{-# LANGUAGE DefaultSignatures, InstanceSigs, KindSignatures, PolyKinds, Rank2Types #-}
{-# LANGUAGE ScopedTypeVariables, StandaloneDeriving, TypeOperators, UndecidableInstances #-}
{-# LANGUAGE EmptyCase #-}
module Rank2 (
Functor(..), Apply(..), Applicative(..),
Foldable(..), Traversable(..), Distributive(..), DistributiveTraversable(..), distributeJoin,
Compose(..), Empty(..), Only(..), Flip(..), Identity(..), Product(..), Sum(..), Arrow(..), type (~>),
($), fst, snd, ap, fmap, liftA4, liftA5,
fmapTraverse, liftA2Traverse1, liftA2Traverse2, liftA2TraverseBoth,
distributeWith, distributeWithTraversable)
where
import qualified Control.Applicative as Rank1
import qualified Control.Monad as Rank1
import qualified Data.Foldable as Rank1
import qualified Data.Traversable as Rank1
import qualified Data.Functor.Compose as Rank1
import qualified Data.Distributive as Rank1
import Data.Coerce (coerce)
import Data.Semigroup (Semigroup(..))
import Data.Monoid (Monoid(..))
import Data.Functor.Const (Const(..))
import Data.Functor.Product (Product(Pair))
import Data.Functor.Sum (Sum(InL, InR))
import Data.Proxy (Proxy(..))
import qualified GHC.Generics as Generics
import Prelude hiding (Foldable(..), Traversable(..), Functor(..), Applicative(..), ($), (<$>), fst, snd)
fst :: Product g h p -> g p
fst (Pair x _) = x
snd :: Product g h p -> h p
snd (Pair _ y) = y
class Functor g where
(<$>) :: (forall a. p a -> q a) -> g p -> g q
infixl 4 <$>
fmap :: Functor g => (forall a. p a -> q a) -> g p -> g q
fmap f g = f <$> g
{-# INLINE fmap #-}
class Foldable g where
foldMap :: Monoid m => (forall a. p a -> m) -> g p -> m
class (Functor g, Foldable g) => Traversable g where
{-# MINIMAL traverse | sequence #-}
traverse :: Rank1.Applicative m => (forall a. p a -> m (q a)) -> g p -> m (g q)
sequence :: Rank1.Applicative m => g (Rank1.Compose m p) -> m (g p)
traverse f = sequence . fmap (Rank1.Compose . f)
sequence = traverse Rank1.getCompose
newtype Arrow p q a = Arrow{apply :: p a -> q a}
type (~>) = Arrow
($) :: Arrow p q a -> p a -> q a
($) = apply
infixr 0 ~>
infixr 0 $
class Functor g => Apply g where
{-# MINIMAL liftA2 | (<*>) #-}
(<*>) :: g (p ~> q) -> g p -> g q
liftA2 :: (forall a. p a -> q a -> r a) -> g p -> g q -> g r
liftA3 :: (forall a. p a -> q a -> r a -> s a) -> g p -> g q -> g r -> g s
(<*>) = liftA2 apply
liftA2 f g h = (Arrow . f) <$> g <*> h
liftA3 f g h i = liftA2 (\p q-> Arrow (f p q)) g h <*> i
infixl 4 <*>
liftA4 :: Apply g => (forall a. p a -> q a -> r a -> s a -> t a) -> g p -> g q -> g r -> g s -> g t
liftA4 f g h i j = liftA3 (\p q r-> Arrow (f p q r)) g h i <*> j
liftA5 :: Apply g => (forall a. p a -> q a -> r a -> s a -> t a -> u a) -> g p -> g q -> g r -> g s -> g t -> g u
liftA5 f g1 g2 g3 g4 g5 = liftA4 (\p q r s-> Arrow (f p q r s)) g1 g2 g3 g4 <*> g5
ap :: Apply g => g (p ~> q) -> g p -> g q
ap = (<*>)
class Apply g => Applicative g where
pure :: (forall a. f a) -> g f
class DistributiveTraversable g => Distributive g where
{-# MINIMAL cotraverse|distribute #-}
collect :: Rank1.Functor f1 => (a -> g f2) -> f1 a -> g (Rank1.Compose f1 f2)
distribute :: Rank1.Functor f1 => f1 (g f2) -> g (Rank1.Compose f1 f2)
cotraverse :: Rank1.Functor m => (forall a. m (p a) -> q a) -> m (g p) -> g q
collect f = distribute . Rank1.fmap f
distribute = cotraverse Rank1.Compose
cotraverse f = (fmap (f . Rank1.getCompose)) . distribute
class Functor g => DistributiveTraversable (g :: (k -> *) -> *) where
collectTraversable :: Rank1.Traversable f1 => (a -> g f2) -> f1 a -> g (Rank1.Compose f1 f2)
