Int), Orbits)]]
orbitGroups
(Int -> ST s ()) -> [Int] -> ST s ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ Int -> ST s ()
forall s.
(MArray (STArray s) OrbitLog (ST s),
MArray (STArray s) OrbitLog (ST s),
MArray (STArray s) OrbitLog (ST s),
MArray (STArray s) OrbitLog (ST s),
MArray (STArray s) OrbitLog (ST s)) =>
Int -> ST s ()
compressOrbit [Int]
orbitTags
findTrans :: MScratch s
-> MScratch s
-> SetIndex
-> SetIndex
-> DT
-> DTrans
-> Int
-> Char
-> text
-> ST s [MatchArray]
findTrans MScratch s
s1 MScratch s
s2 SetIndex
did SetIndex
did' DT
dt' DTrans
dtrans Int
offset Char
prev' text
input' = {-# SCC "goNext.findTrans" #-} do
Bool -> ST s () -> ST s ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Bool -> Bool
not ([Int] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Int]
orbitTags) Bool -> Bool -> Bool
&& (Int
offset Int -> Int -> Int
forall a. Integral a => a -> a -> a
`rem` Int
100 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
99)) (MScratch s -> SetIndex -> Int -> ST s ()
forall s s.
(MArray (STUArray s) Int (ST s),
MArray (STArray s) (Maybe (STUArray s Int Int)) (ST s),
MArray (STArray s) OrbitLog (ST s)) =>
MScratch s -> SetIndex -> Int -> ST s ()
compressOrbits MScratch s
s1 SetIndex
did Int
offset)
let findTransTo :: (Int, IntMap (a, Instructions)) -> ST s ()
findTransTo (Int
destIndex,IntMap (a, Instructions)
sources) | IntMap (a, Instructions) -> Bool
forall a. IntMap a -> Bool
IMap.null IntMap (a, Instructions)
sources =
STArray s Int ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> Int
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> ST s ()
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> e -> ST s ()
set STArray s Int ((Int, Instructions), STUArray s Int Int, OrbitLog)
which Int
destIndex ((-Int
1,Instructions :: [(Int, Action)]
-> Maybe (Int -> OrbitLog -> OrbitLog) -> Instructions
Instructions { newPos :: [(Int, Action)]
newPos = [(Int
0,Action
SetPost)], newOrbits :: Maybe (Int -> OrbitLog -> OrbitLog)
newOrbits = Maybe (Int -> OrbitLog -> OrbitLog)
forall a. Maybe a
Nothing })
,BlankScratch s -> STUArray s Int Int
forall s. BlankScratch s -> STUArray s Int Int
blank_pos BlankScratch s
blank,OrbitLog
forall a. Monoid a => a
mempty)
| Bool
otherwise = do
let prep :: (Int, (a, Instructions))
-> ST s ((Int, Instructions), STUArray s Int Int, OrbitLog)
prep (Int
sourceIndex,(a
_dopa,Instructions
instructions)) = {-# SCC "goNext.findTrans.prep" #-} do
STUArray s Int Int
pos <- ST s (STUArray s Int Int)
-> (STUArray s Int Int -> ST s (STUArray s Int Int))
-> Maybe (STUArray s Int Int)
-> ST s (STUArray s Int Int)
forall b a. b -> (a -> b) -> Maybe a -> b
maybe (String -> ST s (STUArray s Int Int)
forall a. String -> a
err (String -> ST s (STUArray s Int Int))
-> String -> ST s (STUArray s Int Int)
forall a b. (a -> b) -> a -> b
$ String
"findTrans,1 : "String -> String -> String
forall a. [a] -> [a] -> [a]
++(Int, Int, SetIndex) -> String
forall a. Show a => a -> String
show (Int
sourceIndex,Int
destIndex,SetIndex
did')) STUArray s Int Int -> ST s (STUArray s Int Int)
forall (m :: * -> *) a. Monad m => a -> m a
return
(Maybe (STUArray s Int Int) -> ST s (STUArray s Int Int))
-> ST s (Maybe (STUArray s Int Int)) -> ST s (STUArray s Int Int)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< MScratch s -> STArray s Int (Maybe (STUArray s Int Int))
forall s. MScratch s -> STArray s Int (Maybe (STUArray s Int Int))
m_pos MScratch s
s1 STArray s Int (Maybe (STUArray s Int Int))
-> Int -> ST s (Maybe (STUArray s Int Int))
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> ST s e
!! Int
sourceIndex
OrbitLog
orbit <- MScratch s -> STArray s Int OrbitLog
forall s. MScratch s -> STArray s Int OrbitLog
m_orbit MScratch s
s1 STArray s Int OrbitLog -> Int -> ST s OrbitLog
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> ST s e
!! Int
sourceIndex
let orbit' :: OrbitLog
orbit' = OrbitLog
-> ((Int -> OrbitLog -> OrbitLog) -> OrbitLog)
-> Maybe (Int -> OrbitLog -> OrbitLog)
-> OrbitLog
forall b a. b -> (a -> b) -> Maybe a -> b
maybe OrbitLog
orbit (\ Int -> OrbitLog -> OrbitLog
f -> Int -> OrbitLog -> OrbitLog
f Int
offset OrbitLog
orbit) (Instructions -> Maybe (Int -> OrbitLog -> OrbitLog)
newOrbits Instructions
instructions)
((Int, Instructions), STUArray s Int Int, OrbitLog)
-> ST s ((Int, Instructions), STUArray s Int Int, OrbitLog)
forall (m :: * -> *) a. Monad m => a -> m a
return ((Int
sourceIndex,Instructions
instructions),STUArray s Int Int
pos,OrbitLog
orbit')
challenge :: ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> ST s ((Int, Instructions), STUArray s Int Int, OrbitLog)
challenge x1 :: ((Int, Instructions), STUArray s Int Int, OrbitLog)
x1@((Int
_si1,Instructions
ins1),STUArray s Int Int
_p1,OrbitLog
_o1) x2 :: ((Int, Instructions), STUArray s Int Int, OrbitLog)
x2@((Int
_si2,Instructions
ins2),STUArray s Int Int
_p2,OrbitLog
_o2) = {-# SCC "goNext.findTrans.challenge" #-} do
Ordering
check <- C s
forall s. C s
comp Int
offset ((Int, Instructions), STUArray s Int Int, OrbitLog)
x1 (Instructions -> [(Int, Action)]
newPos Instructions
ins1) ((Int, Instructions), STUArray s Int Int, OrbitLog)
x2 (Instructions -> [(Int, Action)]
newPos Instructions
ins2)
if Ordering
checkOrdering -> Ordering -> Bool
forall a. Eq a => a -> a -> Bool
==Ordering
LT then ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> ST s ((Int, Instructions), STUArray s Int Int, OrbitLog)
forall (m :: * -> *) a. Monad m => a -> m a
return ((Int, Instructions), STUArray s Int Int, OrbitLog)
x2 else ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> ST s ((Int, Instructions), STUArray s Int Int, OrbitLog)
forall (m :: * -> *) a. Monad m => a -> m a
return ((Int, Instructions), STUArray s Int Int, OrbitLog)
x1
[((Int, Instructions), STUArray s Int Int, OrbitLog)]
first_rest <- ((Int, (a, Instructions))
-> ST s ((Int, Instructions), STUArray s Int Int, OrbitLog))
-> [(Int, (a, Instructions))]
-> ST s [((Int, Instructions), STUArray s Int Int, OrbitLog)]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (Int, (a, Instructions))
-> ST s ((Int, Instructions), STUArray s Int Int, OrbitLog)
forall s a.
(MArray (STArray s) (Maybe (STUArray s Int Int)) (ST s),
MArray (STArray s) OrbitLog (ST s)) =>
(Int, (a, Instructions))
-> ST s ((Int, Instructions), STUArray s Int Int, OrbitLog)
prep (IntMap (a, Instructions) -> [(Int, (a, Instructions))]
forall a. IntMap a -> [(Int, a)]
IMap.toList IntMap (a, Instructions)
sources)
let ((Int, Instructions), STUArray s Int Int, OrbitLog)
first:[((Int, Instructions), STUArray s Int Int, OrbitLog)]
rest = [((Int, Instructions), STUArray s Int Int, OrbitLog)]
first_rest
STArray s Int ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> Int
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> ST s ()
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> e -> ST s ()
set STArray s Int ((Int, Instructions), STUArray s Int Int, OrbitLog)
which Int
destIndex (((Int, Instructions), STUArray s Int Int, OrbitLog) -> ST s ())
-> ST s ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> ST s ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< (((Int, Instructions), STUArray s Int Int, OrbitLog)
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> ST s ((Int, Instructions), STUArray s Int Int, OrbitLog))
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [((Int, Instructions), STUArray s Int Int, OrbitLog)]
-> ST s ((Int, Instructions), STUArray s Int Int, OrbitLog)
forall (t :: * -> *) (m :: * -> *) b a.
(Foldable t, Monad m) =>
(b -> a -> m b) -> b -> t a -> m b
foldM ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> ST s ((Int, Instructions), STUArray s Int Int, OrbitLog)
forall s.
((Int, Instructions), STUArray s Int Int, OrbitLog)
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> ST s ((Int, Instructions), STUArray s Int Int, OrbitLog)
challenge ((Int, Instructions), STUArray s Int Int, OrbitLog)
first [((Int, Instructions), STUArray s Int Int, OrbitLog)]
rest
let dl :: [(Int, IntMap (DoPa, Instructions))]
dl = DTrans -> [(Int, IntMap (DoPa, Instructions))]
forall a. IntMap a -> [(Int, a)]
IMap.toList DTrans
dtrans
((Int, IntMap (DoPa, Instructions)) -> ST s ())
-> [(Int, IntMap (DoPa, Instructions))] -> ST s ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ (Int, IntMap (DoPa, Instructions)) -> ST s ()
forall a. (Int, IntMap (a, Instructions)) -> ST s ()
findTransTo [(Int, IntMap (DoPa, Instructions))]
dl
let performTransTo :: (Int, b) -> ST s Int
performTransTo (Int
destIndex,b
_) = {-# SCC "goNext.findTrans.performTransTo" #-} do
x :: ((Int, Instructions), STUArray s Int Int, OrbitLog)
x@((Int
sourceIndex,Instructions
_instructions),STUArray s Int Int
_pos,OrbitLog
_orbit') <- STArray s Int ((Int, Instructions), STUArray s Int Int, OrbitLog)
which STArray s Int ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> Int -> ST s ((Int, Instructions), STUArray s Int Int, OrbitLog)
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> ST s e
!! Int
destIndex
if Int
sourceIndex Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== (-Int
1)
then (Int, Int)
-> BlankScratch s -> Int -> MScratch s -> Int -> ST s Int
forall s.
