{-# LANGUAGE DefaultSignatures, InstanceSigs, KindSignatures, PolyKinds, Rank2Types #-}
{-# LANGUAGE ScopedTypeVariables, StandaloneDeriving, TypeOperators, UndecidableInstances #-}
{-# LANGUAGE EmptyCase #-}
module Rank2 (
Functor(..), Apply(..), Applicative(..),
Foldable(..), Traversable(..), Distributive(..), DistributiveTraversable(..), distributeJoin,
Compose(..), Empty(..), Only(..), Flip(..), Identity(..), Product(..), Sum(..), Arrow(..), type (~>),
($), fst, snd, ap, fmap, liftA4, liftA5,
fmapTraverse, liftA2Traverse1, liftA2Traverse2, liftA2TraverseBoth,
distributeWith, distributeWithTraversable)
where
import qualified Control.Applicative as Rank1
import qualified Control.Monad as Rank1
import qualified Data.Foldable as Rank1
import qualified Data.Traversable as Rank1
import qualified Data.Functor.Compose as Rank1
import qualified Data.Distributive as Rank1
import Data.Coerce (coerce)
import Data.Semigroup (Semigroup(..))
import Data.Monoid (Monoid(..))
import Data.Functor.Const (Const(..))
import Data.Functor.Product (Product(Pair))
import Data.Functor.Sum (Sum(InL, InR))
import Data.Proxy (Proxy(..))
import qualified GHC.Generics as Generics
import Prelude hiding (Foldable(..), Traversable(..), Functor(..), Applicative(..), ($), (<$>), fst, snd)
fst :: Product g h p -> g p
fst :: Product g h p -> g p
fst (Pair g p
x h p
_) = g p
x
snd :: Product g h p -> h p
snd :: Product g h p -> h p
snd (Pair g p
_ h p
y) = h p
y
class Functor g where
(<$>) :: (forall a. p a -> q a) -> g p -> g q
infixl 4 <$>
fmap :: Functor g => (forall a. p a -> q a) -> g p -> g q
fmap :: (forall (a :: k). p a -> q a) -> g p -> g q
fmap forall (a :: k). p a -> q a
f g p
g = forall (a :: k). p a -> q a
f (forall (a :: k). p a -> q a) -> g p -> g q
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *).
Functor g =>
(forall (a :: k). p a -> q a) -> g p -> g q
<$> g p
g
{-# INLINE fmap #-}
class Foldable g where
foldMap :: Monoid m => (forall a. p a -> m) -> g p -> m
class (Functor g, Foldable g) => Traversable g where
{-# MINIMAL traverse | sequence #-}
traverse :: Rank1.Applicative m => (forall a. p a -> m (q a)) -> g p -> m (g q)
sequence :: Rank1.Applicative m => g (Rank1.Compose m p) -> m (g p)
traverse forall (a :: k). p a -> m (q a)
f = g (Compose m q) -> m (g q)
forall k (g :: (k -> *) -> *) (m :: * -> *) (p :: k -> *).
(Traversable g, Applicative m) =>
g (Compose m p) -> m (g p)
sequence (g (Compose m q) -> m (g q))
-> (g p -> g (Compose m q)) -> g p -> m (g q)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall (a :: k). p a -> Compose m q a) -> g p -> g (Compose m q)
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *).
Functor g =>
(forall (a :: k). p a -> q a) -> g p -> g q
fmap (m (q a) -> Compose m q a
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Rank1.Compose (m (q a) -> Compose m q a)
-> (p a -> m (q a)) -> p a -> Compose m q a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. p a -> m (q a)
forall (a :: k). p a -> m (q a)
f)
sequence = (forall (a :: k). Compose m p a -> m (p a))
-> g (Compose m p) -> m (g p)
forall k (g :: (k -> *) -> *) (m :: * -> *) (p :: k -> *)
(q :: k -> *).
(Traversable g, Applicative m) =>
(forall (a :: k). p a -> m (q a)) -> g p -> m (g q)
traverse forall (a :: k). Compose m p a -> m (p a)
forall k1 (f :: k1 -> *) k2 (g :: k2 -> k1) (a :: k2).
Compose f g a -> f (g a)
Rank1.getCompose
newtype Arrow p q a = Arrow{Arrow p q a -> p a -> q a
apply :: p a -> q a}
type (~>) = Arrow
($) :: Arrow p q a -> p a -> q a
$ :: Arrow p q a -> p a -> q a
($) = Arrow p q a -> p a -> q a
forall k (p :: k -> *) (q :: k -> *) (a :: k).
Arrow p q a -> p a -> q a
apply
infixr 0 ~>
infixr 0 $
class Functor g => Apply g where
{-# MINIMAL liftA2 | (<*>) #-}
(<*>) :: g (p ~> q) -> g p -> g q
liftA2 :: (forall a. p a -> q a -> r a) -> g p -> g q -> g r
liftA3 :: (forall a. p a -> q a -> r a -> s a) -> g p -> g q -> g r -> g s
(<*>) = (forall (a :: k). (~>) p q a -> p a -> q a)
-> g (p ~> q) -> g p -> g q
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *)
(r :: k -> *).
Apply g =>
(forall (a :: k). p a -> q a -> r a) -> g p -> g q -> g r
liftA2 forall (a :: k). (~>) p q a -> p a -> q a
forall k (p :: k -> *) (q :: k -> *) (a :: k).
Arrow p q a -> p a -> q a
apply
liftA2 forall (a :: k). p a -> q a -> r a
f g p
g g q
h = ((q a -> r a) -> Arrow q r a
forall k (p :: k -> *) (q :: k -> *) (a :: k).