distributeTraversable :: Rank1.Traversable f1 => f1 (g f2) -> g (Rank1.Compose f1 f2)
cotraverseTraversable :: Rank1.Traversable f1 => (forall x. f1 (f2 x) -> f x) -> f1 (g f2) -> g f
collectTraversable f = distributeTraversable . Rank1.fmap f
distributeTraversable = cotraverseTraversable Rank1.Compose
default cotraverseTraversable :: (Rank1.Traversable m, Distributive g) =>
(forall a. m (p a) -> q a) -> m (g p) -> g q
cotraverseTraversable = cotraverse
distributeJoin :: (Distributive g, Rank1.Monad f) => f (g f) -> g f
distributeJoin = cotraverse Rank1.join
fmapTraverse :: (DistributiveTraversable g, Rank1.Traversable f) => (forall a. f (t a) -> u a) -> f (g t) -> g u
fmapTraverse f x = fmap (f . Rank1.getCompose) (distributeTraversable x)
liftA2Traverse1 :: (Apply g, DistributiveTraversable g, Rank1.Traversable f) =>
(forall a. f (t a) -> u a -> v a) -> f (g t) -> g u -> g v
liftA2Traverse1 f x = liftA2 (f . Rank1.getCompose) (distributeTraversable x)
liftA2Traverse2 :: (Apply g, DistributiveTraversable g, Rank1.Traversable f) =>
(forall a. t a -> f (u a) -> v a) -> g t -> f (g u) -> g v
liftA2Traverse2 f x y = liftA2 (\x' y' -> f x' (Rank1.getCompose y')) x (distributeTraversable y)
liftA2TraverseBoth :: (Apply g, DistributiveTraversable g, Rank1.Traversable f1, Rank1.Traversable f2) =>
(forall a. f1 (t a) -> f2 (u a) -> v a) -> f1 (g t) -> f2 (g u) -> g v
liftA2TraverseBoth f x y = liftA2 applyCompose (distributeTraversable x) (distributeTraversable y)
where applyCompose x' y' = f (Rank1.getCompose x') (Rank1.getCompose y')
{-# DEPRECATED distributeWith "Use cotraverse instead." #-}
distributeWith :: (Distributive g, Rank1.Functor f) => (forall i. f (a i) -> b i) -> f (g a) -> g b
distributeWith = cotraverse
{-# DEPRECATED distributeWithTraversable "Use cotraverseTraversable instead." #-}
distributeWithTraversable :: (DistributiveTraversable g, Rank1.Traversable m) =>
(forall a. m (p a) -> q a) -> m (g p) -> g q
distributeWithTraversable = cotraverseTraversable
data Empty f = Empty deriving (Eq, Ord, Show)
newtype Only a f = Only {fromOnly :: f a} deriving (Eq, Ord, Show)
newtype Identity g f = Identity {runIdentity :: g f} deriving (Eq, Ord, Show)
newtype Compose g p q = Compose {getCompose :: g (Rank1.Compose p q)}
deriving instance Eq (g (Rank1.Compose p q)) => Eq (Compose g p q)
deriving instance Ord (g (Rank1.Compose p q)) => Ord (Compose g p q)
deriving instance Show (g (Rank1.Compose p q)) => Show (Compose g p q)
newtype Flip g a f = Flip {unFlip :: g (f a)} deriving (Eq, Ord, Show)
instance Semigroup (g (f a)) => Semigroup (Flip g a f) where
Flip x <> Flip y = Flip (x <> y)
instance Monoid (g (f a)) => Monoid (Flip g a f) where
mempty = Flip mempty
Flip x `mappend` Flip y = Flip (x `mappend` y)
instance Rank1.Functor g => Rank2.Functor (Flip g a) where
f <$> Flip g = Flip (f Rank1.<$> g)
instance Rank1.Applicative g => Rank2.Apply (Flip g a) where
Flip g <*> Flip h = Flip (apply Rank1.<$> g Rank1.<*> h)
instance Rank1.Applicative g => Rank2.Applicative (Flip g a) where
pure f = Flip (Rank1.pure f)
instance Rank1.Foldable g => Rank2.Foldable (Flip g a) where
foldMap f (Flip g) = Rank1.foldMap f g
instance Rank1.Traversable g => Rank2.Traversable (Flip g a) where
traverse f (Flip g) = Flip Rank1.<$> Rank1.traverse f g
instance Functor Empty where
_ <$> _ = Empty
instance Functor Proxy where
_ <$> _ = Proxy
instance Functor (Const a) where
_ <$> Const a = Const a
instance Functor (Only a) where
f <$> Only a = Only (f a)
