{-# LANGUAGE CPP #-}
{-# LANGUAGE UndecidableInstances #-}
module Data.Map.Common.Refined where

import           Control.Monad.Reader
import           Control.DeepSeq
import           Data.Coerce
import           Data.Constraint (Dict(..))
import           Data.Container.Refined.Proofs
import           Data.Container.Refined.Unsafe
import           Data.Distributive
import           Data.Foldable.WithIndex
import           Data.Functor.Rep
import           Data.Functor.WithIndex
import qualified Data.Hashable as Hashable
import qualified Data.Map as Map
import           Data.Proxy
import           Data.Reflection
import           Data.Traversable.WithIndex
import           Data.Type.Coercion
import           Data.Type.Equality ((:~:)(..))
import           Refined
import           Refined.Unsafe
import           Unsafe.Coerce

#if MIN_VERSION_containers(0, 6, 2)
#elif MIN_VERSION_containers(0, 5, 8)
import           Data.Functor.Const (Const(..))
import           Data.Monoid (Any(..))
import qualified Data.Map.Merge.Lazy as Map
#else
import qualified Data.List as List
import qualified Data.Map.Strict as MapStrict
#endif


-- | A wrapper around a regular 'Data.Map.Map' with a type parameter @s@
-- identifying the set of keys present in the map.
--
-- A key of type @k@ may not be present in the map, but a @'Key' s k@ is
-- guaranteed to be present (if the @s@ parameters match). Thus the map is
-- isomorphic to a (total) function @'Key' s k -> a@, which motivates many of
-- the instances below.
--
-- A 'Map' always knows its set of keys, so given @'Map' s k a@ we can always
-- derive @'KnownSet' s k@ by pattern matching on the 'Dict' returned by
-- 'keysSet'.
newtype Map s k a = Map (Map.Map k a)
  deriving newtype (Map s k a -> Map s k a -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
forall s k a. (Eq k, Eq a) => Map s k a -> Map s k a -> Bool
/= :: Map s k a -> Map s k a -> Bool
$c/= :: forall s k a. (Eq k, Eq a) => Map s k a -> Map s k a -> Bool
== :: Map s k a -> Map s k a -> Bool
$c== :: forall s k a. (Eq k, Eq a) => Map s k a -> Map s k a -> Bool
Eq, Map s k a -> Map s k a -> Bool
Map s k a -> Map s k a -> Ordering
Map s k a -> Map s k a -> Map s k a
forall a.
Eq a
-> (a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
forall {s} {k} {a}. (Ord k, Ord a) => Eq (Map s k a)
forall s k a. (Ord k, Ord a) => Map s k a -> Map s k a -> Bool
forall s k a. (Ord k, Ord a) => Map s k a -> Map s k a -> Ordering
forall s k a. (Ord k, Ord a) => Map s k a -> Map s k a -> Map s k a
min :: Map s k a -> Map s k a -> Map s k a
$cmin :: forall s k a. (Ord k, Ord a) => Map s k a -> Map s k a -> Map s k a
max :: Map s k a -> Map s k a -> Map s k a
$cmax :: forall s k a. (Ord k, Ord a) => Map s k a -> Map s k a -> Map s k a
>= :: Map s k a -> Map s k a -> Bool
$c>= :: forall s k a. (Ord k, Ord a) => Map s k a -> Map s k a -> Bool
> :: Map s k a -> Map s k a -> Bool
$c> :: forall s k a. (Ord k, Ord a) => Map s k a -> Map s k a -> Bool
<= :: Map s k a -> Map s k a -> Bool
$c<= :: forall s k a. (Ord k, Ord a) => Map s k a -> Map s k a -> Bool
< :: Map s k a -> Map s k a -> Bool
$c< :: forall s k a. (Ord k, Ord a) => Map s k a -> Map s k a -> Bool
compare :: Map s k a -> Map s k a -> Ordering
$ccompare :: forall s k a. (Ord k, Ord a) => Map s k a -> Map s k a -> Ordering
Ord, Int -> Map s k a -> ShowS
[Map s k a] -> ShowS
Map s k a -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
forall s k a. (Show k, Show a) => Int -> Map s k a -> ShowS
forall s k a. (Show k, Show a) => [Map s k a] -> ShowS
forall s k a. (Show k, Show a) => Map s k a -> String
showList :: [Map s k a] -> ShowS
$cshowList :: forall s k a. (Show k, Show a) => [Map s k a] -> ShowS
show :: Map s k a -> String
$cshow :: forall s k a. (Show k, Show a) => Map s k a -> String
showsPrec :: Int -> Map s k a -> ShowS
$cshowsPrec :: forall s k a. (Show k, Show a) => Int -> Map s k a -> ShowS
Show, forall a b. a -> Map s k b -> Map s k a
forall a b. (a -> b) -> Map s k a -> Map s k b
forall s k a b. a -> Map s k b -> Map s k a
forall s k a b. (a -> b) -> Map s k a -> Map s k b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> Map s k b -> Map s k a
$c<$ :: forall s k a b. a -> Map s k b -> Map s k a
fmap :: forall a b. (a -> b) -> Map s k a -> Map s k b
$cfmap :: forall s k a b. (a -> b) -> Map s k a -> Map s k b
Functor, forall a. Eq a => a -> Map s k a -> Bool
forall a. Num a => Map s k a -> a
forall a. Ord a => Map s k a -> a
forall m. Monoid m => Map s k m -> m
forall a. Map s k a -> Bool
forall a. Map s k a -> Int
forall a. Map s k a -> [a]
forall a. (a -> a -> a) -> Map s k a -> a
forall m a. Monoid m => (a -> m) -> Map s k a -> m
forall b a. (b -> a -> b) -> b -> Map s k a -> b
forall a b. (a -> b -> b) -> b -> Map s k a -> b
forall s k a. Eq a => a -> Map s k a -> Bool
forall s k a. Num a => Map s k a -> a
forall s k a. Ord a => Map s k a -> a
forall s k m. Monoid m => Map s k m -> m
forall s k a. Map s k a -> Bool
forall s k a. Map s k a -> Int
forall s k a. Map s k a -> [a]
forall s k a. (a -> a -> a) -> Map s k a -> a
forall s k m a. Monoid m => (a -> m) -> Map s k a -> m
forall s k b a. (b -> a -> b) -> b -> Map s k a -> b
forall s k a b. (a -> b -> b) -> b -> Map s k a -> b
forall (t :: * -> *).
(forall m. Monoid m => t m -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. t a -> [a])
-> (forall a. t a -> Bool)
-> (forall a. t a -> Int)
-> (forall a. Eq a => a -> t a -> Bool)
-> (forall a. Ord a => t a -> a)
-> (forall a. Ord a => t a -> a)
-> (forall a. Num a => t a -> a)
-> (forall a. Num a => t a -> a)
-> Foldable t
product :: forall a. Num a => Map s k a -> a
$cproduct :: forall s k a. Num a => Map s k a -> a
sum :: forall a. Num a => Map s k a -> a
$csum :: forall s k a. Num a => Map s k a -> a
minimum :: forall a. Ord a => Map s k a -> a
$cminimum :: forall s k a. Ord a => Map s k a -> a
maximum :: forall a. Ord a => Map s k a -> a
$cmaximum :: forall s k a. Ord a => Map s k a -> a
elem :: forall a. Eq a => a -> Map s k a -> Bool
$celem :: forall s k a. Eq a => a -> Map s k a -> Bool
length :: forall a. Map s k a -> Int
$clength :: forall s k a. Map s k a -> Int
null :: forall a. Map s k a -> Bool
$cnull :: forall s k a. Map s k a -> Bool
toList :: forall a. Map s k a -> [a]
$ctoList :: forall s k a. Map s k a -> [a]
foldl1 :: forall a. (a -> a -> a) -> Map s k a -> a
$cfoldl1 :: forall s k a. (a -> a -> a) -> Map s k a -> a
foldr1 :: forall a. (a -> a -> a) -> Map s k a -> a
$cfoldr1 :: forall s k a. (a -> a -> a) -> Map s k a -> a
foldl' :: forall b a. (b -> a -> b) -> b -> Map s k a -> b
$cfoldl' :: forall s k b a. (b -> a -> b) -> b -> Map s k a -> b
foldl :: forall b a. (b -> a -> b) -> b -> Map s k a -> b
$cfoldl :: forall s k b a. (b -> a -> b) -> b -> Map s k a -> b
foldr' :: forall a b. (a -> b -> b) -> b -> Map s k a -> b
$cfoldr' :: forall s k a b. (a -> b -> b) -> b -> Map s k a -> b
foldr :: forall a b. (a -> b -> b) -> b -> Map s k a -> b
$cfoldr :: forall s k a b. (a -> b -> b) -> b -> Map s k a -> b
foldMap' :: forall m a. Monoid m => (a -> m) -> Map s k a -> m
$cfoldMap' :: forall s k m a. Monoid m => (a -> m) -> Map s k a -> m
foldMap :: forall m a. Monoid m => (a -> m) -> Map s k a -> m
$cfoldMap :: forall s k m a. Monoid m => (a -> m) -> Map s k a -> m
fold :: forall m. Monoid m => Map s k m -> m
$cfold :: forall s k m. Monoid m => Map s k m -> m
Foldable, Map s k a -> ()
forall a. (a -> ()) -> NFData a
forall s k a. (NFData k, NFData a) => Map s k a -> ()
rnf :: Map s k a -> ()
$crnf :: forall s k a. (NFData k, NFData a) => Map s k a -> ()
NFData)
#if MIN_VERSION_hashable(1, 3, 4)
  deriving newtype (Int -> Map s k a -> Int
Map s k a -> Int
forall a. Eq a -> (Int -> a -> Int) -> (a -> Int) -> Hashable a
forall {s} {k} {a}. (Hashable k, Hashable a) => Eq (Map s k a)
forall s k a. (Hashable k, Hashable a) => Int -> Map s k a -> Int
forall s k a. (Hashable k, Hashable a) => Map s k a -> Int
hash :: Map s k a -> Int
$chash :: forall s k a. (Hashable k, Hashable a) => Map s k a -> Int
hashWithSalt :: Int -> Map s k a -> Int
$chashWithSalt :: forall s k a. (Hashable k, Hashable a) => Int -> Map s k a -> Int
Hashable.Hashable)
#endif
  deriving stock (forall s k. Functor (Map s k)
forall s k. Foldable (Map s k)
forall s k (m :: * -> *) a.
Monad m =>
Map s k (m a) -> m (Map s k a)
forall s k (f :: * -> *) a.
Applicative f =>
Map s k (f a) -> f (Map s k a)
forall s k (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Map s k a -> m (Map s k b)
forall s k (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Map s k a -> f (Map s k b)
forall (t :: * -> *).
Functor t
-> Foldable t
-> (forall (f :: * -> *) a b.
    Applicative f =>
    (a -> f b) -> t a -> f (t b))
-> (forall (f :: * -> *) a. Applicative f => t (f a) -> f (t a))
-> (forall (m :: * -> *) a b.
    Monad m =>
    (a -> m b) -> t a -> m (t b))
-> (forall (m :: * -> *) a. Monad m => t (m a) -> m (t a))
-> Traversable t
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Map s k a -> f (Map s k b)
sequence :: forall (m :: * -> *) a. Monad m => Map s k (m a) -> m (Map s k a)
$csequence :: forall s k (m :: * -> *) a.
Monad m =>
Map s k (m a) -> m (Map s k a)
mapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Map s k a -> m (Map s k b)
$cmapM :: forall s k (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Map s k a -> m (Map s k b)
sequenceA :: forall (f :: * -> *) a.
Applicative f =>
Map s k (f a) -> f (Map s k a)
$csequenceA :: forall s k (f :: * -> *) a.
Applicative f =>
Map s k (f a) -> f (Map s k a)
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Map s k a -> f (Map s k b)
$ctraverse :: forall s k (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Map s k a -> f (Map s k b)
Traversable)
type role Map nominal nominal representational