(p a -> q a) -> Arrow p q a
Arrow ((q a -> r a) -> Arrow q r a)
-> (p a -> q a -> r a) -> p a -> Arrow q r a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. p a -> q a -> r a
forall (a :: k). p a -> q a -> r a
f) (forall (a :: k). p a -> Arrow q r a) -> g p -> g (q ~> r)
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *).
Functor g =>
(forall (a :: k). p a -> q a) -> g p -> g q
<$> g p
g g (q ~> r) -> g q -> g r
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *).
Apply g =>
g (p ~> q) -> g p -> g q
<*> g q
h
liftA3 forall (a :: k). p a -> q a -> r a -> s a
f g p
g g q
h g r
i = (forall (a :: k). p a -> q a -> (~>) r s a)
-> g p -> g q -> g (r ~> s)
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *)
(r :: k -> *).
Apply g =>
(forall (a :: k). p a -> q a -> r a) -> g p -> g q -> g r
liftA2 (\p a
p q a
q-> (r a -> s a) -> (~>) r s a
forall k (p :: k -> *) (q :: k -> *) (a :: k).
(p a -> q a) -> Arrow p q a
Arrow (p a -> q a -> r a -> s a
forall (a :: k). p a -> q a -> r a -> s a
f p a
p q a
q)) g p
g g q
h g (r ~> s) -> g r -> g s
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *).
Apply g =>
g (p ~> q) -> g p -> g q
<*> g r
i
infixl 4 <*>
liftA4 :: Apply g => (forall a. p a -> q a -> r a -> s a -> t a) -> g p -> g q -> g r -> g s -> g t
liftA4 :: (forall (a :: k). p a -> q a -> r a -> s a -> t a)
-> g p -> g q -> g r -> g s -> g t
liftA4 forall (a :: k). p a -> q a -> r a -> s a -> t a
f g p
g g q
h g r
i g s
j = (forall (a :: k). p a -> q a -> r a -> (~>) s t a)
-> g p -> g q -> g r -> g (s ~> t)
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *)
(r :: k -> *) (s :: k -> *).
Apply g =>
(forall (a :: k). p a -> q a -> r a -> s a)
-> g p -> g q -> g r -> g s
liftA3 (\p a
p q a
q r a
r-> (s a -> t a) -> (~>) s t a
forall k (p :: k -> *) (q :: k -> *) (a :: k).
(p a -> q a) -> Arrow p q a
Arrow (p a -> q a -> r a -> s a -> t a
forall (a :: k). p a -> q a -> r a -> s a -> t a
f p a
p q a
q r a
r)) g p
g g q
h g r
i g (s ~> t) -> g s -> g t
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *).
Apply g =>
g (p ~> q) -> g p -> g q
<*> g s
j
liftA5 :: Apply g => (forall a. p a -> q a -> r a -> s a -> t a -> u a) -> g p -> g q -> g r -> g s -> g t -> g u
liftA5 :: (forall (a :: k). p a -> q a -> r a -> s a -> t a -> u a)
-> g p -> g q -> g r -> g s -> g t -> g u
liftA5 forall (a :: k). p a -> q a -> r a -> s a -> t a -> u a
f g p
g1 g q
g2 g r
g3 g s
g4 g t
g5 = (forall (a :: k). p a -> q a -> r a -> s a -> (~>) t u a)
-> g p -> g q -> g r -> g s -> g (t ~> u)
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *)
(r :: k -> *) (s :: k -> *) (t :: k -> *).
Apply g =>
(forall (a :: k). p a -> q a -> r a -> s a -> t a)
-> g p -> g q -> g r -> g s -> g t
liftA4 (\p a
p q a
q r a
r s a
s-> (t a -> u a) -> (~>) t u a
forall k (p :: k -> *) (q :: k -> *) (a :: k).
(p a -> q a) -> Arrow p q a
Arrow (p a -> q a -> r a -> s a -> t a -> u a
forall (a :: k). p a -> q a -> r a -> s a -> t a -> u a
f p a
p q a
q r a
r s a
s)) g p
g1 g q
g2 g r
g3 g s
g4 g (t ~> u) -> g t -> g u
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *).
Apply g =>
g (p ~> q) -> g p -> g q
<*> g t
g5
ap :: Apply g => g (p ~> q) -> g p -> g q
ap :: g (p ~> q) -> g p -> g q
ap = g (p ~> q) -> g p -> g q
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *).
Apply g =>
g (p ~> q) -> g p -> g q
(<*>)
class Apply g => Applicative g where
pure :: (forall a. f a) -> g f
class DistributiveTraversable g => Distributive g where
{-# MINIMAL cotraverse|distribute #-}
collect :: Rank1.Functor f1 => (a -> g f2) -> f1 a -> g (Rank1.Compose f1 f2)
distribute :: Rank1.Functor f1 => f1 (g f2) -> g (Rank1.Compose f1 f2)
cotraverse :: Rank1.Functor m => (forall a. m (p a) -> q a) -> m (g p) -> g q
collect a -> g f2
f = f1 (g f2) -> g (Compose f1 f2)
forall k (g :: (k -> *) -> *) (f1 :: * -> *) (f2 :: k -> *).
(Distributive g, Functor f1) =>
f1 (g f2) -> g (Compose f1 f2)
distribute (f1 (g f2) -> g (Compose f1 f2))
-> (f1 a -> f1 (g f2)) -> f1 a -> g (Compose f1 f2)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> g f2) -> f1 a -> f1 (g f2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.fmap a -> g f2
f
distribute = (forall (a :: k). f1 (f2 a) -> Compose f1 f2 a)
-> f1 (g f2) -> g (Compose f1 f2)
forall k (g :: (k -> *) -> *) (m :: * -> *) (p :: k -> *)
(q :: k -> *).