(Int, Int)
-> BlankScratch s -> Int -> MScratch s -> Int -> ST s Int
spawnStart (Int, Int)
b_tags BlankScratch s
blank Int
destIndex MScratch s
s2 (Int -> Int
forall a. Enum a => a -> a
succ Int
offset)
else ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> Int -> MScratch s -> Int -> ST s Int
forall s.
((Int, Instructions), STUArray s Int Int, OrbitLog)
-> Int -> MScratch s -> Int -> ST s Int
updateCopy ((Int, Instructions), STUArray s Int Int, OrbitLog)
x Int
offset MScratch s
s2 Int
destIndex
Int
earlyStart <- ([Int] -> Int) -> ST s [Int] -> ST s Int
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap [Int] -> Int
forall (t :: * -> *) a. (Foldable t, Ord a) => t a -> a
minimum (ST s [Int] -> ST s Int) -> ST s [Int] -> ST s Int
forall a b. (a -> b) -> a -> b
$ ((Int, IntMap (DoPa, Instructions)) -> ST s Int)
-> [(Int, IntMap (DoPa, Instructions))] -> ST s [Int]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (Int, IntMap (DoPa, Instructions)) -> ST s Int
forall b. (Int, b) -> ST s Int
performTransTo [(Int, IntMap (DoPa, Instructions))]
dl
Int
earlyWin <- STRef s Int -> ST s Int
forall s a. STRef s a -> ST s a
readSTRef (MQ s -> STRef s Int
forall s. MQ s -> STRef s Int
mq_earliest MQ s
winQ)
if Int
earlyWin Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
earlyStart
then do
[WScratch s]
winners <- ([WScratch s] -> [WScratch s])
-> ST s [WScratch s] -> ST s [WScratch s]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (([WScratch s] -> WScratch s -> [WScratch s])
-> [WScratch s] -> [WScratch s] -> [WScratch s]
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' (\ [WScratch s]
rest WScratch s
ws -> WScratch s
ws WScratch s -> [WScratch s] -> [WScratch s]
forall a. a -> [a] -> [a]
: [WScratch s]
rest) []) (ST s [WScratch s] -> ST s [WScratch s])
-> ST s [WScratch s] -> ST s [WScratch s]
forall a b. (a -> b) -> a -> b
$
Int -> MQ s -> ST s [WScratch s]
forall s. Int -> MQ s -> ST s [WScratch s]
getMQ Int
earlyStart MQ s
winQ
STRef s (ST s [MatchArray]) -> ST s [MatchArray] -> ST s ()
forall s a. STRef s a -> a -> ST s ()
writeSTRef STRef s (ST s [MatchArray])
storeNext (MScratch s
-> MScratch s
-> SetIndex
-> DT
-> Int
-> Char
-> text
-> ST s [MatchArray]
next MScratch s
s2 MScratch s
s1 SetIndex
did' DT
dt' (Int -> Int
forall a. Enum a => a -> a
succ Int
offset) Char
prev' text
input')
(WScratch s -> ST s MatchArray)
-> [WScratch s] -> ST s [MatchArray]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (Array Int [GroupInfo] -> WScratch s -> ST s MatchArray
forall s. Array Int [GroupInfo] -> WScratch s -> ST s MatchArray
tagsToGroupsST Array Int [GroupInfo]
aGroups) [WScratch s]
winners
else do
let offset' :: Int
offset' = Int -> Int
forall a. Enum a => a -> a
succ Int
offset in Int -> ST s [MatchArray] -> ST s [MatchArray]
seq Int
offset' (ST s [MatchArray] -> ST s [MatchArray])
-> ST s [MatchArray] -> ST s [MatchArray]
forall a b. (a -> b) -> a -> b
$ MScratch s
-> MScratch s
-> SetIndex
-> DT
-> Int
-> Char
-> text
-> ST s [MatchArray]
next MScratch s
s2 MScratch s
s1 SetIndex
did' DT
dt' Int
offset' Char
prev' text
input'
{-# INLINE processWinner #-}
processWinner :: MScratch s
-> SetIndex
-> DT
-> IntMap Instructions
-> Int
-> ST s (SetIndex, DT)
processWinner MScratch s
s1 SetIndex
did DT
dt IntMap Instructions
w Int
offset = {-# SCC "goNext.newWinnerThenProceed" #-} do
let prep :: (Int, Instructions)
-> ST s (Int, ((Int, Instructions), STUArray s Int Int, OrbitLog))
prep x :: (Int, Instructions)
x@(Int
sourceIndex,Instructions
instructions) = {-# SCC "goNext.newWinnerThenProceed.prep" #-} do
STUArray s Int Int
pos <- ST s (STUArray s Int Int)
-> (STUArray s Int Int -> ST s (STUArray s Int Int))
-> Maybe (STUArray s Int Int)
-> ST s (STUArray s Int Int)
forall b a. b -> (a -> b) -> Maybe a -> b
maybe (String -> ST s (STUArray s Int Int)
forall a. String -> a
err String
"newWinnerThenProceed,1") STUArray s Int Int -> ST s (STUArray s Int Int)
forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe (STUArray s Int Int) -> ST s (STUArray s Int Int))
-> ST s (Maybe (STUArray s Int Int)) -> ST s (STUArray s Int Int)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< MScratch s -> STArray s Int (Maybe (STUArray s Int Int))
forall s. MScratch s -> STArray s Int (Maybe (STUArray s Int Int))
m_pos MScratch s
s1 STArray s Int (Maybe (STUArray s Int Int))
-> Int -> ST s (Maybe (STUArray s Int Int))
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> ST s e
!! Int
sourceIndex
Int
startPos <- STUArray s Int Int
pos STUArray s Int Int -> Int -> ST s Int
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> ST s e
!! Int
0
OrbitLog
orbit <- MScratch s -> STArray s Int OrbitLog
forall s. MScratch s -> STArray s Int OrbitLog
m_orbit MScratch s
s1 STArray s Int OrbitLog -> Int -> ST s OrbitLog
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> ST s e
!! Int
sourceIndex
let orbit' :: OrbitLog
orbit' = OrbitLog
-> ((Int -> OrbitLog -> OrbitLog) -> OrbitLog)
-> Maybe (Int -> OrbitLog -> OrbitLog)
-> OrbitLog
forall b a. b -> (a -> b) -> Maybe a -> b
maybe OrbitLog
orbit (\ Int -> OrbitLog -> OrbitLog
f -> Int -> OrbitLog -> OrbitLog
f Int
offset OrbitLog
orbit) (Instructions -> Maybe (Int -> OrbitLog -> OrbitLog)
newOrbits Instructions
instructions)
(Int, ((Int, Instructions), STUArray s Int Int, OrbitLog))
-> ST s (Int, ((Int, Instructions), STUArray s Int Int, OrbitLog))
forall (m :: * -> *) a. Monad m => a -> m a
return (Int
startPos,((Int, Instructions)
x,STUArray s Int Int
pos,OrbitLog
orbit'))
challenge :: ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> ST s ((Int, Instructions), STUArray s Int Int, OrbitLog)
challenge x1 :: ((Int, Instructions), STUArray s Int Int, OrbitLog)
x1@((Int
_si1,Instructions
ins1),STUArray s Int Int
_p1,OrbitLog
_o1) x2 :: ((Int, Instructions), STUArray s Int Int, OrbitLog)
x2@((Int
_si2,Instructions
ins2),STUArray s Int Int
_p2,OrbitLog
_o2) = {-# SCC "goNext.newWinnerThenProceed.challenge" #-} do
Ordering
check <- C s
forall s. C s
comp Int
offset ((Int, Instructions), STUArray s Int Int, OrbitLog)
x1 (Instructions -> [(Int, Action)]
newPos Instructions
ins1) ((Int, Instructions), STUArray s Int Int, OrbitLog)
x2 (Instructions -> [(Int, Action)]
newPos Instructions
ins2)
if Ordering
checkOrdering -> Ordering -> Bool
forall a. Eq a => a -> a -> Bool
==Ordering
LT then ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> ST s ((Int, Instructions), STUArray s Int Int, OrbitLog)
forall (m :: * -> *) a. Monad m => a -> m a
return ((Int, Instructions), STUArray s Int Int, OrbitLog)
x2 else ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> ST s ((Int, Instructions), STUArray s Int Int, OrbitLog)
forall (m :: * -> *) a. Monad m => a -> m a
return ((Int, Instructions), STUArray s Int Int, OrbitLog)
x1
[(Int, ((Int, Instructions), STUArray s Int Int, OrbitLog))]
prep'd <- ((Int, Instructions)
-> ST s (Int, ((Int, Instructions), STUArray s Int Int, OrbitLog)))
-> [(Int, Instructions)]
-> ST
s [(Int, ((Int, Instructions), STUArray s Int Int, OrbitLog))]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (Int, Instructions)
-> ST s (Int, ((Int, Instructions), STUArray s Int Int, OrbitLog))
forall s.