-- | Convert to a regular 'Data.Map.Map', forgetting its set of keys.
toMap :: forall s k a. Map s k a -> Map.Map k a
toMap :: forall s k a. Map s k a -> Map k a
toMap (Map Map k a
m) = Map k a
m

-- | @'Key' s k@ is a key of type @k@ that has been verified to be an element
-- of the set @s@, and thus verified to be present in all @'Map' s k@ maps.
--
-- Thus, @'Key' s k@ is a \"refinement\" type of @k@, and this library
-- integrates with an implementation of refimenement types in "Refined", so
-- the machinery from there can be used to manipulate 'Key's (however see
-- 'Data.Set.Refined.revealPredicate').
--
-- The underlying @k@ value can be obtained with 'unrefine'. A @k@ can be
-- validated into an @'Key' s k@ with 'member'.
type Key s = Refined (InSet 'Regular s)

unsafeCastKey :: forall s k. Coercion k (Key s k)
unsafeCastKey :: forall s k. Coercion k (Key s k)
unsafeCastKey = forall {k} x (p :: k). Coercion x (Refined p x)
reallyUnsafeUnderlyingRefined

unsafeKey :: k -> Key s k
unsafeKey :: forall k s. k -> Key s k
unsafeKey = forall a b. Coercion a b -> a -> b
coerceWith forall s k. Coercion k (Key s k)
unsafeCastKey

-- | An existential wrapper for a 'Map' with an as-yet-unknown set of keys.
-- Pattern maching on it gives you a way to refer to the set (the parameter
-- @s@), e.g.
--
-- @
-- case 'fromMap' ... of
--   'SomeMap' \@s m -> doSomethingWith \@s
--
-- case 'fromMap' ... of
--   'SomeMap' (m :: 'Map' s k a) -> doSomethingWith \@s
-- @
data SomeMap k a where
  SomeMap :: forall s k a. !(Map s k a) -> SomeMap k a

-- | Apply a map with an unknown set of keys to a continuation that can accept
-- a map with any set of keys. This gives you a way to refer to the set (the
-- parameter @s@), e.g.:
--
-- @
-- 'withMap' ('fromMap' ...) $ \(m :: 'Map' s k a) -> doSomethingWith \@s
-- @
withMap :: forall k a r. SomeMap k a -> (forall s. Map s k a -> r) -> r
withMap :: forall k a r. SomeMap k a -> (forall s. Map s k a -> r) -> r
withMap (SomeMap Map s k a
m) forall s. Map s k a -> r
k = forall s. Map s k a -> r
k Map s k a
m

-- | Construct a map from a regular 'Data.Map.Map'.
fromMap :: forall k a. Map.Map k a -> SomeMap k a
fromMap :: forall k a. Map k a -> SomeMap k a
fromMap Map k a
m = forall s k a. Map s k a -> SomeMap k a
SomeMap (forall s k a. Map k a -> Map s k a
Map Map k a
m)

-- | An existential wrapper for a 'Map' with an as-yet-unknown set of keys,
-- together with a proof of some fact @p@ about the set. Pattern matching on it
-- gives you a way to refer to the set (the parameter @s@). Functions that
-- change the set of keys in a map will return the map in this way, together
-- with a proof that somehow relates the keys set to the function's inputs.
data SomeMapWith p k a where
  SomeMapWith :: forall s k a p. !(Map s k a) -> !(p s) -> SomeMapWith p k a

-- | Apply a map with proof for an unknown set of keys to a continuation that
-- can accept a map with any set of keys satisfying the proof. This gives you a
-- way to refer to the set (the parameter @s@).
withMapWith
  :: forall k a r p. SomeMapWith p k a -> (forall s. Map s k a -> p s -> r) -> r
withMapWith :: forall k a r (p :: * -> *).
SomeMapWith p k a -> (forall s. Map s k a -> p s -> r) -> r
withMapWith (SomeMapWith Map s k a
m p s
p) forall s. Map s k a -> p s -> r
k = forall s. Map s k a -> p s -> r
k Map s k a
m p s
p