(Distributive g, Functor m) =>
(forall (a :: k). m (p a) -> q a) -> m (g p) -> g q
cotraverse forall (a :: k). f1 (f2 a) -> Compose f1 f2 a
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Rank1.Compose
cotraverse forall (a :: k). m (p a) -> q a
f = ((forall (a :: k). Compose m p a -> q a) -> g (Compose m p) -> g q
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *).
Functor g =>
(forall (a :: k). p a -> q a) -> g p -> g q
fmap (m (p a) -> q a
forall (a :: k). m (p a) -> q a
f (m (p a) -> q a)
-> (Compose m p a -> m (p a)) -> Compose m p a -> q a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Compose m p a -> m (p a)
forall k1 (f :: k1 -> *) k2 (g :: k2 -> k1) (a :: k2).
Compose f g a -> f (g a)
Rank1.getCompose)) (g (Compose m p) -> g q)
-> (m (g p) -> g (Compose m p)) -> m (g p) -> g q
forall b c a. (b -> c) -> (a -> b) -> a -> c
. m (g p) -> g (Compose m p)
forall k (g :: (k -> *) -> *) (f1 :: * -> *) (f2 :: k -> *).
(Distributive g, Functor f1) =>
f1 (g f2) -> g (Compose f1 f2)
distribute
class Functor g => DistributiveTraversable (g :: (k -> *) -> *) where
collectTraversable :: Rank1.Traversable f1 => (a -> g f2) -> f1 a -> g (Rank1.Compose f1 f2)
distributeTraversable :: Rank1.Traversable f1 => f1 (g f2) -> g (Rank1.Compose f1 f2)
cotraverseTraversable :: Rank1.Traversable f1 => (forall x. f1 (f2 x) -> f x) -> f1 (g f2) -> g f
collectTraversable a -> g f2
f = f1 (g f2) -> g (Compose f1 f2)
forall k (g :: (k -> *) -> *) (f1 :: * -> *) (f2 :: k -> *).
(DistributiveTraversable g, Traversable f1) =>
f1 (g f2) -> g (Compose f1 f2)
distributeTraversable (f1 (g f2) -> g (Compose f1 f2))
-> (f1 a -> f1 (g f2)) -> f1 a -> g (Compose f1 f2)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> g f2) -> f1 a -> f1 (g f2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.fmap a -> g f2
f
distributeTraversable = (forall (x :: k). f1 (f2 x) -> Compose f1 f2 x)
-> f1 (g f2) -> g (Compose f1 f2)
forall k (g :: (k -> *) -> *) (f1 :: * -> *) (f2 :: k -> *)
(f :: k -> *).
(DistributiveTraversable g, Traversable f1) =>
(forall (x :: k). f1 (f2 x) -> f x) -> f1 (g f2) -> g f
cotraverseTraversable forall (x :: k). f1 (f2 x) -> Compose f1 f2 x
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Rank1.Compose
default cotraverseTraversable :: (Rank1.Traversable m, Distributive g) =>
(forall a. m (p a) -> q a) -> m (g p) -> g q
cotraverseTraversable = (forall (a :: k). m (p a) -> q a) -> m (g p) -> g q
forall k (g :: (k -> *) -> *) (m :: * -> *) (p :: k -> *)
(q :: k -> *).
(Distributive g, Functor m) =>
(forall (a :: k). m (p a) -> q a) -> m (g p) -> g q
cotraverse
distributeJoin :: (Distributive g, Rank1.Monad f) => f (g f) -> g f
distributeJoin :: f (g f) -> g f
distributeJoin = (forall a. f (f a) -> f a) -> f (g f) -> g f
forall k (g :: (k -> *) -> *) (m :: * -> *) (p :: k -> *)
(q :: k -> *).
(Distributive g, Functor m) =>
(forall (a :: k). m (p a) -> q a) -> m (g p) -> g q
cotraverse forall a. f (f a) -> f a
forall (m :: * -> *) a. Monad m => m (m a) -> m a
Rank1.join
fmapTraverse :: (DistributiveTraversable g, Rank1.Traversable f) => (forall a. f (t a) -> u a) -> f (g t) -> g u
fmapTraverse :: (forall (a :: k). f (t a) -> u a) -> f (g t) -> g u
fmapTraverse forall (a :: k). f (t a) -> u a
f f (g t)
x = (forall (a :: k). Compose f t a -> u a) -> g (Compose f t) -> g u
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *).
Functor g =>
(forall (a :: k). p a -> q a) -> g p -> g q
fmap (f (t a) -> u a
forall (a :: k). f (t a) -> u a
f (f (t a) -> u a)
-> (Compose f t a -> f (t a)) -> Compose f t a -> u a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Compose f t a -> f (t a)
forall k1 (f :: k1 -> *) k2 (g :: k2 -> k1) (a :: k2).
Compose f g a -> f (g a)
Rank1.getCompose) (f (g t) -> g (Compose f t)
forall k (g :: (k -> *) -> *) (f1 :: * -> *) (f2 :: k -> *).
(DistributiveTraversable g, Traversable f1) =>
f1 (g f2) -> g (Compose f1 f2)
distributeTraversable f (g t)
x)
liftA2Traverse1 :: (Apply g, DistributiveTraversable g, Rank1.Traversable f) =>
(forall a. f (t a) -> u a -> v a) -> f (g t) -> g u -> g v
liftA2Traverse1 :: (forall (a :: k). f (t a) -> u a -> v a) -> f (g t) -> g u -> g v
liftA2Traverse1 forall (a :: k). f (t a) -> u a -> v a
f f (g t)
x = (forall (a :: k). Compose f t a -> u a -> v a)
-> g (Compose f t) -> g u -> g v
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *)
(r :: k -> *).