(MArray (STUArray s) Int (ST s),
MArray (STArray s) (Maybe (STUArray s Int Int)) (ST s),
MArray (STArray s) OrbitLog (ST s)) =>
(Int, Instructions)
-> ST s (Int, ((Int, Instructions), STUArray s Int Int, OrbitLog))
prep (IntMap Instructions -> [(Int, Instructions)]
forall a. IntMap a -> [(Int, a)]
IMap.toList IntMap Instructions
w)
let ([(Int, ((Int, Instructions), STUArray s Int Int, OrbitLog))]
emptyFalse,[(Int, ((Int, Instructions), STUArray s Int Int, OrbitLog))]
emptyTrue) = ((Int, ((Int, Instructions), STUArray s Int Int, OrbitLog))
-> Bool)
-> [(Int, ((Int, Instructions), STUArray s Int Int, OrbitLog))]
-> ([(Int, ((Int, Instructions), STUArray s Int Int, OrbitLog))],
[(Int, ((Int, Instructions), STUArray s Int Int, OrbitLog))])
forall a. (a -> Bool) -> [a] -> ([a], [a])
partition ((Int
offset Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>) (Int -> Bool)
-> ((Int, ((Int, Instructions), STUArray s Int Int, OrbitLog))
-> Int)
-> (Int, ((Int, Instructions), STUArray s Int Int, OrbitLog))
-> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Int, ((Int, Instructions), STUArray s Int Int, OrbitLog)) -> Int
forall a b. (a, b) -> a
fst) [(Int, ((Int, Instructions), STUArray s Int Int, OrbitLog))]
prep'd
Maybe [Int]
mayID <- {-# SCC "goNext.newWinnerThenProceed.mayID" #-}
case ((Int, ((Int, Instructions), STUArray s Int Int, OrbitLog))
-> ((Int, Instructions), STUArray s Int Int, OrbitLog))
-> [(Int, ((Int, Instructions), STUArray s Int Int, OrbitLog))]
-> [((Int, Instructions), STUArray s Int Int, OrbitLog)]
forall a b. (a -> b) -> [a] -> [b]
map (Int, ((Int, Instructions), STUArray s Int Int, OrbitLog))
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
forall a b. (a, b) -> b
snd [(Int, ((Int, Instructions), STUArray s Int Int, OrbitLog))]
emptyFalse of
[] -> Maybe [Int] -> ST s (Maybe [Int])
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe [Int]
forall a. Maybe a
Nothing
(((Int, Instructions), STUArray s Int Int, OrbitLog)
first:[((Int, Instructions), STUArray s Int Int, OrbitLog)]
rest) -> do
best :: ((Int, Instructions), STUArray s Int Int, OrbitLog)
best@((Int
_sourceIndex,Instructions
_instructions),STUArray s Int Int
bp,OrbitLog
_orbit') <- (((Int, Instructions), STUArray s Int Int, OrbitLog)
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> ST s ((Int, Instructions), STUArray s Int Int, OrbitLog))
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [((Int, Instructions), STUArray s Int Int, OrbitLog)]
-> ST s ((Int, Instructions), STUArray s Int Int, OrbitLog)
forall (t :: * -> *) (m :: * -> *) b a.
(Foldable t, Monad m) =>
(b -> a -> m b) -> b -> t a -> m b
foldM ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> ST s ((Int, Instructions), STUArray s Int Int, OrbitLog)
forall s.
((Int, Instructions), STUArray s Int Int, OrbitLog)
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> ST s ((Int, Instructions), STUArray s Int Int, OrbitLog)
challenge ((Int, Instructions), STUArray s Int Int, OrbitLog)
first [((Int, Instructions), STUArray s Int Int, OrbitLog)]
rest
Int
-> ((Int, Instructions), STUArray s Int Int, OrbitLog) -> ST s ()
forall a c.
Int -> ((a, Instructions), STUArray s Int Int, c) -> ST s ()
newWinner Int
offset ((Int, Instructions), STUArray s Int Int, OrbitLog)
best
Int
startWin <- STUArray s Int Int
bp STUArray s Int Int -> Int -> ST s Int
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> ST s e
!! Int
0
let states :: [Int]
states = SetIndex -> [Int]
ISet.toAscList SetIndex
did
keepState :: Int -> ST s Bool
keepState Int
i1 = do
STUArray s Int Int
pos <- ST s (STUArray s Int Int)
-> (STUArray s Int Int -> ST s (STUArray s Int Int))
-> Maybe (STUArray s Int Int)
-> ST s (STUArray s Int Int)
forall b a. b -> (a -> b) -> Maybe a -> b
maybe (String -> ST s (STUArray s Int Int)
forall a. String -> a
err String
"newWinnerThenProceed,2") STUArray s Int Int -> ST s (STUArray s Int Int)
forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe (STUArray s Int Int) -> ST s (STUArray s Int Int))
-> ST s (Maybe (STUArray s Int Int)) -> ST s (STUArray s Int Int)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< MScratch s -> STArray s Int (Maybe (STUArray s Int Int))
forall s. MScratch s -> STArray s Int (Maybe (STUArray s Int Int))
m_pos MScratch s
s1 STArray s Int (Maybe (STUArray s Int Int))
-> Int -> ST s (Maybe (STUArray s Int Int))
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> ST s e
!! Int
i1
Int
startsAt <- STUArray s Int Int
pos STUArray s Int Int -> Int -> ST s Int
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> ST s e
!! Int
0
let keep :: Bool
keep = (Int
startsAt Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
startWin) Bool -> Bool -> Bool
|| (Int
offset Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
startsAt)
Bool -> ST s () -> ST s ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Bool -> Bool
not Bool
keep) (ST s () -> ST s ()) -> ST s () -> ST s ()
forall a b. (a -> b) -> a -> b
$ do
STRef s Bool -> Bool -> ST s ()
forall s a. STRef s a -> a -> ST s ()
writeSTRef STRef s Bool
eliminatedStateFlag Bool
True
Bool -> ST s () -> ST s ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
i1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
startState) (STRef s Bool -> Bool -> ST s ()
forall s a. STRef s a -> a -> ST s ()
writeSTRef STRef s Bool
eliminatedRespawnFlag Bool
True)
Bool -> ST s Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
keep
[Int]
states' <- (Int -> ST s Bool) -> [Int] -> ST s [Int]
forall (m :: * -> *) a.
Applicative m =>
(a -> m Bool) -> [a] -> m [a]
filterM Int -> ST s Bool
keepState [Int]
states
Bool
changed <- STRef s Bool -> ST s Bool
forall s a. STRef s a -> ST s a
readSTRef STRef s Bool
eliminatedStateFlag
if Bool
changed then Maybe [Int] -> ST s (Maybe [Int])
forall (m :: * -> *) a. Monad m => a -> m a
return ([Int] -> Maybe [Int]
forall a. a -> Maybe a
Just [Int]
states') else Maybe [Int] -> ST s (Maybe [Int])
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe [Int]
forall a. Maybe a
Nothing
case [(Int, ((Int, Instructions), STUArray s Int Int, OrbitLog))]
emptyTrue of
[] -> case Int -> IntMap Instructions -> Maybe Instructions
forall a. Int -> IntMap a -> Maybe a
IMap.lookup Int
startState IntMap Instructions
w of
Maybe Instructions
Nothing -> () -> ST s ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
Just Instructions
ins -> Int -> Instructions -> ST s ()
winEmpty Int
offset Instructions
ins
[(Int, ((Int, Instructions), STUArray s Int Int, OrbitLog))
first] -> Int
-> ((Int, Instructions), STUArray s Int Int, OrbitLog) -> ST s ()
forall a c.
Int -> ((a, Instructions), STUArray s Int Int, c) -> ST s ()
newWinner Int
offset ((Int, ((Int, Instructions), STUArray s Int Int, OrbitLog))
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
forall a b. (a, b) -> b
snd (Int, ((Int, Instructions), STUArray s Int Int, OrbitLog))
first)
[(Int, ((Int, Instructions), STUArray s Int Int, OrbitLog))]
_ -> String -> ST s ()
forall a. String -> a
err String
"newWinnerThenProceed,3 : too many emptyTrue values"
case Maybe [Int]
mayID of
Maybe [Int]
Nothing -> (SetIndex, DT) -> ST s (SetIndex, DT)
forall (m :: * -> *) a. Monad m => a -> m a
return (SetIndex
did,DT
dt)
Just [Int]
states' -> do
STRef s Bool -> Bool -> ST s ()
forall s a. STRef s a -> a -> ST s ()
writeSTRef STRef s Bool
eliminatedStateFlag Bool
False
Bool
respawn <- STRef s Bool -> ST s Bool
forall s a. STRef s a -> ST s a
readSTRef STRef s Bool
eliminatedRespawnFlag
DFA {d_id :: DFA -> SetIndex
d_id=SetIndex
did',d_dt :: DFA -> DT
d_dt=DT
dt'} <-
if Bool
respawn
then do
STRef s Bool -> Bool -> ST s ()
forall s a. STRef s a -> a -> ST s ()
writeSTRef STRef s Bool
eliminatedRespawnFlag Bool
False
Int
_ <- (Int, Int)
-> BlankScratch s -> Int -> MScratch s -> Int -> ST s Int
forall s.
(Int, Int)
-> BlankScratch s -> Int -> MScratch s -> Int -> ST s Int
spawnStart (Int, Int)
b_tags BlankScratch s
blank Int
startState MScratch s
s1 (Int -> Int
forall a. Enum a => a -> a
succ Int
offset)
DFA -> ST s DFA
forall (m :: * -> *) a. Monad m => a -> m a
return (TrieSet DFA -> [Int] -> DFA
forall v. TrieSet v -> [Int] -> v
Trie.lookupAsc TrieSet DFA
trie ([Int] -> [Int]
forall a. Ord a => [a] -> [a]
sort ([Int]
states'[Int] -> [Int] -> [Int]
forall a. [a] -> [a] -> [a]
++[Int
startState])))
else DFA -> ST s DFA
forall (m :: * -> *) a. Monad m => a -> m a
return (TrieSet DFA -> [Int] -> DFA
forall v. TrieSet v -> [Int] -> v
Trie.lookupAsc TrieSet DFA
trie [Int]
states')
(SetIndex, DT) -> ST s (SetIndex, DT)
forall (m :: * -> *) a. Monad m => a -> m a
return (SetIndex
did',DT
dt')
winEmpty :: Int -> Instructions -> ST s ()
winEmpty Int
preTag Instructions
winInstructions = {-# SCC "goNext.winEmpty" #-} do
STUArray s Int Int
newerPos <- (Int, Int) -> ST s (STUArray s Int Int)
forall s e.