-- | An existential wrapper for a pair of maps with as-yet-unknown sets of keys,
-- together with a proof of some fact @p@ relating them.
data Some2MapWith p k a b where
  Some2MapWith
    :: forall s t k a b p. !(Map s k a)
    -> !(Map t k b)
    -> !(p s t)
    -> Some2MapWith p k a b

-- | Apply a pair of maps with proof for unknown sets of keys to a continuation
-- that can accept any pair of maps with any sets of keys satisfying the proof.
-- This gives you a way to refer to the sets (the parameters @s@ and @t@).
with2MapWith
  :: forall k a b r p. Some2MapWith p k a b
  -> (forall s t. Map s k a -> Map t k b -> p s t -> r)
  -> r
with2MapWith :: forall k a b r (p :: * -> * -> *).
Some2MapWith p k a b
-> (forall s t. Map s k a -> Map t k b -> p s t -> r) -> r
with2MapWith (Some2MapWith Map s k a
m1 Map t k b
m2 p s t
p) forall s t. Map s k a -> Map t k b -> p s t -> r
k = forall s t. Map s k a -> Map t k b -> p s t -> r
k Map s k a
m1 Map t k b
m2 p s t
p

-- | An empty map.
empty :: forall k a. SomeMapWith (EmptyProof 'Regular) k a
empty :: forall k a. SomeMapWith (EmptyProof 'Regular) k a
empty = forall s k a (p :: * -> *). Map s k a -> p s -> SomeMapWith p k a
SomeMapWith (forall s k a. Map k a -> Map s k a
Map forall k a. Map k a
Map.empty) forall a b. (a -> b) -> a -> b
$ forall (f :: Flavor) r.
(forall s. InSet f r :-> InSet f s) -> EmptyProof f r
EmptyProof forall p q. p :-> q
unsafeSubset

-- | Create a map from a set of keys, and a function that for each key computes
-- the corresponding value.
fromSet :: forall s k a. KnownSet s k => (Key s k -> a) -> Map s k a
fromSet :: forall s k a. KnownSet s k => (Key s k -> a) -> Map s k a
fromSet Key s k -> a
f = forall s k a. Map k a -> Map s k a
Map forall a b. (a -> b) -> a -> b
$ forall k a. (k -> a) -> Set k -> Map k a
Map.fromSet (Key s k -> a
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall k s. k -> Key s k
unsafeKey) (forall {k} (s :: k) a (proxy :: k -> *).
Reifies s a =>
proxy s -> a
reflect forall a b. (a -> b) -> a -> b
$ forall {k} (t :: k). Proxy t
Proxy @s)

-- | Delete a key and its value from the map if present, returning a potentially
-- smaller map.
delete
  :: forall s k a. Ord k
  => k -> Map s k a -> SomeMapWith (SupersetProof 'Regular s) k a
delete :: forall s k a.
Ord k =>
k -> Map s k a -> SomeMapWith (SupersetProof 'Regular s) k a
delete k
k (Map Map k a
m) = forall s k a (p :: * -> *). Map s k a -> p s -> SomeMapWith p k a
SomeMapWith (forall s k a. Map k a -> Map s k a
Map forall a b. (a -> b) -> a -> b
$ forall k a. Ord k => k -> Map k a -> Map k a
Map.delete k
k Map k a
m)
  forall a b. (a -> b) -> a -> b
$ forall (f :: Flavor) s r.
(InSet f r :-> InSet f s) -> SupersetProof f s r
SupersetProof forall p q. p :-> q
unsafeSubset

-- | If the key is in the map, return the proof of this, and the associated
-- value; otherwise return 'Nothing'.
lookup :: forall s k a. Ord k => k -> Map s k a -> Maybe (Key s k, a)
lookup :: forall s k a. Ord k => k -> Map s k a -> Maybe (Key s k, a)
lookup k
k (Map Map k a
m) = (forall k s. k -> Key s k
unsafeKey k
k,) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall k a. Ord k => k -> Map k a -> Maybe a
Map.lookup k
k Map k a
m

-- | Given a key that is proven to be in the map, return the associated value.
--
-- Unlike 'Data.Map.!' from "Data.Map", this function is total, as it is
-- impossible to obtain a @'Key' s k@ for a key that is not in the map
-- @'Map' s k a@.
(!) :: forall s k a. Ord k => Map s k a -> Key s k -> a
! :: forall s k a. Ord k => Map s k a -> Key s k -> a
(!) (Map Map k a
m) Key s k
k = case forall k a. Ord k => k -> Map k a -> Maybe a
Map.lookup (forall {k} (p :: k) x. Refined p x -> x
unrefine Key s k
k) Map k a
m of
  Maybe a
Nothing -> forall a. HasCallStack => String -> a
error String
"(!): bug: Data.Map.Refined has been subverted"
  Just a
x -> a
x

-- | If a key is in the map, return the proof that it is.
member :: forall s k a. Ord k => k -> Map s k a -> Maybe (Key s k)
member :: forall s k a. Ord k => k -> Map s k a -> Maybe (Key s k)
member k
k (Map Map k a
m)
  | k
k forall k a. Ord k => k -> Map k a -> Bool
`Map.member` Map k a
m = forall a. a -> Maybe a
Just (forall k s. k -> Key s k
unsafeKey k
k)
  | Bool
otherwise = forall a. Maybe a
Nothing

-- | Find the largest key smaller than the given one, and return the
-- associated key-value pair.
lookupLT :: forall s k a. Ord k => k -> Map s k a -> Maybe (Key s k, a)
lookupLT :: forall s k a. Ord k => k -> Map s k a -> Maybe (Key s k, a)
lookupLT = forall {k} (a :: k) (b :: k) r.
Coercion a b -> (Coercible a b => r) -> r
gcoerceWith (forall s k. Coercion k (Key s k)
unsafeCastKey @s @k) forall a b. (a -> b) -> a -> b
$ coerce :: forall a b. Coercible a b => a -> b
coerce forall a b. (a -> b) -> a -> b
$ forall k v. Ord k => k -> Map k v -> Maybe (k, v)
Map.lookupLT @k @a

-- | Find the smallest key greater than the given one, and return the
-- associated key-value pair.
lookupGT :: forall s k a. Ord k => k -> Map s k a -> Maybe (Key s k, a)
lookupGT :: forall s k a. Ord k => k -> Map s k a -> Maybe (Key s k, a)
lookupGT = forall {k} (a :: k) (b :: k) r.
Coercion a b -> (Coercible a b => r) -> r
gcoerceWith (forall s k. Coercion k (Key s k)
unsafeCastKey @s @k) forall a b. (a -> b) -> a -> b
$ coerce :: forall a b. Coercible a b => a -> b
coerce forall a b. (a -> b) -> a -> b
$ forall k v. Ord k => k -> Map k v -> Maybe (k, v)
Map.lookupGT @k @a

-- | Find the largest key smaller or equal to the given one, and return the
-- associated key-value pair.
lookupLE :: forall s k a. Ord k => k -> Map s k a -> Maybe (Key s k, a)
lookupLE :: forall s k a. Ord k => k -> Map s k a -> Maybe (Key s k, a)
lookupLE = forall {k} (a :: k) (b :: k) r.
Coercion a b -> (Coercible a b => r) -> r
gcoerceWith (forall s k. Coercion k (Key s k)
unsafeCastKey @s @k) forall a b. (a -> b) -> a -> b
$ coerce :: forall a b. Coercible a b => a -> b
coerce forall a b. (a -> b) -> a -> b
$ forall k v. Ord k => k -> Map k v -> Maybe (k, v)
Map.lookupLE @k @a