instance Functor g => Functor (Identity g) where
f <$> Identity g = Identity (f <$> g)
instance (Functor g, Rank1.Functor p) => Functor (Compose g p) where
(<$>) :: forall q r. (forall a. q a -> r a) -> Compose g p q -> Compose g p r
f <$> Compose g = Compose (f' <$> g)
where f' :: forall a. Rank1.Compose p q a -> Rank1.Compose p r a
f' (Rank1.Compose q) = Rank1.Compose (f Rank1.<$> q)
instance (Functor g, Functor h) => Functor (Product g h) where
f <$> Pair a b = Pair (f <$> a) (f <$> b)
instance (Functor g, Functor h) => Functor (Sum g h) where
f <$> InL g = InL (f <$> g)
f <$> InR h = InR (f <$> h)
instance Functor Generics.V1 where
(<$>) _ = coerce
instance Functor Generics.U1 where
(<$>) _ = coerce
instance Functor (Generics.K1 i c) where
(<$>) _ = coerce
instance Functor f => Functor (Generics.M1 i c f) where
f <$> Generics.M1 x = Generics.M1 (f <$> x)
instance Functor f => Functor (Generics.Rec1 f) where
f <$> Generics.Rec1 x = Generics.Rec1 (f <$> x)
instance (Functor f, Functor g) => Functor ((Generics.:+:) f g) where
f <$> Generics.L1 x = Generics.L1 (f <$> x)
f <$> Generics.R1 x = Generics.R1 (f <$> x)
instance (Functor f, Functor g) => Functor ((Generics.:*:) f g) where
f <$> (x Generics.:*: y) = (f <$> x) Generics.:*: (f <$> y)
instance Foldable Empty where
foldMap _ _ = mempty
instance Foldable Proxy where
foldMap _ _ = mempty
instance Foldable (Const x) where
foldMap _ _ = mempty
instance Foldable (Only x) where
foldMap f (Only x) = f x
instance Foldable g => Foldable (Identity g) where
foldMap f (Identity g) = foldMap f g
instance (Foldable g, Rank1.Foldable p) => Foldable (Compose g p) where
foldMap f (Compose g) = foldMap (Rank1.foldMap f . Rank1.getCompose) g
instance (Foldable g, Foldable h) => Foldable (Product g h) where
foldMap f (Pair g h) = foldMap f g `mappend` foldMap f h
instance (Foldable g, Foldable h) => Foldable (Sum g h) where
foldMap f (InL g) = foldMap f g
foldMap f (InR h) = foldMap f h
instance Foldable Generics.V1 where
foldMap _ v = case v of {}
instance Foldable Generics.U1 where
foldMap _ _ = mempty
instance Foldable (Generics.K1 i c) where
foldMap _ _ = mempty
instance Foldable f => Foldable (Generics.M1 i c f) where
foldMap f (Generics.M1 x) = foldMap f x
instance Foldable f => Foldable (Generics.Rec1 f) where
foldMap f (Generics.Rec1 x) = foldMap f x
instance (Foldable f, Foldable g) => Foldable ((Generics.:+:) f g) where
foldMap f (Generics.L1 x) = foldMap f x
foldMap f (Generics.R1 x) = foldMap f x
instance (Foldable f, Foldable g) => Foldable ((Generics.:*:) f g) where
foldMap f (x Generics.:*: y) = foldMap f x `mappend` foldMap f y
instance Traversable Empty where
traverse _ _ = Rank1.pure Empty
instance Traversable Proxy where
traverse _ _ = Rank1.pure Proxy
instance Traversable (Const x) where
traverse _ (Const x) = Rank1.pure (Const x)
instance Traversable (Only x) where
traverse f (Only x) = Only Rank1.<$> f x
instance Traversable g => Traversable (Identity g) where
traverse f (Identity g) = Identity Rank1.<$> traverse f g
instance (Traversable g, Rank1.Traversable p) => Traversable (Compose g p) where
traverse :: forall m q r. Rank1.Applicative m => (forall a. q a -> m (r a)) -> Compose g p q -> m (Compose g p r)
traverse f (Compose g) = Compose Rank1.<$> traverse f' g
where f' :: forall a. Rank1.Compose p q a -> m (Rank1.Compose p r a)
f' (Rank1.Compose q) = Rank1.Compose Rank1.<$> Rank1.traverse f q
instance (Traversable g, Traversable h) => Traversable (Product g h) where
traverse f (Pair g h) = Rank1.liftA2 Pair (traverse f g) (traverse f h)