Apply g =>
(forall (a :: k). p a -> q a -> r a) -> g p -> g q -> g r
liftA2 (f (t a) -> u a -> v a
forall (a :: k). f (t a) -> u a -> v a
f (f (t a) -> u a -> v a)
-> (Compose f t a -> f (t a)) -> Compose f t a -> u a -> v a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Compose f t a -> f (t a)
forall k1 (f :: k1 -> *) k2 (g :: k2 -> k1) (a :: k2).
Compose f g a -> f (g a)
Rank1.getCompose) (f (g t) -> g (Compose f t)
forall k (g :: (k -> *) -> *) (f1 :: * -> *) (f2 :: k -> *).
(DistributiveTraversable g, Traversable f1) =>
f1 (g f2) -> g (Compose f1 f2)
distributeTraversable f (g t)
x)
liftA2Traverse2 :: (Apply g, DistributiveTraversable g, Rank1.Traversable f) =>
(forall a. t a -> f (u a) -> v a) -> g t -> f (g u) -> g v
liftA2Traverse2 :: (forall (a :: k). t a -> f (u a) -> v a) -> g t -> f (g u) -> g v
liftA2Traverse2 forall (a :: k). t a -> f (u a) -> v a
f g t
x f (g u)
y = (forall (a :: k). t a -> Compose f u a -> v a)
-> g t -> g (Compose f u) -> g v
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *)
(r :: k -> *).
Apply g =>
(forall (a :: k). p a -> q a -> r a) -> g p -> g q -> g r
liftA2 (\t a
x' Compose f u a
y' -> t a -> f (u a) -> v a
forall (a :: k). t a -> f (u a) -> v a
f t a
x' (Compose f u a -> f (u a)
forall k1 (f :: k1 -> *) k2 (g :: k2 -> k1) (a :: k2).
Compose f g a -> f (g a)
Rank1.getCompose Compose f u a
y')) g t
x (f (g u) -> g (Compose f u)
forall k (g :: (k -> *) -> *) (f1 :: * -> *) (f2 :: k -> *).
(DistributiveTraversable g, Traversable f1) =>
f1 (g f2) -> g (Compose f1 f2)
distributeTraversable f (g u)
y)
liftA2TraverseBoth :: (Apply g, DistributiveTraversable g, Rank1.Traversable f1, Rank1.Traversable f2) =>
(forall a. f1 (t a) -> f2 (u a) -> v a) -> f1 (g t) -> f2 (g u) -> g v
liftA2TraverseBoth :: (forall (a :: k). f1 (t a) -> f2 (u a) -> v a)
-> f1 (g t) -> f2 (g u) -> g v
liftA2TraverseBoth forall (a :: k). f1 (t a) -> f2 (u a) -> v a
f f1 (g t)
x f2 (g u)
y = (forall (a :: k). Compose f1 t a -> Compose f2 u a -> v a)
-> g (Compose f1 t) -> g (Compose f2 u) -> g v
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *)
(r :: k -> *).
Apply g =>
(forall (a :: k). p a -> q a -> r a) -> g p -> g q -> g r
liftA2 forall (a :: k). Compose f1 t a -> Compose f2 u a -> v a
applyCompose (f1 (g t) -> g (Compose f1 t)
forall k (g :: (k -> *) -> *) (f1 :: * -> *) (f2 :: k -> *).
(DistributiveTraversable g, Traversable f1) =>
f1 (g f2) -> g (Compose f1 f2)
distributeTraversable f1 (g t)
x) (f2 (g u) -> g (Compose f2 u)
forall k (g :: (k -> *) -> *) (f1 :: * -> *) (f2 :: k -> *).
(DistributiveTraversable g, Traversable f1) =>
f1 (g f2) -> g (Compose f1 f2)
distributeTraversable f2 (g u)
y)
where applyCompose :: Compose f1 t a -> Compose f2 u a -> v a
applyCompose Compose f1 t a
x' Compose f2 u a
y' = f1 (t a) -> f2 (u a) -> v a
forall (a :: k). f1 (t a) -> f2 (u a) -> v a
f (Compose f1 t a -> f1 (t a)
forall k1 (f :: k1 -> *) k2 (g :: k2 -> k1) (a :: k2).
Compose f g a -> f (g a)
Rank1.getCompose Compose f1 t a
x') (Compose f2 u a -> f2 (u a)
forall k1 (f :: k1 -> *) k2 (g :: k2 -> k1) (a :: k2).
Compose f g a -> f (g a)
Rank1.getCompose Compose f2 u a
y')
{-# DEPRECATED distributeWith "Use cotraverse instead." #-}
distributeWith :: (Distributive g, Rank1.Functor f) => (forall i. f (a i) -> b i) -> f (g a) -> g b
distributeWith :: (forall (i :: k). f (a i) -> b i) -> f (g a) -> g b
distributeWith = (forall (i :: k). f (a i) -> b i) -> f (g a) -> g b
forall k (g :: (k -> *) -> *) (m :: * -> *) (p :: k -> *)
(q :: k -> *).
(Distributive g, Functor m) =>
(forall (a :: k). m (p a) -> q a) -> m (g p) -> g q
cotraverse
{-# DEPRECATED distributeWithTraversable "Use cotraverseTraversable instead." #-}
distributeWithTraversable :: (DistributiveTraversable g, Rank1.Traversable m) =>
(forall a. m (p a) -> q a) -> m (g p) -> g q
distributeWithTraversable :: (forall (a :: k). m (p a) -> q a) -> m (g p) -> g q
distributeWithTraversable = (forall (a :: k). m (p a) -> q a) -> m (g p) -> g q
forall k (g :: (k -> *) -> *) (f1 :: * -> *) (f2 :: k -> *)
(f :: k -> *).