-- | Find the smallest key greater or equal to the given one, and return the
-- associated key-value pair.
lookupGE :: forall s k a. Ord k => k -> Map s k a -> Maybe (Key s k, a)
lookupGE :: forall s k a. Ord k => k -> Map s k a -> Maybe (Key s k, a)
lookupGE = forall {k} (a :: k) (b :: k) r.
Coercion a b -> (Coercible a b => r) -> r
gcoerceWith (forall s k. Coercion k (Key s k)
unsafeCastKey @s @k) forall a b. (a -> b) -> a -> b
$ coerce :: forall a b. Coercible a b => a -> b
coerce forall a b. (a -> b) -> a -> b
$ forall k v. Ord k => k -> Map k v -> Maybe (k, v)
Map.lookupGE @k @a

-- | If a map is empty, return a proof that it is.
null :: forall s k a. Map s k a -> Maybe (EmptyProof 'Regular s)
null :: forall s k a. Map s k a -> Maybe (EmptyProof 'Regular s)
null (Map Map k a
m)
  | forall k a. Map k a -> Bool
Map.null Map k a
m = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ forall (f :: Flavor) r.
(forall s. InSet f r :-> InSet f s) -> EmptyProof f r
EmptyProof forall p q. p :-> q
unsafeSubset
  | Bool
otherwise = forall a. Maybe a
Nothing

-- | If all keys of the first map are also present in the second map, and the
-- given function returns 'True' for their associated values, return a proof
-- that the keys form a subset.
isSubmapOfBy
  :: forall s t k a b. Ord k
  => (a -> b -> Bool)
  -> Map s k a
  -> Map t k b
  -> Maybe (SubsetProof 'Regular s t)
isSubmapOfBy :: forall s t k a b.
Ord k =>
(a -> b -> Bool)
-> Map s k a -> Map t k b -> Maybe (SubsetProof 'Regular s t)
isSubmapOfBy a -> b -> Bool
f (Map Map k a
m1) (Map Map k b
m2)
  | forall k a b.
Ord k =>
(a -> b -> Bool) -> Map k a -> Map k b -> Bool
Map.isSubmapOfBy a -> b -> Bool
f Map k a
m1 Map k b
m2 = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ forall (f :: Flavor) s r.
(InSet f s :-> InSet f r) -> SubsetProof f s r
SubsetProof forall p q. p :-> q
unsafeSubset
  | Bool
otherwise = forall a. Maybe a
Nothing

-- | If two maps are disjoint (i.e. their intersection is empty), return a proof
-- of that.
disjoint
  :: forall s t k a b. Ord k
  => Map s k a -> Map t k b -> Maybe (DisjointProof 'Regular s t)
disjoint :: forall s t k a b.
Ord k =>
Map s k a -> Map t k b -> Maybe (DisjointProof 'Regular s t)
disjoint (Map Map k a
m1) (Map Map k b
m2)
#if MIN_VERSION_containers(0, 6, 2)
  | forall k a b. Ord k => Map k a -> Map k b -> Bool
Map.disjoint Map k a
m1 Map k b
m2
#elif MIN_VERSION_containers(0, 5, 8)
  | Const (Any False) <- Map.mergeA
    (Map.traverseMissing \_ _ -> Const mempty)
    (Map.traverseMissing \_ _ -> Const mempty)
    (Map.zipWithAMatched \_ _ _ -> Const $ Any True)
    m1
    m2
#else
  | Map.null $ MapStrict.intersectionWith (\_ _ -> ()) m1 m2
#endif
  = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ forall (f :: Flavor) s r.
(forall t.
 (InSet f t :-> InSet f s)
 -> (InSet f t :-> InSet f r) -> forall u. InSet f t :-> InSet f u)
-> DisjointProof f s r
DisjointProof \InSet 'Regular t :-> InSet 'Regular s
f InSet 'Regular t :-> InSet 'Regular t
g -> forall p' q' p'' q'' p q. (p' :-> q') -> (p'' :-> q'') -> p :-> q
unsafeSubsetWith2 InSet 'Regular t :-> InSet 'Regular s
f InSet 'Regular t :-> InSet 'Regular t
g
  | Bool
otherwise = forall a. Maybe a
Nothing

-- | Given two maps proven to have the same keys, for each key apply the
-- function to the associated values, to obtain a new map with the same keys.
zipWithKey
  :: forall s k a b c. Ord k
  => (Key s k -> a -> b -> c) -> Map s k a -> Map s k b -> Map s k c
zipWithKey :: forall s k a b c.
Ord k =>
(Key s k -> a -> b -> c) -> Map s k a -> Map s k b -> Map s k c
zipWithKey Key s k -> a -> b -> c
f (Map Map k a
m1) (Map Map k b
m2) = forall s k a. Map k a -> Map s k a
Map
  forall a b. (a -> b) -> a -> b
$ forall k a b c.
Ord k =>
(k -> a -> b -> Maybe c)
-> (Map k a -> Map k c)
-> (Map k b -> Map k c)
-> Map k a
-> Map k b
-> Map k c
Map.mergeWithKey (\k
k a
x b
y -> forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ Key s k -> a -> b -> c
f (forall k s. k -> Key s k
unsafeKey k
k) a
x b
y)
    (\Map k a
m -> if forall k a. Map k a -> Bool
Map.null Map k a
m
      then forall k a. Map k a
Map.empty
      else forall a. HasCallStack => String -> a
error String
"zipWithKey: bug: Data.Map.Refined has been subverted")
    (\Map k b
m -> if forall k a. Map k a -> Bool
Map.null Map k b
m
      then forall k a. Map k a
Map.empty
      else forall a. HasCallStack => String -> a
error String
"zipWithKey: bug: Data.Map.Refined has been subverted")
    --  ^ Work around https://github.com/haskell/containers/issues/979
    Map k a
m1
    Map k b
m2

-- | Remove the keys that appear in the second map from the first map.
difference
  :: forall s t k a b. Ord k
  => Map s k a -> Map t k b -> SomeMapWith (DifferenceProof 'Regular s t) k a
difference :: forall s t k a b.
Ord k =>
Map s k a
-> Map t k b -> SomeMapWith (DifferenceProof 'Regular s t) k a
difference (Map Map k a
m1) (Map Map k b
m2) = forall s k a (p :: * -> *). Map s k a -> p s -> SomeMapWith p k a
SomeMapWith (forall s k a. Map k a -> Map s k a
Map forall a b. (a -> b) -> a -> b
$ forall k a b. Ord k => Map k a -> Map k b -> Map k a
Map.difference Map k a
m1 Map k b
m2)
  forall a b. (a -> b) -> a -> b
$ forall (f :: Flavor) s t r.
(InSet f r :-> InSet f s)
-> (forall u.
    (InSet f u :-> InSet f r)
    -> (InSet f u :-> InSet f t) -> forall v. InSet f u :-> InSet f v)
-> (InSet f s :-> (InSet f t || InSet f r))
-> DifferenceProof f s t r
DifferenceProof forall p q. p :-> q
unsafeSubset (\InSet 'Regular u :-> InSet 'Regular Any
f InSet 'Regular u :-> InSet 'Regular t
g -> forall p' q' p'' q'' p q. (p' :-> q') -> (p'' :-> q'') -> p :-> q
unsafeSubsetWith2 InSet 'Regular u :-> InSet 'Regular Any
f InSet 'Regular u :-> InSet 'Regular t
g) forall p q. p :-> q
unsafeSubset

-- | Apply a function to all values in a map, together with their corresponding
-- keys, that are proven to be in the map. The set of keys remains the same.
mapWithKey :: forall s k a b. (Key s k -> a -> b) -> Map s k a -> Map s k b
mapWithKey :: forall s k a b. (Key s k -> a -> b) -> Map s k a -> Map s k b
mapWithKey = forall {k} (a :: k) (b :: k) r.
Coercion a b -> (Coercible a b => r) -> r
gcoerceWith (forall s k. Coercion k (Key s k)
unsafeCastKey @s @k) forall a b. (a -> b) -> a -> b
$ coerce :: forall a b. Coercible a b => a -> b
coerce
  forall a b. (a -> b) -> a -> b
$ forall k a b. (k -> a -> b) -> Map k a -> Map k b
Map.mapWithKey @k @a @b