instance (Traversable g, Traversable h) => Traversable (Sum g h) where
traverse f (InL g) = InL Rank1.<$> traverse f g
traverse f (InR h) = InR Rank1.<$> traverse f h
instance Traversable Generics.V1 where
traverse _ = Rank1.pure . coerce
instance Traversable Generics.U1 where
traverse _ = Rank1.pure . coerce
instance Traversable (Generics.K1 i c) where
traverse _ = Rank1.pure . coerce
instance Traversable f => Traversable (Generics.M1 i c f) where
traverse f (Generics.M1 x) = Rank1.fmap Generics.M1 (traverse f x)
instance Traversable f => Traversable (Generics.Rec1 f) where
traverse f (Generics.Rec1 x) = Rank1.fmap Generics.Rec1 (traverse f x)
instance (Traversable f, Traversable g) => Traversable ((Generics.:+:) f g) where
traverse f (Generics.L1 x) = Rank1.fmap Generics.L1 (traverse f x)
traverse f (Generics.R1 x) = Rank1.fmap Generics.R1 (traverse f x)
instance (Traversable f, Traversable g) => Traversable ((Generics.:*:) f g) where
traverse f (x Generics.:*: y) = Rank1.liftA2 (Generics.:*:) (traverse f x) (traverse f y)
instance Apply Empty where
_ <*> _ = Empty
liftA2 _ _ _ = Empty
instance Apply Proxy where
_ <*> _ = Proxy
liftA2 _ _ _ = Proxy
instance Semigroup x => Apply (Const x) where
Const x <*> Const y = Const (x <> y)
liftA2 _ (Const x) (Const y) = Const (x <> y)
instance Apply (Only x) where
Only f <*> Only x = Only (apply f x)
liftA2 f (Only x) (Only y) = Only (f x y)
instance Apply g => Apply (Identity g) where
Identity g <*> Identity h = Identity (g <*> h)
liftA2 f (Identity g) (Identity h) = Identity (liftA2 f g h)
instance (Apply g, Rank1.Applicative p) => Apply (Compose g p) where
(<*>) :: forall q r. Compose g p (q ~> r) -> Compose g p q -> Compose g p r
liftA2 :: forall q r s. (forall a. q a -> r a -> s a) -> Compose g p q -> Compose g p r -> Compose g p s
Compose g <*> Compose h = Compose (liftA2 f' g h)
where f' :: forall a. Rank1.Compose p (q ~> r) a -> Rank1.Compose p q a -> Rank1.Compose p r a
f' (Rank1.Compose f) (Rank1.Compose q) = Rank1.Compose (Rank1.liftA2 apply f q)
liftA2 f (Compose g) (Compose h) = Compose (liftA2 f' g h)
where f' :: forall a. Rank1.Compose p q a -> Rank1.Compose p r a -> Rank1.Compose p s a
f' (Rank1.Compose q) (Rank1.Compose r) = Rank1.Compose (Rank1.liftA2 f q r)
instance (Apply g, Apply h) => Apply (Product g h) where
Pair gf hf <*> ~(Pair gx hx) = Pair (gf <*> gx) (hf <*> hx)
liftA2 f (Pair g1 h1) ~(Pair g2 h2) = Pair (liftA2 f g1 g2) (liftA2 f h1 h2)
liftA3 f (Pair g1 h1) ~(Pair g2 h2) ~(Pair g3 h3) = Pair (liftA3 f g1 g2 g3) (liftA3 f h1 h2 h3)
instance Apply Generics.V1 where
(<*>) _ = coerce
instance Apply Generics.U1 where
(<*>) _ = coerce
instance Semigroup c => Apply (Generics.K1 i c) where
Generics.K1 x <*> Generics.K1 y = Generics.K1 (x <> y)
instance Apply f => Apply (Generics.M1 i c f) where
Generics.M1 f <*> Generics.M1 x = Generics.M1 (f <*> x)
instance Apply f => Apply (Generics.Rec1 f) where
Generics.Rec1 f <*> Generics.Rec1 x = Generics.Rec1 (f <*> x)
instance (Apply f, Apply g) => Apply ((Generics.:*:) f g) where
(x1 Generics.:*: y1) <*> (x2 Generics.:*: y2) = (x1 <*> x2) Generics.:*: (y1 <*> y2)
instance Applicative Empty where
pure = const Empty
instance Applicative Proxy where
pure = const Proxy
instance (Semigroup x, Monoid x) => Applicative (Const x) where
pure = const (Const mempty)
instance Applicative (Only x) where
pure = Only
instance Applicative g => Applicative (Identity g) where
pure f = Identity (pure f)
instance (Applicative g, Rank1.Applicative p) => Applicative (Compose g p) where