(DistributiveTraversable g, Traversable f1) =>
(forall (x :: k). f1 (f2 x) -> f x) -> f1 (g f2) -> g f
cotraverseTraversable
data Empty f = Empty deriving (Empty f -> Empty f -> Bool
(Empty f -> Empty f -> Bool)
-> (Empty f -> Empty f -> Bool) -> Eq (Empty f)
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
forall k (f :: k). Empty f -> Empty f -> Bool
/= :: Empty f -> Empty f -> Bool
$c/= :: forall k (f :: k). Empty f -> Empty f -> Bool
== :: Empty f -> Empty f -> Bool
$c== :: forall k (f :: k). Empty f -> Empty f -> Bool
Eq, Eq (Empty f)
Eq (Empty f)
-> (Empty f -> Empty f -> Ordering)
-> (Empty f -> Empty f -> Bool)
-> (Empty f -> Empty f -> Bool)
-> (Empty f -> Empty f -> Bool)
-> (Empty f -> Empty f -> Bool)
-> (Empty f -> Empty f -> Empty f)
-> (Empty f -> Empty f -> Empty f)
-> Ord (Empty f)
Empty f -> Empty f -> Bool
Empty f -> Empty f -> Ordering
Empty f -> Empty f -> Empty f
forall a.
Eq a
-> (a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
forall k (f :: k). Eq (Empty f)
forall k (f :: k). Empty f -> Empty f -> Bool
forall k (f :: k). Empty f -> Empty f -> Ordering
forall k (f :: k). Empty f -> Empty f -> Empty f
min :: Empty f -> Empty f -> Empty f
$cmin :: forall k (f :: k). Empty f -> Empty f -> Empty f
max :: Empty f -> Empty f -> Empty f
$cmax :: forall k (f :: k). Empty f -> Empty f -> Empty f
>= :: Empty f -> Empty f -> Bool
$c>= :: forall k (f :: k). Empty f -> Empty f -> Bool
> :: Empty f -> Empty f -> Bool
$c> :: forall k (f :: k). Empty f -> Empty f -> Bool
<= :: Empty f -> Empty f -> Bool
$c<= :: forall k (f :: k). Empty f -> Empty f -> Bool
< :: Empty f -> Empty f -> Bool
$c< :: forall k (f :: k). Empty f -> Empty f -> Bool
compare :: Empty f -> Empty f -> Ordering
$ccompare :: forall k (f :: k). Empty f -> Empty f -> Ordering
$cp1Ord :: forall k (f :: k). Eq (Empty f)
Ord, Int -> Empty f -> ShowS
[Empty f] -> ShowS
Empty f -> String
(Int -> Empty f -> ShowS)
-> (Empty f -> String) -> ([Empty f] -> ShowS) -> Show (Empty f)
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
forall k (f :: k). Int -> Empty f -> ShowS
forall k (f :: k). [Empty f] -> ShowS
forall k (f :: k). Empty f -> String
showList :: [Empty f] -> ShowS
$cshowList :: forall k (f :: k). [Empty f] -> ShowS
show :: Empty f -> String
$cshow :: forall k (f :: k). Empty f -> String
showsPrec :: Int -> Empty f -> ShowS
$cshowsPrec :: forall k (f :: k). Int -> Empty f -> ShowS
Show)
newtype Only a f = Only {Only a f -> f a
fromOnly :: f a} deriving (Only a f -> Only a f -> Bool
(Only a f -> Only a f -> Bool)
-> (Only a f -> Only a f -> Bool) -> Eq (Only a f)
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
forall k (a :: k) (f :: k -> *).
Eq (f a) =>
Only a f -> Only a f -> Bool
/= :: Only a f -> Only a f -> Bool
$c/= :: forall k (a :: k) (f :: k -> *).
Eq (f a) =>
Only a f -> Only a f -> Bool
== :: Only a f -> Only a f -> Bool
$c== :: forall k (a :: k) (f :: k -> *).
Eq (f a) =>
Only a f -> Only a f -> Bool
Eq, Eq (Only a f)
Eq (Only a f)
-> (Only a f -> Only a f -> Ordering)
-> (Only a f -> Only a f -> Bool)
-> (Only a f -> Only a f -> Bool)
-> (Only a f -> Only a f -> Bool)
-> (Only a f -> Only a f -> Bool)
-> (Only a f -> Only a f -> Only a f)
-> (Only a f -> Only a f -> Only a f)
-> Ord (Only a f)
Only a f -> Only a f -> Bool
Only a f -> Only a f -> Ordering
Only a f -> Only a f -> Only a f
forall a.
Eq a
-> (a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
forall k (a :: k) (f :: k -> *). Ord (f a) => Eq (Only a f)
forall k (a :: k) (f :: k -> *).
Ord (f a) =>
Only a f -> Only a f -> Bool
forall k (a :: k) (f :: k -> *).
Ord (f a) =>
Only a f -> Only a f -> Ordering
forall k (a :: k) (f :: k -> *).
Ord (f a) =>
Only a f -> Only a f -> Only a f
min :: Only a f -> Only a f -> Only a f
$cmin :: forall k (a :: k) (f :: k -> *).
Ord (f a) =>
Only a f -> Only a f -> Only a f
max :: Only a f -> Only a f -> Only a f
$cmax :: forall k (a :: k) (f :: k -> *).
Ord (f a) =>
Only a f -> Only a f -> Only a f
>= :: Only a f -> Only a f -> Bool
$c>= :: forall k (a :: k) (f :: k -> *).
Ord (f a) =>
Only a f -> Only a f -> Bool
> :: Only a f -> Only a f -> Bool
$c> :: forall k (a :: k) (f :: k -> *).
Ord (f a) =>
Only a f -> Only a f -> Bool
<= :: Only a f -> Only a f -> Bool
$c<= :: forall k (a :: k) (f :: k -> *).
Ord (f a) =>
Only a f -> Only a f -> Bool
< :: Only a f -> Only a f -> Bool
$c< :: forall k (a :: k) (f :: k -> *).