-- | Map an 'Applicative' transformation in ascending order of keys, with access
-- to each value's corresponding key and a proof that it is in the map. The set
-- of keys remains unchanged.
traverseWithKey
  :: forall s f k a b. Applicative f
  => (Key s k -> a -> f b) -> Map s k a -> f (Map s k b)
traverseWithKey :: forall s (f :: * -> *) k a b.
Applicative f =>
(Key s k -> a -> f b) -> Map s k a -> f (Map s k b)
traverseWithKey Key s k -> a -> f b
f (Map Map k a
m) = forall s k a. Map k a -> Map s k a
Map forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (t :: * -> *) k a b.
Applicative t =>
(k -> a -> t b) -> Map k a -> t (Map k b)
Map.traverseWithKey (Key s k -> a -> f b
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall k s. k -> Key s k
unsafeKey) Map k a
m

-- | Map each key-value pair of a map into a monoid (with proof that the key was
-- in the map), and combine the results using '<>'.
foldMapWithKey
  :: forall s k a m. Monoid m => (Key s k -> a -> m) -> Map s k a -> m
foldMapWithKey :: forall s k a m. Monoid m => (Key s k -> a -> m) -> Map s k a -> m
foldMapWithKey = forall {k} (a :: k) (b :: k) r.
Coercion a b -> (Coercible a b => r) -> r
gcoerceWith (forall s k. Coercion k (Key s k)
unsafeCastKey @s @k) forall a b. (a -> b) -> a -> b
$ coerce :: forall a b. Coercible a b => a -> b
coerce
  forall a b. (a -> b) -> a -> b
$ forall m k a. Monoid m => (k -> a -> m) -> Map k a -> m
Map.foldMapWithKey @m @k @a

-- | Right associative fold with a lazy accumulator.
foldrWithKey :: forall s k a b. (Key s k -> a -> b -> b) -> b -> Map s k a -> b
foldrWithKey :: forall s k a b. (Key s k -> a -> b -> b) -> b -> Map s k a -> b
foldrWithKey = forall {k} (a :: k) (b :: k) r.
Coercion a b -> (Coercible a b => r) -> r
gcoerceWith (forall s k. Coercion k (Key s k)
unsafeCastKey @s @k) forall a b. (a -> b) -> a -> b
$ coerce :: forall a b. Coercible a b => a -> b
coerce
  forall a b. (a -> b) -> a -> b
$ forall k a b. (k -> a -> b -> b) -> b -> Map k a -> b
Map.foldrWithKey @k @a @b

-- | Left associative fold with a lazy accumulator.
foldlWithKey :: forall s k a b. (b -> Key s k -> a -> b) -> b -> Map s k a -> b
foldlWithKey :: forall s k a b. (b -> Key s k -> a -> b) -> b -> Map s k a -> b
foldlWithKey = forall {k} (a :: k) (b :: k) r.
Coercion a b -> (Coercible a b => r) -> r
gcoerceWith (forall s k. Coercion k (Key s k)
unsafeCastKey @s @k) forall a b. (a -> b) -> a -> b
$ coerce :: forall a b. Coercible a b => a -> b
coerce
  forall a b. (a -> b) -> a -> b
$ forall a k b. (a -> k -> b -> a) -> a -> Map k b -> a
Map.foldlWithKey @b @k @a

-- | Right associative fold with a strict accumulator.
foldrWithKey' :: forall s k a b. (Key s k -> a -> b -> b) -> b -> Map s k a -> b
foldrWithKey' :: forall s k a b. (Key s k -> a -> b -> b) -> b -> Map s k a -> b
foldrWithKey' = forall {k} (a :: k) (b :: k) r.
Coercion a b -> (Coercible a b => r) -> r
gcoerceWith (forall s k. Coercion k (Key s k)
unsafeCastKey @s @k) forall a b. (a -> b) -> a -> b
$ coerce :: forall a b. Coercible a b => a -> b
coerce
  forall a b. (a -> b) -> a -> b
$ forall k a b. (k -> a -> b -> b) -> b -> Map k a -> b
Map.foldrWithKey' @k @a @b

-- | Left associative fold with a strict accumulator.
foldlWithKey' :: forall s k a b. (b -> Key s k -> a -> b) -> b -> Map s k a -> b
foldlWithKey' :: forall s k a b. (b -> Key s k -> a -> b) -> b -> Map s k a -> b
foldlWithKey' = forall {k} (a :: k) (b :: k) r.
Coercion a b -> (Coercible a b => r) -> r
gcoerceWith (forall s k. Coercion k (Key s k)
unsafeCastKey @s @k) forall a b. (a -> b) -> a -> b
$ coerce :: forall a b. Coercible a b => a -> b
coerce
  forall a b. (a -> b) -> a -> b
$ forall a k b. (a -> k -> b -> a) -> a -> Map k b -> a
Map.foldlWithKey' @b @k @a

-- | Return the set of keys in the map, with the contents of the set still
-- tracked by the @s@ parameter. See "Data.Set.Refined".
keysSet :: forall s k a. Map s k a -> Set s k
keysSet :: forall s k a. Map s k a -> Set s k
keysSet (Map Map k a
m) = forall a r. a -> (forall s. Reifies s a => Proxy s -> r) -> r
reify (forall k a. Map k a -> Set k
Map.keysSet Map k a
m)
  \(Proxy s
_ :: Proxy s') -> case forall a b. a -> b
unsafeCoerce forall {k} (a :: k). a :~: a
Refl :: s :~: s' of
    s :~: s
Refl -> forall (a :: Constraint). a => Dict a
Dict

-- | Convert to a list of key-value pairs in ascending order of keys.
toList :: forall s k a. Map s k a -> [(Key s k, a)]
toList :: forall s k a. Map s k a -> [(Key s k, a)]
toList = forall {k} (a :: k) (b :: k) r.
Coercion a b -> (Coercible a b => r) -> r
gcoerceWith (forall s k. Coercion k (Key s k)
unsafeCastKey @s @k) forall a b. (a -> b) -> a -> b
$ coerce :: forall a b. Coercible a b => a -> b
coerce forall a b. (a -> b) -> a -> b
$ forall k a. Map k a -> [(k, a)]
Map.toAscList @k @a

-- | Convert to a list of key-value pairs in descending order of keys.
toDescList :: forall s k a. Map s k a -> [(Key s k, a)]
toDescList :: forall s k a. Map s k a -> [(Key s k, a)]
toDescList = forall {k} (a :: k) (b :: k) r.
Coercion a b -> (Coercible a b => r) -> r
gcoerceWith (forall s k. Coercion k (Key s k)
unsafeCastKey @s @k) forall a b. (a -> b) -> a -> b
$ coerce :: forall a b. Coercible a b => a -> b
coerce forall a b. (a -> b) -> a -> b
$ forall k a. Map k a -> [(k, a)]
Map.toDescList @k @a

-- | Retain only the key-value pairs that satisfy the predicate, returning a
-- potentially smaller map.
filterWithKey
  :: forall s k a. (Key s k -> a -> Bool)
  -> Map s k a
  -> SomeMapWith (SupersetProof 'Regular s) k a
filterWithKey :: forall s k a.
(Key s k -> a -> Bool)
-> Map s k a -> SomeMapWith (SupersetProof 'Regular s) k a
filterWithKey Key s k -> a -> Bool
p (Map Map k a
m)
  = forall s k a (p :: * -> *). Map s k a -> p s -> SomeMapWith p k a
SomeMapWith (forall s k a. Map k a -> Map s k a
Map forall a b. (a -> b) -> a -> b
$ forall k a. (k -> a -> Bool) -> Map k a -> Map k a
Map.filterWithKey (Key s k -> a -> Bool
p forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall k s. k -> Key s k
unsafeKey) Map k a
m)
    forall a b. (a -> b) -> a -> b
$ forall (f :: Flavor) s r.
(InSet f r :-> InSet f s) -> SupersetProof f s r
SupersetProof forall p q. p :-> q
unsafeSubset

