Copyright | Written by David Himmelstrup |
---|---|
License | Unlicense |
Maintainer | lemmih@gmail.com |
Stability | experimental |
Portability | POSIX |
Safe Haskell | None |
Language | Haskell2010 |
Synopsis
- linear :: Morph
- rawLinear :: Morph
- closestLinearCorrespondence :: PointCorrespondence
- closestLinearCorrespondenceA :: (Real a, Fractional a, Epsilon a) => APolygon a -> APolygon a -> (APolygon a, APolygon a)
- linearTrajectory :: Trajectory
Documentation
Linear interpolation strategy.
Example:
playThenReverseA
$pauseAround
0.5 0.5 $mkAnimation
3 $ \t ->withStrokeLineJoin
JoinRound
$ let src =scale
8 $center
$latex
"X" dst =scale
8 $center
$latex
"H" inmorph
linear
src dst t
Linear interpolation strategy without realigning corners. May give better results if the polygons are already aligned. Usually gives worse results.
Example:
playThenReverseA
$pauseAround
0.5 0.5 $mkAnimation
3 $ \t ->withStrokeLineJoin
JoinRound
$ let src =scale
8 $center
$latex
"X" dst =scale
8 $center
$latex
"H" inmorph
rawLinear
src dst t
closestLinearCorrespondence :: PointCorrespondence Source #
Cycle polygons until the sum of the point trajectory path lengths is smallest.
closestLinearCorrespondenceA :: (Real a, Fractional a, Epsilon a) => APolygon a -> APolygon a -> (APolygon a, APolygon a) Source #
Cycle polygons until the sum of the point trajectory path lengths is smallest.
linearTrajectory :: Trajectory Source #
Strategy for moving points in a linear (straight-line) trajectory.