Ord (f a) =>
Only a f -> Only a f -> Bool
compare :: Only a f -> Only a f -> Ordering
$ccompare :: forall k (a :: k) (f :: k -> *).
Ord (f a) =>
Only a f -> Only a f -> Ordering
$cp1Ord :: forall k (a :: k) (f :: k -> *). Ord (f a) => Eq (Only a f)
Ord, Int -> Only a f -> ShowS
[Only a f] -> ShowS
Only a f -> String
(Int -> Only a f -> ShowS)
-> (Only a f -> String) -> ([Only a f] -> ShowS) -> Show (Only a f)
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
forall k (a :: k) (f :: k -> *).
Show (f a) =>
Int -> Only a f -> ShowS
forall k (a :: k) (f :: k -> *). Show (f a) => [Only a f] -> ShowS
forall k (a :: k) (f :: k -> *). Show (f a) => Only a f -> String
showList :: [Only a f] -> ShowS
$cshowList :: forall k (a :: k) (f :: k -> *). Show (f a) => [Only a f] -> ShowS
show :: Only a f -> String
$cshow :: forall k (a :: k) (f :: k -> *). Show (f a) => Only a f -> String
showsPrec :: Int -> Only a f -> ShowS
$cshowsPrec :: forall k (a :: k) (f :: k -> *).
Show (f a) =>
Int -> Only a f -> ShowS
Show)
newtype Identity g f = Identity {Identity g f -> g f
runIdentity :: g f} deriving (Identity g f -> Identity g f -> Bool
(Identity g f -> Identity g f -> Bool)
-> (Identity g f -> Identity g f -> Bool) -> Eq (Identity g f)
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
forall k (g :: k -> *) (f :: k).
Eq (g f) =>
Identity g f -> Identity g f -> Bool
/= :: Identity g f -> Identity g f -> Bool
$c/= :: forall k (g :: k -> *) (f :: k).
Eq (g f) =>
Identity g f -> Identity g f -> Bool
== :: Identity g f -> Identity g f -> Bool
$c== :: forall k (g :: k -> *) (f :: k).
Eq (g f) =>
Identity g f -> Identity g f -> Bool
Eq, Eq (Identity g f)
Eq (Identity g f)
-> (Identity g f -> Identity g f -> Ordering)
-> (Identity g f -> Identity g f -> Bool)
-> (Identity g f -> Identity g f -> Bool)
-> (Identity g f -> Identity g f -> Bool)
-> (Identity g f -> Identity g f -> Bool)
-> (Identity g f -> Identity g f -> Identity g f)
-> (Identity g f -> Identity g f -> Identity g f)
-> Ord (Identity g f)
Identity g f -> Identity g f -> Bool
Identity g f -> Identity g f -> Ordering
Identity g f -> Identity g f -> Identity g f
forall a.
Eq a
-> (a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
forall k (g :: k -> *) (f :: k). Ord (g f) => Eq (Identity g f)
forall k (g :: k -> *) (f :: k).
Ord (g f) =>
Identity g f -> Identity g f -> Bool
forall k (g :: k -> *) (f :: k).
Ord (g f) =>
Identity g f -> Identity g f -> Ordering
forall k (g :: k -> *) (f :: k).
Ord (g f) =>
Identity g f -> Identity g f -> Identity g f
min :: Identity g f -> Identity g f -> Identity g f
$cmin :: forall k (g :: k -> *) (f :: k).
Ord (g f) =>
Identity g f -> Identity g f -> Identity g f
max :: Identity g f -> Identity g f -> Identity g f
$cmax :: forall k (g :: k -> *) (f :: k).
Ord (g f) =>
Identity g f -> Identity g f -> Identity g f
>= :: Identity g f -> Identity g f -> Bool
$c>= :: forall k (g :: k -> *) (f :: k).
Ord (g f) =>
Identity g f -> Identity g f -> Bool
> :: Identity g f -> Identity g f -> Bool
$c> :: forall k (g :: k -> *) (f :: k).
Ord (g f) =>
Identity g f -> Identity g f -> Bool
<= :: Identity g f -> Identity g f -> Bool
$c<= :: forall k (g :: k -> *) (f :: k).
Ord (g f) =>
Identity g f -> Identity g f -> Bool
< :: Identity g f -> Identity g f -> Bool
$c< :: forall k (g :: k -> *) (f :: k).
Ord (g f) =>
Identity g f -> Identity g f -> Bool
compare :: Identity g f -> Identity g f -> Ordering
$ccompare :: forall k (g :: k -> *) (f :: k).
Ord (g f) =>
Identity g f -> Identity g f -> Ordering
$cp1Ord :: forall k (g :: k -> *) (f :: k). Ord (g f) => Eq (Identity g f)
Ord, Int -> Identity g f -> ShowS
[Identity g f] -> ShowS
Identity g f -> String
(Int -> Identity g f -> ShowS)
-> (Identity g f -> String)
-> ([Identity g f] -> ShowS)
-> Show (Identity g f)
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
forall k (g :: k -> *) (f :: k).
Show (g f) =>
Int -> Identity g f -> ShowS
forall k (g :: k -> *) (f :: k).
Show (g f) =>
[Identity g f] -> ShowS
forall k (g :: k -> *) (f :: k).
Show (g f) =>
Identity g f -> String
showList :: [Identity g f] -> ShowS
$cshowList :: forall k (g :: k -> *) (f :: k).
Show (g f) =>
[Identity g f] -> ShowS
show :: Identity g f -> String
$cshow :: forall k (g :: k -> *) (f :: k).
Show (g f) =>
Identity g f -> String
showsPrec :: Int -> Identity g f -> ShowS
$cshowsPrec :: forall k (g :: k -> *) (f :: k).