-- | Restrict a map to only those keys that are elements of @t@.
restrictKeys
  :: forall s t k a. (Ord k, KnownSet t k)
  => Map s k a -> SomeMapWith (IntersectionProof 'Regular s t) k a
restrictKeys :: forall s t k a.
(Ord k, KnownSet t k) =>
Map s k a -> SomeMapWith (IntersectionProof 'Regular s t) k a
restrictKeys (Map Map k a
m) = forall s k a (p :: * -> *). Map s k a -> p s -> SomeMapWith p k a
SomeMapWith
#if MIN_VERSION_containers(0, 5, 8)
  (forall s k a. Map k a -> Map s k a
Map forall a b. (a -> b) -> a -> b
$ forall k a. Ord k => Map k a -> Set k -> Map k a
Map.restrictKeys Map k a
m forall a b. (a -> b) -> a -> b
$ forall {k} (s :: k) a (proxy :: k -> *).
Reifies s a =>
proxy s -> a
reflect forall a b. (a -> b) -> a -> b
$ forall {k} (t :: k). Proxy t
Proxy @t)
#else
  (Map $ Map.intersectionWith const m $ Map.fromSet id $ reflect $ Proxy @t)
#endif
  forall a b. (a -> b) -> a -> b
$ forall (f :: Flavor) s t r.
(InSet f r :-> (InSet f s && InSet f t))
-> (forall u.
    (InSet f u :-> InSet f s)
    -> (InSet f u :-> InSet f t) -> InSet f u :-> InSet f r)
-> IntersectionProof f s t r
IntersectionProof forall p q. p :-> q
unsafeSubset forall p' q' p'' q'' p q. (p' :-> q') -> (p'' :-> q'') -> p :-> q
unsafeSubsetWith2

-- | Remove all keys that are elements of @t@ from the map.
withoutKeys
  :: forall s t k a. (Ord k, KnownSet t k)
  => Map s k a -> SomeMapWith (DifferenceProof 'Regular s t) k a
withoutKeys :: forall s t k a.
(Ord k, KnownSet t k) =>
Map s k a -> SomeMapWith (DifferenceProof 'Regular s t) k a
withoutKeys (Map Map k a
m) = forall s k a (p :: * -> *). Map s k a -> p s -> SomeMapWith p k a
SomeMapWith
#if MIN_VERSION_containers(0, 5, 8)
  (forall s k a. Map k a -> Map s k a
Map forall a b. (a -> b) -> a -> b
$ forall k a. Ord k => Map k a -> Set k -> Map k a
Map.withoutKeys Map k a
m forall a b. (a -> b) -> a -> b
$ forall {k} (s :: k) a (proxy :: k -> *).
Reifies s a =>
proxy s -> a
reflect forall a b. (a -> b) -> a -> b
$ forall {k} (t :: k). Proxy t
Proxy @t)
#else
  (Map $ Map.difference m $ Map.fromSet id $ reflect $ Proxy @t)
#endif
  forall a b. (a -> b) -> a -> b
$ forall (f :: Flavor) s t r.
(InSet f r :-> InSet f s)
-> (forall u.
    (InSet f u :-> InSet f r)
    -> (InSet f u :-> InSet f t) -> forall v. InSet f u :-> InSet f v)
-> (InSet f s :-> (InSet f t || InSet f r))
-> DifferenceProof f s t r
DifferenceProof forall p q. p :-> q
unsafeSubset (\InSet 'Regular u :-> InSet 'Regular Any
f InSet 'Regular u :-> InSet 'Regular t
g -> forall p' q' p'' q'' p q. (p' :-> q') -> (p'' :-> q'') -> p :-> q
unsafeSubsetWith2 InSet 'Regular u :-> InSet 'Regular Any
f InSet 'Regular u :-> InSet 'Regular t
g) forall p q. p :-> q
unsafeSubset

-- | Partition a map into two disjoint submaps: those whose key-value pairs
-- satisfy the predicate, and those whose don't.
partitionWithKey
  :: forall s k a. Ord k -- TODO: this is only used in the proof
  => (Key s k -> a -> Bool)
  -> Map s k a
  -> Some2MapWith (PartitionProof 'Regular s k) k a a
partitionWithKey :: forall s k a.
Ord k =>
(Key s k -> a -> Bool)
-> Map s k a -> Some2MapWith (PartitionProof 'Regular s k) k a a
partitionWithKey Key s k -> a -> Bool
p (Map Map k a
m) = case forall k a. (k -> a -> Bool) -> Map k a -> (Map k a, Map k a)
Map.partitionWithKey (Key s k -> a -> Bool
p forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall k s. k -> Key s k
unsafeKey) Map k a
m of
  (Map k a
m1, Map k a
m2) -> forall s t k a b (p :: * -> * -> *).
Map s k a -> Map t k b -> p s t -> Some2MapWith p k a b
Some2MapWith (forall s k a. Map k a -> Map s k a
Map Map k a
m1) (forall s k a. Map k a -> Map s k a
Map Map k a
m2) forall a b. (a -> b) -> a -> b
$ forall (f :: Flavor) s a r q.
(Refined (InSet f s) a
 -> Either (Refined (InSet f r) a) (Refined (InSet f q) a))
-> ((InSet f r || InSet f q) :-> InSet f s)
-> (forall t.
    (InSet f r :-> InSet f t)
    -> (InSet f q :-> InSet f t) -> InSet f s :-> InSet f t)
-> (forall t.
    (InSet f t :-> InSet f r)
    -> (InSet f t :-> InSet f q) -> forall u. InSet f t :-> InSet f u)
-> PartitionProof f s a r q
PartitionProof
    do \Key s k
k -> case forall k a. Ord k => k -> Map k a -> Maybe a
Map.lookup (forall {k} (p :: k) x. Refined p x -> x
unrefine Key s k
k) Map k a
m of
        Maybe a
Nothing
          -> forall a. HasCallStack => String -> a
error String
"partitionWithKey: bug: Data.Map.Refined has been subverted"
        Just a
x -> if Key s k -> a -> Bool
p Key s k
k a
x
          then forall a b. a -> Either a b
Left forall a b. (a -> b) -> a -> b
$ forall k s. k -> Key s k
unsafeKey forall a b. (a -> b) -> a -> b
$ forall {k} (p :: k) x. Refined p x -> x
unrefine Key s k
k
          else forall a b. b -> Either a b
Right forall a b. (a -> b) -> a -> b
$ forall k s. k -> Key s k
unsafeKey forall a b. (a -> b) -> a -> b
$ forall {k} (p :: k) x. Refined p x -> x
unrefine Key s k
k
    forall p q. p :-> q
unsafeSubset forall p' q' p'' q'' p q. (p' :-> q') -> (p'' :-> q'') -> p :-> q
unsafeSubsetWith2 \InSet 'Regular t :-> InSet 'Regular Any
f InSet 'Regular t :-> InSet 'Regular Any
g -> forall p' q' p'' q'' p q. (p' :-> q') -> (p'' :-> q'') -> p :-> q
unsafeSubsetWith2 InSet 'Regular t :-> InSet 'Regular Any
f InSet 'Regular t :-> InSet 'Regular Any
g