MArray (STUArray s) e (ST s) =>
(Int, Int) -> ST s (STUArray s Int e)
newA_ (Int, Int)
b_tags
STUArray s Int Int -> STUArray s Int Int -> ST s ()
forall i s e.
(Show i, Ix i, MArray (STUArray s) e (ST s)) =>
STUArray s i e -> STUArray s i e -> ST s ()
copySTU (BlankScratch s -> STUArray s Int Int
forall s. BlankScratch s -> STUArray s Int Int
blank_pos BlankScratch s
blank) STUArray s Int Int
newerPos
STUArray s Int Int -> Int -> Int -> ST s ()
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> e -> ST s ()
set STUArray s Int Int
newerPos Int
0 Int
preTag
Int -> STUArray s Int Int -> [(Int, Action)] -> ST s ()
forall s. Int -> STUArray s Int Int -> [(Int, Action)] -> ST s ()
doActions Int
preTag STUArray s Int Int
newerPos (Instructions -> [(Int, Action)]
newPos Instructions
winInstructions)
WScratch s -> MQ s -> ST s ()
forall s. WScratch s -> MQ s -> ST s ()
putMQ (STUArray s Int Int -> WScratch s
forall s. STUArray s Int Int -> WScratch s
WScratch STUArray s Int Int
newerPos) MQ s
winQ
newWinner :: Int -> ((a, Instructions), STUArray s Int Int, c) -> ST s ()
newWinner Int
preTag ((a
_sourceIndex,Instructions
winInstructions),STUArray s Int Int
oldPos,c
_newOrbit) = {-# SCC "goNext.newWinner" #-} do
STUArray s Int Int
newerPos <- (Int, Int) -> ST s (STUArray s Int Int)
forall s e.
MArray (STUArray s) e (ST s) =>
(Int, Int) -> ST s (STUArray s Int e)
newA_ (Int, Int)
b_tags
STUArray s Int Int -> STUArray s Int Int -> ST s ()
forall i s e.
(Show i, Ix i, MArray (STUArray s) e (ST s)) =>
STUArray s i e -> STUArray s i e -> ST s ()
copySTU STUArray s Int Int
oldPos STUArray s Int Int
newerPos
Int -> STUArray s Int Int -> [(Int, Action)] -> ST s ()
forall s. Int -> STUArray s Int Int -> [(Int, Action)] -> ST s ()
doActions Int
preTag STUArray s Int Int
newerPos (Instructions -> [(Int, Action)]
newPos Instructions
winInstructions)
WScratch s -> MQ s -> ST s ()
forall s. WScratch s -> MQ s -> ST s ()
putMQ (STUArray s Int Int -> WScratch s
forall s. STUArray s Int Int -> WScratch s
WScratch STUArray s Int Int
newerPos) MQ s
winQ
finalizeWinners :: ST s [MatchArray]
finalizeWinners = do
[WScratch s]
winners <- ([MQA s] -> [WScratch s]) -> ST s [MQA s] -> ST s [WScratch s]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (([WScratch s] -> MQA s -> [WScratch s])
-> [WScratch s] -> [MQA s] -> [WScratch s]
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' (\ [WScratch s]
rest MQA s
mqa -> MQA s -> WScratch s
forall s. MQA s -> WScratch s
mqa_ws MQA s
mqa WScratch s -> [WScratch s] -> [WScratch s]
forall a. a -> [a] -> [a]
: [WScratch s]
rest) []) (ST s [MQA s] -> ST s [WScratch s])
-> ST s [MQA s] -> ST s [WScratch s]
forall a b. (a -> b) -> a -> b
$
STRef s [MQA s] -> ST s [MQA s]
forall s a. STRef s a -> ST s a
readSTRef (MQ s -> STRef s [MQA s]
forall s. MQ s -> STRef s [MQA s]
mq_list MQ s
winQ)
MQ s -> ST s ()
forall s. MQ s -> ST s ()
resetMQ MQ s
winQ
STRef s (ST s [MatchArray]) -> ST s [MatchArray] -> ST s ()
forall s a. STRef s a -> a -> ST s ()
writeSTRef STRef s (ST s [MatchArray])
storeNext ([MatchArray] -> ST s [MatchArray]
forall (m :: * -> *) a. Monad m => a -> m a
return [])
(WScratch s -> ST s MatchArray)
-> [WScratch s] -> ST s [MatchArray]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (Array Int [GroupInfo] -> WScratch s -> ST s MatchArray
forall s. Array Int [GroupInfo] -> WScratch s -> ST s MatchArray
tagsToGroupsST Array Int [GroupInfo]
aGroups) [WScratch s]
winners
MScratch s
-> MScratch s
-> SetIndex
-> DT
-> Int
-> Char
-> text
-> ST s [MatchArray]
next MScratch s
s1In MScratch s
s2In SetIndex
didIn DT
dtIn Int
offsetIn Char
prevIn text
inputIn
{-# INLINE doActions #-}
doActions :: Position -> STUArray s Tag Position -> [(Tag, Action)] -> ST s ()
doActions :: Int -> STUArray s Int Int -> [(Int, Action)] -> ST s ()
doActions Int
preTag STUArray s Int Int
pos [(Int, Action)]
ins = ((Int, Action) -> ST s ()) -> [(Int, Action)] -> ST s ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ (Int, Action) -> ST s ()
forall s.
MArray (STUArray s) Int (ST s) =>
(Int, Action) -> ST s ()
doAction [(Int, Action)]
ins where
postTag :: Int
postTag = Int -> Int
forall a. Enum a => a -> a
succ Int
preTag
doAction :: (Int, Action) -> ST s ()
doAction (Int
tag,Action
SetPre) = STUArray s Int Int -> Int -> Int -> ST s ()
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> e -> ST s ()
set STUArray s Int Int
pos Int
tag Int
preTag
doAction (Int
tag,Action
SetPost) = STUArray s Int Int -> Int -> Int -> ST s ()
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> e -> ST s ()
set STUArray s Int Int
pos Int
tag Int
postTag
doAction (Int
tag,SetVal Int
v) = STUArray s Int Int -> Int -> Int -> ST s ()
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> e -> ST s ()
set STUArray s Int Int
pos Int
tag Int
v
{-# INLINE mkTest #-}
mkTest :: Uncons text => Bool -> WhichTest -> Index -> Char -> text -> Bool
mkTest :: Bool -> WhichTest -> Int -> Char -> text -> Bool
mkTest Bool
isMultiline = if Bool
isMultiline then WhichTest -> Int -> Char -> text -> Bool
forall text.
Uncons text =>
WhichTest -> Int -> Char -> text -> Bool
test_multiline else WhichTest -> Int -> Char -> text -> Bool
forall text.
Uncons text =>
WhichTest -> Int -> Char -> text -> Bool
test_singleline
data MQA s = MQA {MQA s -> Int
mqa_start :: !Position, MQA s -> WScratch s
mqa_ws :: !(WScratch s)}
data MQ s = MQ { MQ s -> STRef s Int
mq_earliest :: !(STRef s Position)
, MQ s -> STRef s [MQA s]
mq_list :: !(STRef s [MQA s])
}
newMQ :: S.ST s (MQ s)
newMQ :: ST s (MQ s)
newMQ = do
STRef s Int
earliest <- Int -> ST s (STRef s Int)
forall a s. a -> ST s (STRef s a)
newSTRef Int
forall a. Bounded a => a
maxBound
STRef s [MQA s]
list <- [MQA s] -> ST s (STRef s [MQA s])
forall a s. a -> ST s (STRef s a)
newSTRef []
MQ s -> ST s (MQ s)
forall (m :: * -> *) a. Monad m => a -> m a
return (STRef s Int -> STRef s [MQA s] -> MQ s
forall s. STRef s Int -> STRef s [MQA s] -> MQ s
MQ STRef s Int
earliest STRef s [MQA s]
list)
resetMQ :: MQ s -> S.ST s ()
resetMQ :: MQ s -> ST s ()
resetMQ (MQ {mq_earliest :: forall s. MQ s -> STRef s Int
mq_earliest=STRef s Int
earliest,mq_list :: forall s. MQ s -> STRef s [MQA s]
mq_list=STRef s [MQA s]
list}) = do
STRef s Int -> Int -> ST s ()
forall s a. STRef s a -> a -> ST s ()
writeSTRef STRef s Int
earliest Int
forall a. Bounded a => a
maxBound
STRef s [MQA s] -> [MQA s] -> ST s ()
forall s a. STRef s a -> a -> ST s ()
writeSTRef STRef s [MQA s]
list []
putMQ :: WScratch s -> MQ s -> S.ST s ()
putMQ :: WScratch s -> MQ s -> ST s ()
putMQ WScratch s
ws (MQ {mq_earliest :: forall s. MQ s -> STRef s Int
mq_earliest=STRef s Int
earliest,mq_list :: forall s. MQ s -> STRef s [MQA s]
mq_list=STRef s [MQA s]
list}) = do
Int
start <- WScratch s -> STUArray s Int Int
forall s. WScratch s -> STUArray s Int Int
w_pos WScratch s
ws STUArray s Int Int -> Int -> ST s Int
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> ST s e
!! Int
0
let mqa :: MQA s
mqa = Int -> WScratch s -> MQA s
forall s. Int -> WScratch s -> MQA s
MQA Int
start WScratch s
ws
Int
startE <- STRef s Int -> ST s Int
forall s a. STRef s a -> ST s a