Show (g f) =>
Int -> Identity g f -> ShowS
Show)
newtype Compose g p q = Compose {Compose g p q -> g (Compose p q)
getCompose :: g (Rank1.Compose p q)}
deriving instance Eq (g (Rank1.Compose p q)) => Eq (Compose g p q)
deriving instance Ord (g (Rank1.Compose p q)) => Ord (Compose g p q)
deriving instance Show (g (Rank1.Compose p q)) => Show (Compose g p q)
newtype Flip g a f = Flip {Flip g a f -> g (f a)
unFlip :: g (f a)} deriving (Flip g a f -> Flip g a f -> Bool
(Flip g a f -> Flip g a f -> Bool)
-> (Flip g a f -> Flip g a f -> Bool) -> Eq (Flip g a f)
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
forall k (g :: k -> *) k (a :: k) (f :: k -> k).
Eq (g (f a)) =>
Flip g a f -> Flip g a f -> Bool
/= :: Flip g a f -> Flip g a f -> Bool
$c/= :: forall k (g :: k -> *) k (a :: k) (f :: k -> k).
Eq (g (f a)) =>
Flip g a f -> Flip g a f -> Bool
== :: Flip g a f -> Flip g a f -> Bool
$c== :: forall k (g :: k -> *) k (a :: k) (f :: k -> k).
Eq (g (f a)) =>
Flip g a f -> Flip g a f -> Bool
Eq, Eq (Flip g a f)
Eq (Flip g a f)
-> (Flip g a f -> Flip g a f -> Ordering)
-> (Flip g a f -> Flip g a f -> Bool)
-> (Flip g a f -> Flip g a f -> Bool)
-> (Flip g a f -> Flip g a f -> Bool)
-> (Flip g a f -> Flip g a f -> Bool)
-> (Flip g a f -> Flip g a f -> Flip g a f)
-> (Flip g a f -> Flip g a f -> Flip g a f)
-> Ord (Flip g a f)
Flip g a f -> Flip g a f -> Bool
Flip g a f -> Flip g a f -> Ordering
Flip g a f -> Flip g a f -> Flip g a f
forall a.
Eq a
-> (a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
forall k (g :: k -> *) k (a :: k) (f :: k -> k).
Ord (g (f a)) =>
Eq (Flip g a f)
forall k (g :: k -> *) k (a :: k) (f :: k -> k).
Ord (g (f a)) =>
Flip g a f -> Flip g a f -> Bool
forall k (g :: k -> *) k (a :: k) (f :: k -> k).
Ord (g (f a)) =>
Flip g a f -> Flip g a f -> Ordering
forall k (g :: k -> *) k (a :: k) (f :: k -> k).
Ord (g (f a)) =>
Flip g a f -> Flip g a f -> Flip g a f
min :: Flip g a f -> Flip g a f -> Flip g a f
$cmin :: forall k (g :: k -> *) k (a :: k) (f :: k -> k).
Ord (g (f a)) =>
Flip g a f -> Flip g a f -> Flip g a f
max :: Flip g a f -> Flip g a f -> Flip g a f
$cmax :: forall k (g :: k -> *) k (a :: k) (f :: k -> k).
Ord (g (f a)) =>
Flip g a f -> Flip g a f -> Flip g a f
>= :: Flip g a f -> Flip g a f -> Bool
$c>= :: forall k (g :: k -> *) k (a :: k) (f :: k -> k).
Ord (g (f a)) =>
Flip g a f -> Flip g a f -> Bool
> :: Flip g a f -> Flip g a f -> Bool
$c> :: forall k (g :: k -> *) k (a :: k) (f :: k -> k).
Ord (g (f a)) =>
Flip g a f -> Flip g a f -> Bool
<= :: Flip g a f -> Flip g a f -> Bool
$c<= :: forall k (g :: k -> *) k (a :: k) (f :: k -> k).
Ord (g (f a)) =>
Flip g a f -> Flip g a f -> Bool
< :: Flip g a f -> Flip g a f -> Bool
$c< :: forall k (g :: k -> *) k (a :: k) (f :: k -> k).
Ord (g (f a)) =>
Flip g a f -> Flip g a f -> Bool
compare :: Flip g a f -> Flip g a f -> Ordering
$ccompare :: forall k (g :: k -> *) k (a :: k) (f :: k -> k).
Ord (g (f a)) =>
Flip g a f -> Flip g a f -> Ordering
$cp1Ord :: forall k (g :: k -> *) k (a :: k) (f :: k -> k).
Ord (g (f a)) =>
Eq (Flip g a f)
Ord, Int -> Flip g a f -> ShowS
[Flip g a f] -> ShowS
Flip g a f -> String
(Int -> Flip g a f -> ShowS)
-> (Flip g a f -> String)
-> ([Flip g a f] -> ShowS)
-> Show (Flip g a f)
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
forall k (g :: k -> *) k (a :: k) (f :: k -> k).
Show (g (f a)) =>
Int -> Flip g a f -> ShowS
forall k (g :: k -> *) k (a :: k) (f :: k -> k).
Show (g (f a)) =>
[Flip g a f] -> ShowS
forall k (g :: k -> *) k (a :: k) (f :: k -> k).
Show (g (f a)) =>
Flip g a f -> String
showList :: [Flip g a f] -> ShowS
$cshowList :: forall k (g :: k -> *) k (a :: k) (f :: k -> k).
Show (g (f a)) =>
[Flip g a f] -> ShowS
show :: Flip g a f -> String
$cshow :: forall k (g :: k -> *) k (a :: k) (f :: k -> k).
Show (g (f a)) =>
Flip g a f -> String
showsPrec :: Int -> Flip g a f -> ShowS
$cshowsPrec :: forall k (g :: k -> *) k (a :: k) (f :: k -> k).