pure f = Compose (pure (Rank1.Compose (Rank1.pure f)))
instance (Applicative g, Applicative h) => Applicative (Product g h) where
pure f = Pair (pure f) (pure f)
instance (Semigroup c, Monoid c) => Applicative (Generics.K1 i c) where
pure _ = Generics.K1 mempty
instance Applicative f => Applicative (Generics.M1 i c f) where
pure f = Generics.M1 (pure f)
instance Applicative f => Applicative (Generics.Rec1 f) where
pure f = Generics.Rec1 (pure f)
instance (Applicative f, Applicative g) => Applicative ((Generics.:*:) f g) where
pure f = pure f Generics.:*: pure f
instance DistributiveTraversable Empty
instance DistributiveTraversable Proxy
instance DistributiveTraversable (Only x)
instance DistributiveTraversable g => DistributiveTraversable (Identity g) where
cotraverseTraversable w f = Identity (cotraverseTraversable w (Rank1.fmap runIdentity f))
instance (DistributiveTraversable g, Rank1.Distributive p) => DistributiveTraversable (Compose g p) where
cotraverseTraversable w f = Compose (cotraverseTraversable
(Rank1.Compose . Rank1.fmap w . Rank1.distribute . Rank1.fmap Rank1.getCompose)
(Rank1.fmap getCompose f))
instance (DistributiveTraversable g, DistributiveTraversable h) => DistributiveTraversable (Product g h) where
cotraverseTraversable w f = Pair (cotraverseTraversable w (Rank1.fmap fst f))
(cotraverseTraversable w (Rank1.fmap snd f))
instance DistributiveTraversable f => DistributiveTraversable (Generics.M1 i c f) where
cotraverseTraversable w f = Generics.M1 (cotraverseTraversable w (Rank1.fmap Generics.unM1 f))
instance DistributiveTraversable f => DistributiveTraversable (Generics.Rec1 f) where
cotraverseTraversable w f = Generics.Rec1 (cotraverseTraversable w (Rank1.fmap Generics.unRec1 f))
instance (DistributiveTraversable f, DistributiveTraversable g) => DistributiveTraversable ((Generics.:*:) f g) where
cotraverseTraversable w f = cotraverseTraversable w (Rank1.fmap (\(a Generics.:*: _) -> a) f) Generics.:*: cotraverseTraversable w (Rank1.fmap (\(_ Generics.:*: b) -> b) f)
instance Distributive Empty where
cotraverse _ _ = Empty
instance Distributive Proxy where
cotraverse _ _ = Proxy
instance Monoid x => DistributiveTraversable (Const x) where
cotraverseTraversable _ f = coerce (Rank1.fold f)
instance Distributive (Only x) where
cotraverse w f = Only (w (Rank1.fmap fromOnly f))
instance Distributive g => Distributive (Identity g) where
cotraverse w f = Identity (cotraverse w (Rank1.fmap runIdentity f))
instance (Distributive g, Rank1.Distributive p) => Distributive (Compose g p) where
cotraverse w f = Compose (cotraverse (Rank1.Compose . Rank1.fmap w . Rank1.distribute . Rank1.fmap Rank1.getCompose)
(Rank1.fmap getCompose f))
instance (Distributive g, Distributive h) => Distributive (Product g h) where
cotraverse w f = Pair (cotraverse w (Rank1.fmap fst f)) (cotraverse w (Rank1.fmap snd f))
instance Monoid c => DistributiveTraversable (Generics.K1 i c) where
cotraverseTraversable _ f = coerce (Rank1.foldMap Generics.unK1 f)
instance Distributive f => Distributive (Generics.M1 i c f) where
cotraverse w f = Generics.M1 (cotraverse w (Rank1.fmap Generics.unM1 f))
instance Distributive f => Distributive (Generics.Rec1 f) where
cotraverse w f = Generics.Rec1 (cotraverse w (Rank1.fmap Generics.unRec1 f))
instance (Distributive f, Distributive g) => Distributive ((Generics.:*:) f g) where
cotraverse w f = cotraverse w (Rank1.fmap (\(a Generics.:*: _) -> a) f) Generics.:*: cotraverse w (Rank1.fmap (\(_ Generics.:*: b) -> b) f)