readSTRef STRef s Int
earliest
if Int
start Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
startE
then STRef s Int -> Int -> ST s ()
forall s a. STRef s a -> a -> ST s ()
writeSTRef STRef s Int
earliest Int
start ST s () -> ST s () -> ST s ()
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> STRef s [MQA s] -> [MQA s] -> ST s ()
forall s a. STRef s a -> a -> ST s ()
writeSTRef STRef s [MQA s]
list [MQA s
mqa]
else do
[MQA s]
old <- STRef s [MQA s] -> ST s [MQA s]
forall s a. STRef s a -> ST s a
readSTRef STRef s [MQA s]
list
let !rest :: [MQA s]
rest = (MQA s -> Bool) -> [MQA s] -> [MQA s]
forall a. (a -> Bool) -> [a] -> [a]
dropWhile (\ MQA s
m -> Int
start Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= MQA s -> Int
forall s. MQA s -> Int
mqa_start MQA s
m) [MQA s]
old
!new :: [MQA s]
new = MQA s
mqa MQA s -> [MQA s] -> [MQA s]
forall a. a -> [a] -> [a]
: [MQA s]
rest
STRef s [MQA s] -> [MQA s] -> ST s ()
forall s a. STRef s a -> a -> ST s ()
writeSTRef STRef s [MQA s]
list [MQA s]
new
getMQ :: Position -> MQ s -> ST s [WScratch s]
getMQ :: Int -> MQ s -> ST s [WScratch s]
getMQ Int
pos (MQ {mq_earliest :: forall s. MQ s -> STRef s Int
mq_earliest=STRef s Int
earliest,mq_list :: forall s. MQ s -> STRef s [MQA s]
mq_list=STRef s [MQA s]
list}) = do
[MQA s]
old <- STRef s [MQA s] -> ST s [MQA s]
forall s a. STRef s a -> ST s a
readSTRef STRef s [MQA s]
list
case (MQA s -> Bool) -> [MQA s] -> ([MQA s], [MQA s])
forall a. (a -> Bool) -> [a] -> ([a], [a])
span (\MQA s
m -> Int
pos Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= MQA s -> Int
forall s. MQA s -> Int
mqa_start MQA s
m) [MQA s]
old of
([],[MQA s]
ans) -> do
STRef s Int -> Int -> ST s ()
forall s a. STRef s a -> a -> ST s ()
writeSTRef STRef s Int
earliest Int
forall a. Bounded a => a
maxBound
STRef s [MQA s] -> [MQA s] -> ST s ()
forall s a. STRef s a -> a -> ST s ()
writeSTRef STRef s [MQA s]
list []
[WScratch s] -> ST s [WScratch s]
forall (m :: * -> *) a. Monad m => a -> m a
return ((MQA s -> WScratch s) -> [MQA s] -> [WScratch s]
forall a b. (a -> b) -> [a] -> [b]
map MQA s -> WScratch s
forall s. MQA s -> WScratch s
mqa_ws [MQA s]
ans)
([MQA s]
new,[MQA s]
ans) -> do
STRef s Int -> Int -> ST s ()
forall s a. STRef s a -> a -> ST s ()
writeSTRef STRef s Int
earliest (MQA s -> Int
forall s. MQA s -> Int
mqa_start ([MQA s] -> MQA s
forall a. [a] -> a
last [MQA s]
new))
STRef s [MQA s] -> [MQA s] -> ST s ()
forall s a. STRef s a -> a -> ST s ()
writeSTRef STRef s [MQA s]
list [MQA s]
new
[WScratch s] -> ST s [WScratch s]
forall (m :: * -> *) a. Monad m => a -> m a
return ((MQA s -> WScratch s) -> [MQA s] -> [WScratch s]
forall a b. (a -> b) -> [a] -> [b]
map MQA s -> WScratch s
forall s. MQA s -> WScratch s
mqa_ws [MQA s]
ans)
data SScratch s = SScratch { SScratch s -> MScratch s
_s_1 :: !(MScratch s)
, SScratch s -> MScratch s
_s_2 :: !(MScratch s)
, SScratch s
-> (MQ s, BlankScratch s,
STArray s Int ((Int, Instructions), STUArray s Int Int, OrbitLog))
_s_rest :: !( MQ s
, BlankScratch s
, STArray s Index ((Index,Instructions),STUArray s Tag Position,OrbitLog)
)
}
data MScratch s = MScratch { MScratch s -> STArray s Int (Maybe (STUArray s Int Int))
m_pos :: !(STArray s Index (Maybe (STUArray s Tag Position)))
, MScratch s -> STArray s Int OrbitLog
m_orbit :: !(STArray s Index OrbitLog)
}
newtype BlankScratch s = BlankScratch { BlankScratch s -> STUArray s Int Int
blank_pos :: (STUArray s Tag Position)
}
newtype WScratch s = WScratch { WScratch s -> STUArray s Int Int
w_pos :: (STUArray s Tag Position)
}
{-# INLINE newA #-}
newA :: (MArray (STUArray s) e (ST s)) => (Tag,Tag) -> e -> S.ST s (STUArray s Tag e)
newA :: (Int, Int) -> e -> ST s (STUArray s Int e)
newA (Int, Int)
b_tags e
initial = (Int, Int) -> e -> ST s (STUArray s Int e)
forall (a :: * -> * -> *) e (m :: * -> *) i.
(MArray a e m, Ix i) =>
(i, i) -> e -> m (a i e)
newArray (Int, Int)
b_tags e
initial
{-# INLINE newA_ #-}
newA_ :: (MArray (STUArray s) e (ST s)) => (Tag,Tag) -> S.ST s (STUArray s Tag e)
newA_ :: (Int, Int) -> ST s (STUArray s Int e)
newA_ (Int, Int)
b_tags = (Int, Int) -> ST s (STUArray s Int e)
forall (a :: * -> * -> *) e (m :: * -> *) i.
(MArray a e m, Ix i) =>
(i, i) -> m (a i e)
newArray_ (Int, Int)
b_tags
newScratch :: (Index,Index) -> (Tag,Tag) -> S.ST s (SScratch s)
newScratch :: (Int, Int) -> (Int, Int) -> ST s (SScratch s)
newScratch (Int, Int)
b_index (Int, Int)
b_tags = do
MScratch s
s1 <- (Int, Int) -> ST s (MScratch s)
forall s. (Int, Int) -> ST s (MScratch s)
newMScratch (Int, Int)
b_index
MScratch s
s2 <- (Int, Int) -> ST s (MScratch s)
forall s. (Int, Int) -> ST s (MScratch s)
newMScratch (Int, Int)
b_index
MQ s
winQ <- ST s (MQ s)
forall s. ST s (MQ s)
newMQ
BlankScratch s
blank <- (STUArray s Int Int -> BlankScratch s)
-> ST s (STUArray s Int Int) -> ST s (BlankScratch s)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap STUArray s Int Int -> BlankScratch s
forall s. STUArray s Int Int -> BlankScratch s
BlankScratch ((Int, Int) -> Int -> ST s (STUArray s Int Int)
forall s e.
MArray (STUArray s) e (ST s) =>
(Int, Int) -> e -> ST s (STUArray s Int e)
newA (Int, Int)
b_tags (-Int
1))
STArray s Int ((Int, Instructions), STUArray s Int Int, OrbitLog)
which <- ((Int, Int)
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> ST
s
(STArray s Int ((Int, Instructions), STUArray s Int Int, OrbitLog))
forall (a :: * -> * -> *) e (m :: * -> *) i.
(MArray a e m, Ix i) =>
(i, i) -> e -> m (a i e)
newArray (Int, Int)
b_index ((-Int
1,String -> Instructions
forall a. String -> a
err String
"newScratch which 1"),String -> STUArray s Int Int
forall a. String -> a
err String
"newScratch which 2",String -> OrbitLog
forall a. String -> a
err String
"newScratch which 3"))
SScratch s -> ST s (SScratch s)
forall (m :: * -> *) a. Monad m => a -> m a
return (MScratch s
-> MScratch s
-> (MQ s, BlankScratch s,
STArray s Int ((Int, Instructions), STUArray s Int Int, OrbitLog))
-> SScratch s
forall s.
MScratch s
-> MScratch s
-> (MQ s, BlankScratch s,
STArray s Int ((Int, Instructions), STUArray s Int Int, OrbitLog))
-> SScratch s
SScratch MScratch s
s1 MScratch s
s2 (MQ s
winQ,BlankScratch s
blank,STArray s Int ((Int, Instructions), STUArray s Int Int, OrbitLog)
which))
newMScratch :: (Index,Index) -> S.ST s (MScratch s)
newMScratch :: (Int, Int) -> ST s (MScratch s)
newMScratch (Int, Int)
b_index = do
STArray s Int (Maybe (STUArray s Int Int))
pos's <- (Int, Int)
-> Maybe (STUArray s Int Int)
-> ST s (STArray s Int (Maybe (STUArray s Int Int)))
forall (a :: * -> * -> *) e (m :: * -> *) i.
(MArray a e m, Ix i) =>
(i, i) -> e -> m (a i e)
newArray (Int, Int)
b_index Maybe (STUArray s Int Int)
forall a. Maybe a
Nothing
STArray s Int OrbitLog
orbit's <- (Int, Int) -> OrbitLog -> ST s (STArray s Int OrbitLog)
forall (a :: * -> * -> *) e (m :: * -> *) i.
(MArray a e m, Ix i) =>
(i, i) -> e -> m (a i e)
newArray (Int, Int)
b_index OrbitLog
forall a. Monoid a => a
Mon.mempty
MScratch s -> ST s (MScratch s)
forall (m :: * -> *) a. Monad m => a -> m a
return (STArray s Int (Maybe (STUArray s Int Int))
-> STArray s Int OrbitLog -> MScratch s
forall s.
