| Safe Haskell | None | 
|---|---|
| Language | Haskell2010 | 
Numeric.Recommender.ALS
Synopsis
- data ALSParams = ALSParams {}
- data ALSResult = ALSResult {- cost :: Double
- itemFeature :: !(Matrix Double)
- userFeature :: !(Matrix Double)
 
- data ALSModel u i = ALSModel {- encodeUser :: u -> Maybe Int
- decodeUser :: Int -> u
- encodeItem :: i -> Maybe Int
- decodeItem :: Int -> i
- pairs :: [(Int, Int)]
- results :: [ALSResult]
 
- buildModel :: (Functor f, Foldable f) => ALSParams -> (u -> Int) -> (Int -> u) -> (i -> Int) -> (Int -> i) -> f (u, i) -> ALSModel u i
- recommend :: ALSModel u i -> Int -> IntMap [(i, Bool)]
Documentation
Constructors
| ALSParams | |
Constructors
| ALSResult | |
| Fields 
 | |
Constructors
| ALSModel | |
| Fields 
 | |
Arguments
| :: (Functor f, Foldable f) | |
| => ALSParams | |
| -> (u -> Int) | |
| -> (Int -> u) | |
| -> (i -> Int) | |
| -> (Int -> i) | |
| -> f (u, i) | User-item pairs | 
| -> ALSModel u i | 
Build recommendations based on users' unrated item choices.
Takes conversion functions to/from Int representation for user
 supplied data types.  Use id if you're already based on them.
The implementation follows the one in the recommenderlab library in CRAN. For further details, see "Large-scale Parallel Collaborative Filtering for the Netflix Prize" by Yunhong Zhou, Dennis Wilkinson, Robert Schreiber and Rong Pan.