-- | Divide a map into two disjoint submaps at a point where the predicate on
-- the keys stops holding.
--
-- If @p@ is antitone ( \(\forall x y, x < y \implies p(x) \ge p(y)\) ), then
-- this point is uniquely defined. If @p@ is not antitone, a splitting point is
-- chosen in an unspecified way.
spanAntitone
  :: forall s k a. (Key s k -> Bool)
  -> Map s k a
  -> Some2MapWith (PartialPartitionProof 'Regular s) k a a
spanAntitone :: forall s k a.
(Key s k -> Bool)
-> Map s k a
-> Some2MapWith (PartialPartitionProof 'Regular s) k a a
spanAntitone Key s k -> Bool
p (Map Map k a
m) =
#if MIN_VERSION_containers(0, 5, 8)
  case forall k a. (k -> Bool) -> Map k a -> (Map k a, Map k a)
Map.spanAntitone (Key s k -> Bool
p forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall k s. k -> Key s k
unsafeKey) Map k a
m of
    (Map k a
m1, Map k a
m2)
#else
  case List.span (p . unsafeKey . fst) $ Map.toAscList m of
    (xs1, xs2)
      | let m1 = Map.fromDistinctAscList xs1
      , let m2 = Map.fromDistinctAscList xs2
#endif
      -> forall s t k a b (p :: * -> * -> *).
Map s k a -> Map t k b -> p s t -> Some2MapWith p k a b
Some2MapWith (forall s k a. Map k a -> Map s k a
Map Map k a
m1) (forall s k a. Map k a -> Map s k a
Map Map k a
m2) forall a b. (a -> b) -> a -> b
$ forall (f :: Flavor) s r q.
((InSet f r || InSet f q) :-> InSet f s)
-> (forall t.
    (InSet f r :-> InSet f t)
    -> (InSet f q :-> InSet f t) -> InSet f s :-> InSet f t)
-> (forall t.
    (InSet f t :-> InSet f r)
    -> (InSet f t :-> InSet f q) -> forall u. InSet f t :-> InSet f u)
-> PartialPartitionProof f s r q
PartialPartitionProof
        forall p q. p :-> q
unsafeSubset forall p' q' p'' q'' p q. (p' :-> q') -> (p'' :-> q'') -> p :-> q
unsafeSubsetWith2 \InSet 'Regular t :-> InSet 'Regular Any
f InSet 'Regular t :-> InSet 'Regular Any
g -> forall p' q' p'' q'' p q. (p' :-> q') -> (p'' :-> q'') -> p :-> q
unsafeSubsetWith2 InSet 'Regular t :-> InSet 'Regular Any
f InSet 'Regular t :-> InSet 'Regular Any
g

-- | Return two disjoint submaps: those whose keys are less than the given key,
-- and those whose keys are greater than the given key. If the key was in the
-- map, also return the associated value and the proof that it was in the map.
splitLookup
  :: forall s k a. Ord k
  => k -> Map s k a -> Some2MapWith (SplitProof 'Regular s (Key s k, a)) k a a
splitLookup :: forall s k a.
Ord k =>
k
-> Map s k a
-> Some2MapWith (SplitProof 'Regular s (Key s k, a)) k a a
splitLookup k
k (Map Map k a
m) = case forall k a. Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)
Map.splitLookup k
k Map k a
m of
  (!Map k a
m1, Maybe a
v, !Map k a
m2) -> forall s t k a b (p :: * -> * -> *).
Map s k a -> Map t k b -> p s t -> Some2MapWith p k a b
Some2MapWith (forall s k a. Map k a -> Map s k a
Map Map k a
m1) (forall s k a. Map k a -> Map s k a
Map Map k a
m2) forall a b. (a -> b) -> a -> b
$ forall (f :: Flavor) s e r q.
Maybe e
-> ((InSet f r || InSet f q) :-> InSet f s)
-> (forall t.
    (InSet f t :-> InSet f r)
    -> (InSet f t :-> InSet f q) -> forall u. InSet f t :-> InSet f u)
-> SplitProof f s e r q
SplitProof
    ((forall k s. k -> Key s k
unsafeKey k
k,) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe a
v) forall p q. p :-> q
unsafeSubset \InSet 'Regular t :-> InSet 'Regular Any
f InSet 'Regular t :-> InSet 'Regular Any
g -> forall p' q' p'' q'' p q. (p' :-> q') -> (p'' :-> q'') -> p :-> q
unsafeSubsetWith2 InSet 'Regular t :-> InSet 'Regular Any
f InSet 'Regular t :-> InSet 'Regular Any
g

-- | Retrieves the key-value pair corresponding to the smallest key of the map,
-- and the map with that pair removed; or a proof that the map was empty.
minViewWithKey
  :: forall s k a. Map s k a
  -> Either
    (EmptyProof 'Regular s)
    ((Key s k, a), SomeMapWith (SupersetProof 'Regular s) k a)
minViewWithKey :: forall s k a.
Map s k a
-> Either
     (EmptyProof 'Regular s)
     ((Key s k, a), SomeMapWith (SupersetProof 'Regular s) k a)
minViewWithKey (Map Map k a
m) = case forall k a. Map k a -> Maybe ((k, a), Map k a)
Map.minViewWithKey Map k a
m of
  Maybe ((k, a), Map k a)
Nothing -> forall a b. a -> Either a b
Left forall a b. (a -> b) -> a -> b
$ forall (f :: Flavor) r.
(forall s. InSet f r :-> InSet f s) -> EmptyProof f r
EmptyProof forall p q. p :-> q
unsafeSubset
  Just ((k, a)
kv, Map k a
m') -> forall a b. b -> Either a b
Right forall a b. (a -> b) -> a -> b
$ (forall {k} (a :: k) (b :: k) r.
Coercion a b -> (Coercible a b => r) -> r
gcoerceWith (forall s k. Coercion k (Key s k)
unsafeCastKey @s @k) forall a b. (a -> b) -> a -> b
$ coerce :: forall a b. Coercible a b => a -> b
coerce (k, a)
kv,)
    forall a b. (a -> b) -> a -> b
$ forall s k a (p :: * -> *). Map s k a -> p s -> SomeMapWith p k a
SomeMapWith (forall s k a. Map k a -> Map s k a
Map Map k a
m') forall a b. (a -> b) -> a -> b
$ forall (f :: Flavor) s r.
(InSet f r :-> InSet f s) -> SupersetProof f s r
SupersetProof forall p q. p :-> q
unsafeSubset

-- | Retrieves the key-value pair corresponding to the greatest key of the map,
-- and the map with that pair removed; or a proof that the map was empty.
maxViewWithKey
  :: forall s k a. Map s k a
  -> Either
    (EmptyProof 'Regular s)
    ((Key s k, a), SomeMapWith (SupersetProof 'Regular s) k a)
maxViewWithKey :: forall s k a.
Map s k a
-> Either
     (EmptyProof 'Regular s)
     ((Key s k, a), SomeMapWith (SupersetProof 'Regular s) k a)
maxViewWithKey (Map Map k a
m) = case forall k a. Map k a -> Maybe ((k, a), Map k a)
Map.maxViewWithKey Map k a
m of
  Maybe ((k, a), Map k a)
Nothing -> forall a b. a -> Either a b
Left forall a b. (a -> b) -> a -> b
$ forall (f :: Flavor) r.
(forall s. InSet f r :-> InSet f s) -> EmptyProof f r
EmptyProof forall p q. p :-> q
unsafeSubset
  Just ((k, a)
kv, Map k a
m') -> forall a b. b -> Either a b
Right forall a b. (a -> b) -> a -> b
$ (forall {k} (a :: k) (b :: k) r.
Coercion a b -> (Coercible a b => r) -> r
gcoerceWith (forall s k. Coercion k (Key s k)
unsafeCastKey @s @k) forall a b. (a -> b) -> a -> b
$ coerce :: forall a b. Coercible a b => a -> b
coerce (k, a)
kv,)
    forall a b. (a -> b) -> a -> b
$ forall s k a (p :: * -> *). Map s k a -> p s -> SomeMapWith p k a
SomeMapWith (forall s k a. Map k a -> Map s k a
Map Map k a
m') forall a b. (a -> b) -> a -> b
$ forall (f :: Flavor) s r.
(InSet f r :-> InSet f s) -> SupersetProof f s r
SupersetProof forall p q. p :-> q
unsafeSubset