STArray s Int (Maybe (STUArray s Int Int))
-> STArray s Int OrbitLog -> MScratch s
MScratch STArray s Int (Maybe (STUArray s Int Int))
pos's STArray s Int OrbitLog
orbit's)
newtype F s = F ([F s] -> C s)
type C s = Position
-> ((Int, Instructions), STUArray s Tag Position, IntMap Orbits)
-> [(Int, Action)]
-> ((Int, Instructions), STUArray s Tag Position, IntMap Orbits)
-> [(Int, Action)]
-> ST s Ordering
{-# INLINE orderOf #-}
orderOf :: Action -> Action -> Ordering
orderOf :: Action -> Action -> Ordering
orderOf Action
post1 Action
post2 =
case (Action
post1,Action
post2) of
(Action
SetPre,Action
SetPre) -> Ordering
EQ
(Action
SetPost,Action
SetPost) -> Ordering
EQ
(Action
SetPre,Action
SetPost) -> Ordering
LT
(Action
SetPost,Action
SetPre) -> Ordering
GT
(SetVal Int
v1,SetVal Int
v2) -> Int -> Int -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Int
v1 Int
v2
(Action, Action)
_ -> String -> Ordering
forall a. String -> a
err (String -> Ordering) -> String -> Ordering
forall a b. (a -> b) -> a -> b
$ String
"bestTrans.compareWith.choose sees incomparable "String -> String -> String
forall a. [a] -> [a] -> [a]
++(Action, Action) -> String
forall a. Show a => a -> String
show (Action
post1,Action
post2)
ditzyComp'3 :: forall s. Array Tag OP -> C s
ditzyComp'3 :: Array Int OP -> C s
ditzyComp'3 Array Int OP
aTagOP = C s
comp0 where
(F [F s] -> C s
comp1:[F s]
compsRest) = Int -> [F s]
allcomps Int
1
comp0 :: C s
comp0 :: C s
comp0 Int
preTag x1 :: ((Int, Instructions), STUArray s Int Int, OrbitLog)
x1@((Int, Instructions)
_state1,STUArray s Int Int
pos1,OrbitLog
_orbit1') [(Int, Action)]
np1 x2 :: ((Int, Instructions), STUArray s Int Int, OrbitLog)
x2@((Int, Instructions)
_state2,STUArray s Int Int
pos2,OrbitLog
_orbit2') [(Int, Action)]
np2 = do
Ordering
c <- (Int -> Int -> Ordering) -> ST s Int -> ST s Int -> ST s Ordering
forall (m :: * -> *) a1 a2 r.
Monad m =>
(a1 -> a2 -> r) -> m a1 -> m a2 -> m r
liftM2 Int -> Int -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (STUArray s Int Int
pos2STUArray s Int Int -> Int -> ST s Int
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> ST s e
!!Int
0) (STUArray s Int Int
pos1STUArray s Int Int -> Int -> ST s Int
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> ST s e
!!Int
0)
case Ordering
c of
Ordering
EQ -> [F s] -> C s
comp1 [F s]
compsRest Int
preTag ((Int, Instructions), STUArray s Int Int, OrbitLog)
x1 [(Int, Action)]
np1 ((Int, Instructions), STUArray s Int Int, OrbitLog)
x2 [(Int, Action)]
np2
Ordering
answer -> Ordering -> ST s Ordering
forall (m :: * -> *) a. Monad m => a -> m a
return Ordering
answer
allcomps :: Tag -> [F s]
allcomps :: Int -> [F s]
allcomps Int
tag | Int
tag Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
top = [([F s] -> C s) -> F s
forall s. ([F s] -> C s) -> F s
F (\ [F s]
_ Int
_ ((Int, Instructions), STUArray s Int Int, OrbitLog)
_ [(Int, Action)]
_ ((Int, Instructions), STUArray s Int Int, OrbitLog)
_ [(Int, Action)]
_ -> Ordering -> ST s Ordering
forall (m :: * -> *) a. Monad m => a -> m a
return Ordering
EQ)]
| Bool
otherwise =
case Array Int OP
aTagOP Array Int OP -> Int -> OP
forall (a :: * -> * -> *) e i.
(IArray a e, Ix i) =>
a i e -> i -> e
! Int
tag of
OP
Orbit -> ([F s] -> C s) -> F s
forall s. ([F s] -> C s) -> F s
F (Int -> [F s] -> C s
forall s.
Int
-> [F s]
-> Int
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ST s Ordering
challenge_Orb Int
tag) F s -> [F s] -> [F s]
forall a. a -> [a] -> [a]
: Int -> [F s]
allcomps (Int -> Int
forall a. Enum a => a -> a
succ Int
tag)
OP
Maximize -> ([F s] -> C s) -> F s
forall s. ([F s] -> C s) -> F s
F (Int -> [F s] -> C s
forall s.
Int
-> [F s]
-> Int
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ST s Ordering
challenge_Max Int
tag) F s -> [F s] -> [F s]
forall a. a -> [a] -> [a]
: Int -> [F s]
allcomps (Int -> Int
forall a. Enum a => a -> a
succ Int
tag)
OP
Ignore -> ([F s] -> C s) -> F s
forall s. ([F s] -> C s) -> F s
F (Int -> [F s] -> C s
forall s.
Int
-> [F s]
-> Int
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ST s Ordering
challenge_Ignore Int
tag) F s -> [F s] -> [F s]
forall a. a -> [a] -> [a]
: Int -> [F s]
allcomps (Int -> Int
forall a. Enum a => a -> a
succ Int
tag)
OP
Minimize -> String -> [F s]
forall a. String -> a
err String
"allcomps Minimize"
where top :: Int
top = (Int, Int) -> Int
forall a b. (a, b) -> b
snd (Array Int OP -> (Int, Int)
forall (a :: * -> * -> *) e i.
(IArray a e, Ix i) =>
a i e -> (i, i)
bounds Array Int OP
aTagOP)
challenge_Ignore :: Int
-> [F s]
-> Int
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ST s Ordering
challenge_Ignore !Int
tag (F [F s]
-> Int
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ST s Ordering
next:[F s]
comps) Int
preTag ((Int, Instructions), STUArray s Int Int, OrbitLog)
x1 [(Int, Action)]
np1 ((Int, Instructions), STUArray s Int Int, OrbitLog)
x2 [(Int, Action)]
np2 =
case [(Int, Action)]
np1 of
((Int
t1,Action
_):[(Int, Action)]
rest1) | Int
t1Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
==Int
tag ->
case [(Int, Action)]
np2 of
((Int
t2,Action
_):[(Int, Action)]
rest2) | Int
t2Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
==Int
tag -> [F s]
-> Int
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ST s Ordering
next [F s]
comps Int
preTag ((Int, Instructions), STUArray s Int Int, OrbitLog)
x1 [(Int, Action)]
rest1 ((Int, Instructions), STUArray s Int Int, OrbitLog)
x2 [(Int, Action)]
rest2
[(Int, Action)]
_ -> [F s]
-> Int
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ST s Ordering
next [F s]
comps Int
preTag ((Int, Instructions), STUArray s Int Int, OrbitLog)
x1 [(Int, Action)]
rest1 ((Int, Instructions), STUArray s Int Int, OrbitLog)
x2 [(Int, Action)]
np2
[(Int, Action)]
_ -> do
case [(Int, Action)]
np2 of
((Int
t2,Action
_):[(Int, Action)]
rest2) | Int
t2Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
==Int
tag -> [F s]
-> Int
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ST s Ordering
next [F s]
comps Int
preTag ((Int, Instructions), STUArray s Int Int, OrbitLog)
x1 [(Int, Action)]
np1 ((Int, Instructions), STUArray s Int Int, OrbitLog)
x2 [(Int, Action)]
rest2
[(Int, Action)]
_ -> [F s]
-> Int
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ST s Ordering
next [F s]
comps Int
preTag ((Int, Instructions), STUArray s Int Int, OrbitLog)
x1 [(Int, Action)]
np1 ((Int, Instructions), STUArray s Int Int, OrbitLog)
x2 [(Int, Action)]
np2
challenge_Ignore Int
_ [] Int
_ ((Int, Instructions), STUArray s Int Int, OrbitLog)
_ [(Int, Action)]
_ ((Int, Instructions), STUArray s Int Int, OrbitLog)
_ [(Int, Action)]
_ = String -> ST s Ordering
forall a. String -> a
err String
"impossible 2347867"
challenge_Max :: Int
-> [F s]
-> Int
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ST s Ordering
challenge_Max !Int
tag (F [F s]
-> Int
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ST s Ordering
next:[F s]
comps) Int
preTag x1 :: ((Int, Instructions), STUArray s Int Int, OrbitLog)
x1@((Int, Instructions)
_state1,STUArray s Int Int
pos1,OrbitLog
_orbit1') [(Int, Action)]
np1 x2 :: ((Int, Instructions), STUArray s Int Int, OrbitLog)
x2@((Int, Instructions)
_state2,STUArray s Int Int
pos2,OrbitLog
_orbit2') [(Int, Action)]
np2 =
case [(Int, Action)]
np1 of
((Int
t1,Action
b1):[(Int, Action)]
rest1) | Int
t1Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
==Int
tag ->
case [(Int, Action)]
np2 of
((Int
t2,Action
b2):[(Int, Action)]
rest2) | Int
t2Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
==Int
tag ->
if Action
b1Action -> Action -> Bool
forall a. Eq a => a -> a -> Bool
==Action
b2 then [F s]
-> Int
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ST s Ordering
next [F s]
comps Int
preTag ((Int, Instructions), STUArray s Int Int, OrbitLog)
x1 [(Int, Action)]
rest1 ((Int, Instructions), STUArray s Int Int, OrbitLog)
x2 [(Int, Action)]
rest2
else Ordering -> ST s Ordering
forall (m :: * -> *) a. Monad m => a -> m a
return (Action -> Action -> Ordering
orderOf Action
b1 Action
b2)
[(Int, Action)]
_ -> do
Int
p2 <- STUArray s Int Int
pos2 STUArray s Int Int -> Int -> ST s Int
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> ST s e
!! Int
tag
let p1 :: Int
p1 = case Action
b1 of Action
SetPre -> Int
preTag
Action
SetPost -> Int -> Int
forall a. Enum a => a -> a
succ Int
preTag
SetVal Int
v -> Int
v
if Int
p1Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
==Int
p2 then [F s]
-> Int
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ST s Ordering
next [F s]
comps Int
preTag ((Int, Instructions), STUArray s Int Int, OrbitLog)
x1 [(Int, Action)]
rest1 ((Int, Instructions), STUArray s Int Int, OrbitLog)
x2 [(Int, Action)]
np2
else Ordering -> ST s Ordering
forall (m :: * -> *) a. Monad m => a -> m a
return (Int -> Int -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Int
p1 Int
p2)
[(Int, Action)]
_ -> do
Int
p1 <- STUArray s Int Int
pos1 STUArray s Int Int -> Int -> ST s Int
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> ST s e
