{----------------------------------------------------------------------------- reactive-banana ------------------------------------------------------------------------------} module Reactive.Banana.Types ( -- | Primitive types. Event(..), Behavior(..), Moment(..), MomentIO(..), MonadMoment(..), Future(..), ) where import Data.Semigroup import Control.Applicative import Control.Monad import Control.Monad.IO.Class import Control.Monad.Fix import Data.String (IsString(..)) import qualified Reactive.Banana.Internal.Combinators as Prim {----------------------------------------------------------------------------- Types ------------------------------------------------------------------------------} {-| @Event a@ represents a stream of events as they occur in time. Semantically, you can think of @Event a@ as an infinite list of values that are tagged with their corresponding time of occurrence, > type Event a = [(Time,a)] Each pair is called an /event occurrence/. Note that within a single event stream, no two event occurrences may happen at the same time. <<doc/frp-event.png>> -} newtype Event a = E { unE :: Prim.Event a } -- Invariant: The empty list `[]` never occurs as event value. -- | The function 'fmap' applies a function @f@ to every value. -- Semantically, -- -- > fmap :: (a -> b) -> Event a -> Event b -- > fmap f e = [(time, f a) | (time, a) <- e] instance Functor Event where fmap f = E . Prim.mapE f . unE -- | The combinator '<>' merges two event streams of the same type. -- In case of simultaneous occurrences, -- the events are combined with the underlying 'Semigroup' operation. -- Semantically, -- -- > (<>) :: Event a -> Event a -> Event a -- > (<>) ex ey = unionWith (<>) ex ey instance Semigroup a => Semigroup (Event a) where x <> y = E $ Prim.unionWith (<>) (unE x) (unE y) -- | The combinator 'mempty' represents an event that never occurs. -- It is a synonym, -- -- > mempty :: Event a -- > mempty = never instance Semigroup a => Monoid (Event a) where mempty = E $ Prim.never mappend = (<>) {-| @Behavior a@ represents a value that varies in time. Semantically, you can think of it as a function > type Behavior a = Time -> a <<doc/frp-behavior.png>> -} newtype Behavior a = B { unB :: Prim.Behavior a } -- | The function 'pure' returns a value that is constant in time. Semantically, -- -- > pure :: a -> Behavior a -- > pure x = \time -> x -- -- The combinator '<*>' applies a time-varying function to a time-varying value. -- -- > (<*>) :: Behavior (a -> b) -> Behavior a -> Behavior b -- > fx <*> bx = \time -> fx time $ bx time instance Applicative Behavior where pure x = B $ Prim.pureB x bf <*> bx = B $ Prim.applyB (unB bf) (unB bx) -- | The function 'fmap' applies a function @f@ at every point in time. -- Semantically, -- -- > fmap :: (a -> b) -> Behavior a -> Behavior b -- > fmap f b = \time -> f (b time) instance Functor Behavior where fmap = liftA instance Num a => Num (Behavior a) where (+) = liftA2 (+) (-) = liftA2 (-) (*) = liftA2 (*) abs = fmap abs signum = fmap signum fromInteger = pure . fromInteger negate = fmap negate instance Fractional a => Fractional (Behavior a) where (/) = liftA2 (/) fromRational = pure . fromRational recip = fmap recip instance Floating a => Floating (Behavior a) where (**) = liftA2 (**) acos = fmap acos acosh = fmap acosh asin = fmap asin asinh = fmap asinh atan = fmap atan atanh = fmap atanh cos = fmap cos cosh = fmap cosh exp = fmap exp log = fmap log logBase = liftA2 logBase pi = pure pi sin = fmap sin sinh = fmap sinh sqrt = fmap sqrt instance IsString a => IsString (Behavior a) where fromString = pure . fromString -- | The 'Future' monad is just a helper type for the 'changes' function. -- -- A value of type @Future a@ is only available in the context -- of a 'reactimate' but not during event processing. newtype Future a = F { unF :: Prim.Future a } -- boilerplate class instances instance Functor Future where fmap f = F . fmap f . unF instance Monad Future where return = F . return m >>= g = F $ unF m >>= unF . g instance Applicative Future where pure = F . pure f <*> a = F $ unF f <*> unF a {-| The 'Moment' monad denotes a /pure/ computation that happens at one particular moment in time. Semantically, it is a reader monad > type Moment a = Time -> a When run, the argument tells the time at which this computation happens. Note that in this context, /time/ really means to /logical time/. Of course, every calculation on a computer takes some amount of wall-clock time to complete. Instead, what is meant here is the time as it relates to 'Event's and 'Behavior's. We use the fiction that every calculation within the 'Moment' monad takes zero /logical time/ to perform. -} newtype Moment a = M { unM :: Prim.Moment a } {-| The 'MomentIO' monad is used to add inputs and outputs to an event network. -} newtype MomentIO a = MIO { unMIO :: Prim.Moment a } instance MonadIO MomentIO where liftIO = MIO . liftIO {-| An instance of the 'MonadMoment' class denotes a computation that happens at one particular moment in time. Unlike the 'Moment' monad, it need not be pure anymore. -} class MonadFix m => MonadMoment m where liftMoment :: Moment a -> m a instance MonadMoment Moment where liftMoment = id instance MonadMoment MomentIO where liftMoment = MIO . unM -- boilerplate class instances instance Functor Moment where fmap f = M . fmap f . unM instance Monad Moment where return = M . return m >>= g = M $ unM m >>= unM . g instance Applicative Moment where pure = M . pure f <*> a = M $ unM f <*> unM a instance MonadFix Moment where mfix f = M $ mfix (unM . f) instance Functor MomentIO where fmap f = MIO . fmap f . unMIO instance Monad MomentIO where return = MIO . return m >>= g = MIO $ unMIO m >>= unMIO . g instance Applicative MomentIO where pure = MIO . pure f <*> a = MIO $ unMIO f <*> unMIO a instance MonadFix MomentIO where mfix f = MIO $ mfix (unMIO . f)