-- | If elements of @s@ can be weakened to elements of @t@ and vice versa, then
-- @s@ and @t@ actually stand for the same set and @'Key' s@ can be safely
-- interconverted with @'Key' t@.
--
-- The requirement that the weakenings are natural transformations ensures that
-- they don't actually alter the keys. To build these you can compose ':->''s
-- from proofs returned by functions in this module, or "Refined" functions like
-- 'andLeft' or 'leftOr'.
castKey
  :: forall s t k. (forall x. Key s x -> Key t x)
  -> (forall x. Key t x -> Key s x)
  -> Coercion (Key s k) (Key t k)
castKey :: forall s t k.
(forall x. Key s x -> Key t x)
-> (forall x. Key t x -> Key s x) -> Coercion (Key s k) (Key t k)
castKey = forall a p q.
(p :-> q) -> (q :-> p) -> Coercion (Refined p a) (Refined q a)
castRefined

-- | If keys can be interconverted (e.g. as proved by 'castKey'), then the maps
-- can be interconverted too. For example, 'zipWithKey' can be implemented via
-- 'Data.Map.Refined.intersectionWithKey' by proving that the set of keys
-- remains unchanged:
--
-- @
-- 'zipWithKey'
--   :: forall s k a b c. 'Ord' k
--   => ('Key' s k -> a -> b -> c) -> 'Map' s k a -> 'Map' s k b -> 'Map' s k c
-- 'zipWithKey' f m1 m2
--   | v'SomeMapWith' @r m proof <- 'Data.Map.Refined.intersectionWithKey' (f . 'andLeft') m1 m2
--   , v'IntersectionProof' p1 p2 <- proof
--   , ( v'Coercion' :: t'Coercion' ('Map' r k c) ('Map' s k c))
--     <- app $ 'cast' $ 'castKey' ('andLeft' . p1) (p2 'id' 'id')
--   = 'coerce' m
--   where
--     app :: t'Coercion' f g -> t'Coercion' (f x) (g x)
--     app v'Coercion' = v'Coercion'
-- @
cast
  :: forall s t k. (forall x. Coercion (Key s x) (Key t x))
  -> Coercion (Map s k) (Map t k)
cast :: forall s t k.
(forall x. Coercion (Key s x) (Key t x))
-> Coercion (Map s k) (Map t k)
cast Coercion (Key s Any) (Key t Any)
forall x. Coercion (Key s x) (Key t x)
Coercion = forall {k} (a :: k) (b :: k). Coercible a b => Coercion a b
Coercion

instance FunctorWithIndex (Key s k) (Map s k) where
  imap :: forall a b. (Key s k -> a -> b) -> Map s k a -> Map s k b
imap = forall s k a b. (Key s k -> a -> b) -> Map s k a -> Map s k b
mapWithKey

instance FoldableWithIndex (Key s k) (Map s k) where
  ifoldMap :: forall m a. Monoid m => (Key s k -> a -> m) -> Map s k a -> m
ifoldMap = forall s k a m. Monoid m => (Key s k -> a -> m) -> Map s k a -> m
foldMapWithKey

instance TraversableWithIndex (Key s k) (Map s k) where
  itraverse :: forall (f :: * -> *) a b.
Applicative f =>
(Key s k -> a -> f b) -> Map s k a -> f (Map s k b)
itraverse = forall s (f :: * -> *) k a b.
Applicative f =>
(Key s k -> a -> f b) -> Map s k a -> f (Map s k b)
traverseWithKey

-- | Similar to the instance for functions -- zip corresponding keys. To use
-- '<*>'/'liftA2' without 'KnownSet' see 'zipWithKey'.
instance (Ord k, KnownSet s k) => Applicative (Map s k) where
  pure :: forall a. a -> Map s k a
pure a
x = forall s k a. KnownSet s k => (Key s k -> a) -> Map s k a
fromSet \Key s k
_ -> a
x
  <*> :: forall a b. Map s k (a -> b) -> Map s k a -> Map s k b
(<*>) = forall s k a b c.
Ord k =>
(Key s k -> a -> b -> c) -> Map s k a -> Map s k b -> Map s k c
zipWithKey (forall a b. a -> b -> a
const forall a. a -> a
id)

-- | @'bind' m f@ is a map that for each key @k :: 'Key' s k@, contains the
-- value @f (m '!' k) '!' k@, similar to @'>>='@ for functions.
bind :: forall s k a b. Ord k => Map s k a -> (a -> Map s k b) -> Map s k b
bind :: forall s k a b. Ord k => Map s k a -> (a -> Map s k b) -> Map s k b
bind Map s k a
m a -> Map s k b
f = forall s k a b. (Key s k -> a -> b) -> Map s k a -> Map s k b
mapWithKey (\Key s k
k a
x -> a -> Map s k b
f a
x forall s k a. Ord k => Map s k a -> Key s k -> a
! Key s k
k) Map s k a
m

-- | Similar to the instance for functions. To use '>>=' without 'KnownSet' see
-- 'bind'.
instance (Ord k, KnownSet s k) => Monad (Map s k) where
  >>= :: forall a b. Map s k a -> (a -> Map s k b) -> Map s k b
(>>=) = forall s k a b. Ord k => Map s k a -> (a -> Map s k b) -> Map s k b
bind

-- | Similar to the instance for functions. See also
-- 'Data.Map.Refined.backpermuteKeys'.
instance (Ord k, KnownSet s k) => MonadReader (Key s k) (Map s k) where
  ask :: Map s k (Key s k)
ask = forall s k a. KnownSet s k => (Key s k -> a) -> Map s k a
fromSet forall a. a -> a
id
  local :: forall a. (Key s k -> Key s k) -> Map s k a -> Map s k a
local Key s k -> Key s k
f Map s k a
m = forall s k a b. (Key s k -> a -> b) -> Map s k a -> Map s k b
mapWithKey (\Key s k
k a
_ -> Map s k a
m forall s k a. Ord k => Map s k a -> Key s k -> a
! Key s k -> Key s k
f Key s k
k) Map s k a
m

-- | Append the values at the corresponding keys
instance (Ord k, Semigroup a) => Semigroup (Map s k a) where
  <> :: Map s k a -> Map s k a -> Map s k a
(<>) = forall s k a b c.
Ord k =>
(Key s k -> a -> b -> c) -> Map s k a -> Map s k b -> Map s k c
zipWithKey (forall a b. a -> b -> a
const forall a. Semigroup a => a -> a -> a
(<>))

instance (Ord k, KnownSet s k, Monoid a) => Monoid (Map s k a) where
  mempty :: Map s k a
mempty = forall s k a. KnownSet s k => (Key s k -> a) -> Map s k a
fromSet \Key s k
_ -> forall a. Monoid a => a
mempty

-- | Similar to the instance for functions
instance (Ord k, KnownSet s k) => Distributive (Map s k) where
  collect :: forall (f :: * -> *) a b.
Functor f =>
(a -> Map s k b) -> f a -> Map s k (f b)
collect = forall (f :: * -> *) (w :: * -> *) a b.
(Representable f, Functor w) =>
(a -> f b) -> w a -> f (w b)
collectRep
  distribute :: forall (f :: * -> *) a. Functor f => f (Map s k a) -> Map s k (f a)
distribute = forall (f :: * -> *) (w :: * -> *) a.
(Representable f, Functor w) =>
w (f a) -> f (w a)
distributeRep

-- | Witness isomorphism with functions from @'Key' s k@
instance (Ord k, KnownSet s k) => Representable (Map s k) where
  type Rep (Map s k) = Key s k
  index :: forall a. Map s k a -> Rep (Map s k) -> a
index = forall s k a. Ord k => Map s k a -> Key s k -> a
(!)
  tabulate :: forall a. (Rep (Map s k) -> a) -> Map s k a
tabulate = forall s k a. KnownSet s k => (Key s k -> a) -> Map s k a
fromSet

#if MIN_VERSION_hashable(1, 3, 4)
#else
instance (Hashable.Hashable a, Hashable.Hashable k)
  => Hashable.Hashable (Map s k a) where
  hashWithSalt s (Map m) = Map.foldlWithKey'
    (\s' k v -> Hashable.hashWithSalt (Hashable.hashWithSalt s' k) v)
    (Hashable.hashWithSalt s (Map.size m))
    m
#endif