!! Int
tag
case [(Int, Action)]
np2 of
((Int
t2,Action
b2):[(Int, Action)]
rest2) | Int
t2Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
==Int
tag -> do
let p2 :: Int
p2 = case Action
b2 of Action
SetPre -> Int
preTag
Action
SetPost -> Int -> Int
forall a. Enum a => a -> a
succ Int
preTag
SetVal Int
v -> Int
v
if Int
p1Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
==Int
p2 then [F s]
-> Int
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ST s Ordering
next [F s]
comps Int
preTag ((Int, Instructions), STUArray s Int Int, OrbitLog)
x1 [(Int, Action)]
np1 ((Int, Instructions), STUArray s Int Int, OrbitLog)
x2 [(Int, Action)]
rest2
else Ordering -> ST s Ordering
forall (m :: * -> *) a. Monad m => a -> m a
return (Int -> Int -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Int
p1 Int
p2)
[(Int, Action)]
_ -> do
Int
p2 <- STUArray s Int Int
pos2 STUArray s Int Int -> Int -> ST s Int
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> ST s e
!! Int
tag
if Int
p1Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
==Int
p2 then [F s]
-> Int
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ST s Ordering
next [F s]
comps Int
preTag ((Int, Instructions), STUArray s Int Int, OrbitLog)
x1 [(Int, Action)]
np1 ((Int, Instructions), STUArray s Int Int, OrbitLog)
x2 [(Int, Action)]
np2
else Ordering -> ST s Ordering
forall (m :: * -> *) a. Monad m => a -> m a
return (Int -> Int -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Int
p1 Int
p2)
challenge_Max Int
_ [] Int
_ ((Int, Instructions), STUArray s Int Int, OrbitLog)
_ [(Int, Action)]
_ ((Int, Instructions), STUArray s Int Int, OrbitLog)
_ [(Int, Action)]
_ = String -> ST s Ordering
forall a. String -> a
err String
"impossible 9384324"
challenge_Orb :: Int
-> [F s]
-> Int
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ST s Ordering
challenge_Orb !Int
tag (F [F s]
-> Int
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ST s Ordering
next:[F s]
comps) Int
preTag x1 :: ((Int, Instructions), STUArray s Int Int, OrbitLog)
x1@((Int, Instructions)
_state1,STUArray s Int Int
_pos1,OrbitLog
orbit1') [(Int, Action)]
np1 x2 :: ((Int, Instructions), STUArray s Int Int, OrbitLog)
x2@((Int, Instructions)
_state2,STUArray s Int Int
_pos2,OrbitLog
orbit2') [(Int, Action)]
np2 =
let s1 :: Maybe Orbits
s1 = Int -> OrbitLog -> Maybe Orbits
forall a. Int -> IntMap a -> Maybe a
IMap.lookup Int
tag OrbitLog
orbit1'
s2 :: Maybe Orbits
s2 = Int -> OrbitLog -> Maybe Orbits
forall a. Int -> IntMap a -> Maybe a
IMap.lookup Int
tag OrbitLog
orbit2'
in case (Maybe Orbits
s1,Maybe Orbits
s2) of
(Maybe Orbits
Nothing,Maybe Orbits
Nothing) -> [F s]
-> Int
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ST s Ordering
next [F s]
comps Int
preTag ((Int, Instructions), STUArray s Int Int, OrbitLog)
x1 [(Int, Action)]
np1 ((Int, Instructions), STUArray s Int Int, OrbitLog)
x2 [(Int, Action)]
np2
(Just Orbits
o1,Just Orbits
o2) | Orbits -> Bool
inOrbit Orbits
o1 Bool -> Bool -> Bool
forall a. Eq a => a -> a -> Bool
== Orbits -> Bool
inOrbit Orbits
o2 ->
case Maybe Int -> Maybe Int -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (Orbits -> Maybe Int
ordinal Orbits
o1) (Orbits -> Maybe Int
ordinal Orbits
o2) Ordering -> Ordering -> Ordering
forall a. Monoid a => a -> a -> a
`mappend`
ViewL Int -> ViewL Int -> Ordering
comparePos (Seq Int -> ViewL Int
forall a. Seq a -> ViewL a
viewl (Orbits -> Seq Int
getOrbits Orbits
o1)) (Seq Int -> ViewL Int
forall a. Seq a -> ViewL a
viewl (Orbits -> Seq Int
getOrbits Orbits
o2)) of
Ordering
EQ -> [F s]
-> Int
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> [(Int, Action)]
-> ST s Ordering
next [F s]
comps Int
preTag ((Int, Instructions), STUArray s Int Int, OrbitLog)
x1 [(Int, Action)]
np1 ((Int, Instructions), STUArray s Int Int, OrbitLog)
x2 [(Int, Action)]
np2
Ordering
answer -> Ordering -> ST s Ordering
forall (m :: * -> *) a. Monad m => a -> m a
return Ordering
answer
(Maybe Orbits, Maybe Orbits)
_ -> String -> ST s Ordering
forall a. String -> a
err (String -> ST s Ordering) -> String -> ST s Ordering
forall a b. (a -> b) -> a -> b
$ [String] -> String
unlines [ String
"challenge_Orb is too stupid to handle mismatched orbit data :"
, (Int, Int, [(Int, Action)], [(Int, Action)]) -> String
forall a. Show a => a -> String
show(Int
tag,Int
preTag,[(Int, Action)]
np1,[(Int, Action)]
np2)
, Maybe Orbits -> String
forall a. Show a => a -> String
show Maybe Orbits
s1
, Maybe Orbits -> String
forall a. Show a => a -> String
show Maybe Orbits
s2
]
challenge_Orb Int
_ [] Int
_ ((Int, Instructions), STUArray s Int Int, OrbitLog)
_ [(Int, Action)]
_ ((Int, Instructions), STUArray s Int Int, OrbitLog)
_ [(Int, Action)]
_ = String -> ST s Ordering
forall a. String -> a
err String
"impossible 0298347"
comparePos :: (ViewL Position) -> (ViewL Position) -> Ordering
comparePos :: ViewL Int -> ViewL Int -> Ordering
comparePos ViewL Int
EmptyL ViewL Int
EmptyL = Ordering
EQ
comparePos ViewL Int
EmptyL ViewL Int
_ = Ordering
GT
comparePos ViewL Int
_ ViewL Int
EmptyL = Ordering
LT
comparePos (Int
p1 :< Seq Int
ps1) (Int
p2 :< Seq Int
ps2) =
Int -> Int -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Int
p1 Int
p2 Ordering -> Ordering -> Ordering
forall a. Monoid a => a -> a -> a
`mappend` ViewL Int -> ViewL Int -> Ordering
comparePos (Seq Int -> ViewL Int
forall a. Seq a -> ViewL a
viewl Seq Int
ps1) (Seq Int -> ViewL Int
forall a. Seq a -> ViewL a
viewl Seq Int
ps2)
tagsToGroupsST :: forall s. Array GroupIndex [GroupInfo] -> WScratch s -> S.ST s MatchArray
tagsToGroupsST :: Array Int [GroupInfo] -> WScratch s -> ST s MatchArray
tagsToGroupsST Array Int [GroupInfo]
aGroups (WScratch {w_pos :: forall s. WScratch s -> STUArray s Int Int
w_pos=STUArray s Int Int
pos})= do
let b_max :: Int
b_max = (Int, Int) -> Int
forall a b. (a, b) -> b
snd (Array Int [GroupInfo] -> (Int, Int)
forall (a :: * -> * -> *) e i.
(IArray a e, Ix i) =>
a i e -> (i, i)
bounds (Array Int [GroupInfo]
aGroups))
STArray s Int (Int, Int)
ma <- (Int, Int) -> (Int, Int) -> ST s (STArray s Int (Int, Int))
forall (a :: * -> * -> *) e (m :: * -> *) i.
(MArray a e m, Ix i) =>
(i, i) -> e -> m (a i e)
newArray (Int
0,Int
b_max) (-Int
1,Int
0) :: ST s (STArray s Int (MatchOffset,MatchLength))
Int
startPos0 <- STUArray s Int Int
pos STUArray s Int Int -> Int -> ST s Int
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> ST s e
!! Int
0
Int
stopPos0 <- STUArray s Int Int
pos STUArray s Int Int -> Int -> ST s Int
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> ST s e
!! Int
1
STArray s Int (Int, Int) -> Int -> (Int, Int) -> ST s ()
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> e -> ST s ()
set STArray s Int (Int, Int)
ma Int
0 (Int
startPos0,Int
stopPos0Int -> Int -> Int
forall a. Num a => a -> a -> a
-Int
startPos0)
let act :: Int -> [GroupInfo] -> ST s ()
act Int
_this_index [] = () -> ST s ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
act Int
this_index ((GroupInfo Int
_ Int
parent Int
start Int
stop Int
flagtag):[GroupInfo]
gs) = do
Int
flagVal <- STUArray s Int Int
pos STUArray s Int Int -> Int -> ST s Int
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> ST s e
!! Int
flagtag
if (-Int
1) Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
flagVal then Int -> [GroupInfo] -> ST s ()
act Int
this_index [GroupInfo]
gs
else do
Int
startPos <- STUArray s Int Int
pos STUArray s Int Int -> Int -> ST s Int
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> ST s e
!! Int
start
Int
stopPos <- STUArray s Int Int
pos STUArray s Int Int -> Int -> ST s Int
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> ST s e
!! Int
stop
(Int
startParent,Int
lengthParent) <- STArray s Int (Int, Int)
ma STArray s Int (Int, Int) -> Int -> ST s (Int, Int)
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> ST s e
!! Int
parent
let ok :: Bool
ok = (Int
0 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
startParent Bool -> Bool -> Bool
&&
Int
0 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
lengthParent Bool -> Bool -> Bool
&&
Int
startParent Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
startPos Bool -> Bool -> Bool
&&
Int
stopPos Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
startPos Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
lengthParent)
if Bool -> Bool
not Bool
ok then Int -> [GroupInfo] -> ST s ()
act Int
this_index [GroupInfo]
gs
else STArray s Int (Int, Int) -> Int -> (Int, Int) -> ST s ()
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> e -> ST s ()
set STArray s Int (Int, Int)
ma Int
this_index (Int
startPos,Int
stopPosInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
startPos)
[Int] -> (Int -> ST s ()) -> ST s ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ((Int, Int) -> [Int]
forall a. Ix a => (a, a) -> [a]
range (Int
1,Int
b_max)) ((Int -> ST s ()) -> ST s ()) -> (Int -> ST s ()) -> ST s ()
forall a b. (a -> b) -> a -> b
$ (\Int
i -> Int -> [GroupInfo] -> ST s ()
forall s.
(MArray (STUArray s) Int (ST s),
MArray (STArray s) (Int, Int) (ST s)) =>
Int -> [GroupInfo] -> ST s ()
act Int
i (Array Int [GroupInfo]
aGroupsArray Int [GroupInfo] -> Int -> [GroupInfo]
forall (a :: * -> * -> *) e i.
(IArray a e, Ix i) =>
a i e -> i -> e
!Int
i))
STArray s Int (Int, Int) -> ST s MatchArray
forall i (a :: * -> * -> *) e (m :: * -> *) (b :: * -> * -> *).
(Ix i, MArray a e m, IArray b e) =>
a i e -> m (b i e)
unsafeFreeze STArray s Int (Int, Int)
ma
{-# INLINE spawnStart #-}
spawnStart :: (Tag,Tag) -> BlankScratch s -> Index -> MScratch s -> Position -> S.ST s Position
spawnStart :: (Int, Int)
-> BlankScratch s -> Int -> MScratch s -> Int -> ST s Int
spawnStart (Int, Int)
b_tags (BlankScratch STUArray s Int Int
blankPos) Int
i MScratch s
s1 Int
thisPos = do
Maybe (STUArray s Int Int)
oldPos <- MScratch s -> STArray s Int (Maybe (STUArray s Int Int))
forall s. MScratch s -> STArray s Int (Maybe (STUArray s Int Int))
m_pos MScratch s
s1 STArray s Int (Maybe (STUArray s Int Int))
-> Int -> ST s (Maybe (STUArray s Int Int))
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> ST s e
!! Int
i
STUArray s Int Int
pos <- case Maybe (STUArray s Int Int)
oldPos of
Maybe (STUArray s Int Int)
Nothing -> do
STUArray s Int Int
pos' <- (Int, Int) -> ST s (STUArray s Int Int)
forall s e.
MArray (STUArray s) e (ST s) =>
(Int, Int) -> ST s (STUArray s Int e)
newA_ (Int, Int)
b_tags
STArray s Int (Maybe (STUArray s Int Int))
-> Int -> Maybe (STUArray s Int Int) -> ST s ()
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> e -> ST s ()
set (MScratch s -> STArray s Int (Maybe (STUArray s Int Int))
forall s. MScratch s -> STArray s Int (Maybe (STUArray s Int Int))
m_pos MScratch s
s1) Int
i (STUArray s Int Int -> Maybe (STUArray s Int Int)
forall a. a -> Maybe a
Just STUArray s Int Int
pos')
STUArray s Int Int -> ST s (STUArray s Int Int)
forall (m :: * -> *) a. Monad m => a -> m a
return STUArray s Int Int
pos'
Just STUArray s Int Int
pos -> STUArray s Int Int -> ST s (STUArray s Int Int)
forall (m :: * -> *) a. Monad m => a -> m a
return STUArray s Int Int
pos
STUArray s Int Int -> STUArray s Int Int -> ST s ()
forall i s e.
(Show i, Ix i, MArray (STUArray s) e (ST s)) =>
STUArray s i e -> STUArray s i e -> ST s ()
copySTU STUArray s Int Int
blankPos STUArray s Int Int
pos
STArray s Int OrbitLog -> Int -> OrbitLog -> ST s ()
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> e -> ST s ()
set (MScratch s -> STArray s Int OrbitLog
forall s. MScratch s -> STArray s Int OrbitLog
m_orbit MScratch s
s1) Int
i (OrbitLog -> ST s ()) -> OrbitLog -> ST s ()
forall a b. (a -> b) -> a -> b
$! OrbitLog
forall a. Monoid a => a
mempty
STUArray s Int Int -> Int -> Int -> ST s ()
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> e -> ST s ()
set STUArray s Int Int
pos Int
0 Int
thisPos
Int -> ST s Int
forall (m :: * -> *) a. Monad m => a -> m a
return Int
thisPos
{-# INLINE updateCopy #-}
updateCopy :: ((Index, Instructions), STUArray s Tag Position, OrbitLog)
-> Index
-> MScratch s
-> Int
-> ST s Position
updateCopy :: ((Int, Instructions), STUArray s Int Int, OrbitLog)
-> Int -> MScratch s -> Int -> ST s Int
updateCopy ((Int
_i1,Instructions
instructions),STUArray s Int Int
oldPos,OrbitLog
newOrbit) Int
preTag MScratch s
s2 Int
i2 = do
(Int, Int)
b_tags <- STUArray s Int Int -> ST s (Int, Int)
forall (a :: * -> * -> *) e (m :: * -> *) i.
(MArray a e m, Ix i) =>
a i e -> m (i, i)
getBounds STUArray s Int Int
oldPos
STUArray s Int Int
newerPos <- ST s (STUArray s Int Int)
-> (STUArray s Int Int -> ST s (STUArray s Int Int))
-> Maybe (STUArray s Int Int)
-> ST s (STUArray s Int Int)
forall b a. b -> (a -> b) -> Maybe a -> b
maybe (do
STUArray s Int Int
a <- (Int, Int) -> ST s (STUArray s Int Int)
forall s e.
MArray (STUArray s) e (ST s) =>
(Int, Int) -> ST s (STUArray s Int e)
newA_ (Int, Int)
b_tags
STArray s Int (Maybe (STUArray s Int Int))
-> Int -> Maybe (STUArray s Int Int) -> ST s ()
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> e -> ST s ()
set (MScratch s -> STArray s Int (Maybe (STUArray s Int Int))
forall s. MScratch s -> STArray s Int (Maybe (STUArray s Int Int))
m_pos MScratch s
s2) Int
i2 (STUArray s Int Int -> Maybe (STUArray s Int Int)
forall a. a -> Maybe a
Just STUArray s Int Int
a)
STUArray s Int Int -> ST s (STUArray s Int Int)
forall (m :: * -> *) a. Monad m => a -> m a
return STUArray s Int Int
a) STUArray s Int Int -> ST s (STUArray s Int Int)
forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe (STUArray s Int Int) -> ST s (STUArray s Int Int))
-> ST s (Maybe (STUArray s Int Int)) -> ST s (STUArray s Int Int)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< MScratch s -> STArray s Int (Maybe (STUArray s Int Int))
forall s. MScratch s -> STArray s Int (Maybe (STUArray s Int Int))
m_pos MScratch s
s2 STArray s Int (Maybe (STUArray s Int Int))
-> Int -> ST s (Maybe (STUArray s Int Int))
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> ST s e
!! Int
i2
STUArray s Int Int -> STUArray s Int Int -> ST s ()
forall i s e.
(Show i, Ix i, MArray (STUArray s) e (ST s)) =>
STUArray s i e -> STUArray s i e -> ST s ()
copySTU STUArray s Int Int
oldPos STUArray s Int Int
newerPos
Int -> STUArray s Int Int -> [(Int, Action)] -> ST s ()
forall s. Int -> STUArray s Int Int -> [(Int, Action)] -> ST s ()
doActions Int
preTag STUArray s Int Int
newerPos (Instructions -> [(Int, Action)]
newPos Instructions
instructions)
STArray s Int OrbitLog -> Int -> OrbitLog -> ST s ()
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> e -> ST s ()
set (MScratch s -> STArray s Int OrbitLog
forall s. MScratch s -> STArray s Int OrbitLog
m_orbit MScratch s
s2) Int
i2 (OrbitLog -> ST s ()) -> OrbitLog -> ST s ()
forall a b. (a -> b) -> a -> b
$! OrbitLog
newOrbit
STUArray s Int Int
newerPos STUArray s Int Int -> Int -> ST s Int
forall (a :: * -> * -> *) e s i.
(MArray a e (ST s), Ix i) =>
a i e -> Int -> ST s e
!! Int
0
foreign import ccall unsafe "memcpy"
memcpy :: MutableByteArray# RealWorld -> MutableByteArray# RealWorld -> Int# -> IO ()
{-# INLINE copySTU #-}
copySTU :: (Show i,Ix i,MArray (STUArray s) e (S.ST s)) => STUArray s i e -> STUArray s i e -> S.ST s ()
copySTU :: STUArray s i e -> STUArray s i e -> ST s ()
copySTU _source :: STUArray s i e
_source@(STUArray i
_ i
_ Int
_ MutableByteArray# s
msource) _destination :: STUArray s i e
_destination@(STUArray i
_ i
_ Int
_ MutableByteArray# s
mdest) =
STRep s () -> ST s ()
forall s a. STRep s a -> ST s a
ST (STRep s () -> ST s ()) -> STRep s () -> ST s ()
forall a b. (a -> b) -> a -> b
$ \State# s
s1# ->
case MutableByteArray# s -> Int#
forall d. MutableByteArray# d -> Int#
sizeofMutableByteArray# MutableByteArray# s
msource of { Int#
n# ->
case (MutableByteArray# RealWorld
-> MutableByteArray# RealWorld -> Int# -> IO ())
-> MutableByteArray# s -> MutableByteArray# s -> Int# -> STRep s ()
unsafeCoerce# MutableByteArray# RealWorld
-> MutableByteArray# RealWorld -> Int# -> IO ()
memcpy MutableByteArray# s
mdest MutableByteArray# s
msource Int#
n# State# s
s1# of { (# State# s
s2#, () #) ->
(# State# s
s2#, () #) }}