Show (g (f a)) =>
Int -> Flip g a f -> ShowS
Show)
instance Semigroup (g (f a)) => Semigroup (Flip g a f) where
Flip g (f a)
x <> :: Flip g a f -> Flip g a f -> Flip g a f
<> Flip g (f a)
y = g (f a) -> Flip g a f
forall k k (g :: k -> *) (a :: k) (f :: k -> k).
g (f a) -> Flip g a f
Flip (g (f a)
x g (f a) -> g (f a) -> g (f a)
forall a. Semigroup a => a -> a -> a
<> g (f a)
y)
instance Monoid (g (f a)) => Monoid (Flip g a f) where
mempty :: Flip g a f
mempty = g (f a) -> Flip g a f
forall k k (g :: k -> *) (a :: k) (f :: k -> k).
g (f a) -> Flip g a f
Flip g (f a)
forall a. Monoid a => a
mempty
Flip g (f a)
x mappend :: Flip g a f -> Flip g a f -> Flip g a f
`mappend` Flip g (f a)
y = g (f a) -> Flip g a f
forall k k (g :: k -> *) (a :: k) (f :: k -> k).
g (f a) -> Flip g a f
Flip (g (f a)
x g (f a) -> g (f a) -> g (f a)
forall a. Monoid a => a -> a -> a
`mappend` g (f a)
y)
instance Rank1.Functor g => Rank2.Functor (Flip g a) where
forall (a :: k). p a -> q a
f <$> :: (forall (a :: k). p a -> q a) -> Flip g a p -> Flip g a q
<$> Flip g (p a)
g = g (q a) -> Flip g a q
forall k k (g :: k -> *) (a :: k) (f :: k -> k).
g (f a) -> Flip g a f
Flip (p a -> q a
forall (a :: k). p a -> q a
f (p a -> q a) -> g (p a) -> g (q a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.<$> g (p a)
g)
instance Rank1.Applicative g => Rank2.Apply (Flip g a) where
Flip g ((~>) p q a)
g <*> :: Flip g a (p ~> q) -> Flip g a p -> Flip g a q
<*> Flip g (p a)
h = g (q a) -> Flip g a q
forall k k (g :: k -> *) (a :: k) (f :: k -> k).
g (f a) -> Flip g a f
Flip ((~>) p q a -> p a -> q a
forall k (p :: k -> *) (q :: k -> *) (a :: k).
Arrow p q a -> p a -> q a
apply ((~>) p q a -> p a -> q a) -> g ((~>) p q a) -> g (p a -> q a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.<$> g ((~>) p q a)
g g (p a -> q a) -> g (p a) -> g (q a)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
Rank1.<*> g (p a)
h)
instance Rank1.Applicative g => Rank2.Applicative (Flip g a) where
pure :: (forall (a :: k). f a) -> Flip g a f
pure forall (a :: k). f a
f = g (f a) -> Flip g a f
forall k k (g :: k -> *) (a :: k) (f :: k -> k).
g (f a) -> Flip g a f
Flip (f a -> g (f a)
forall (f :: * -> *) a. Applicative f => a -> f a
Rank1.pure f a
forall (a :: k). f a
f)
instance Rank1.Foldable g => Rank2.Foldable (Flip g a) where
foldMap :: (forall (a :: k). p a -> m) -> Flip g a p -> m
foldMap forall (a :: k). p a -> m
f (Flip g (p a)
g) = (p a -> m) -> g (p a) -> m
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
Rank1.foldMap p a -> m
forall (a :: k). p a -> m
f g (p a)
g
instance Rank1.Traversable g => Rank2.Traversable (Flip g a) where
traverse :: (forall (a :: k). p a -> m (q a)) -> Flip g a p -> m (Flip g a q)
traverse forall (a :: k). p a -> m (q a)
f (Flip g (p a)
g) = g (q a) -> Flip g a q
forall k k (g :: k -> *) (a :: k) (f :: k -> k).
g (f a) -> Flip g a f
Flip (g (q a) -> Flip g a q) -> m (g (q a)) -> m (Flip g a q)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.<$> (p a -> m (q a)) -> g (p a) -> m (g (q a))
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
Rank1.traverse p a -> m (q a)
forall (a :: k). p a -> m (q a)
f g (p a)
g
instance Functor Empty where
forall (a :: k). p a -> q a
_ <$> :: (forall (a :: k). p a -> q a) -> Empty p -> Empty q
<$> Empty p
_ = Empty q
forall k (f :: k). Empty f
Empty
instance Functor Proxy where
forall (a :: k). p a -> q a
_ <$> :: (forall (a :: k). p a -> q a) -> Proxy p -> Proxy q
<$> Proxy p
_ = Proxy q
forall k (t :: k). Proxy t
Proxy
instance Functor (Const a) where
forall (a :: k). p a -> q a
_ <$> :: (forall (a :: k). p a -> q a) -> Const a p -> Const a q
<$> Const a
a = a -> Const a q
forall k a (b :: k). a -> Const a b
Const a
a
instance Functor (Only a) where
forall (a :: k). p a -> q a
f <$> :: (forall (a :: k). p a -> q a) -> Only a p -> Only a q
<$> Only p a
a = q a -> Only a q
forall k (a :: k) (f :: k -> *). f a -> Only a f
Only (p a -> q a
forall (a :: k). p a -> q a
f p a
a)
instance Functor g => Functor (Identity g) where
forall (a :: k). p a -> q a
f <$> :: (forall (a :: k). p a -> q a) -> Identity g p -> Identity g q
<$> Identity g p
g = g q -> Identity g q
forall k (g :: k -> *) (f :: k). g f -> Identity g f
Identity (forall (a :: k). p a -> q a
f (forall (a :: k). p a -> q a) -> g p -> g q
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *).
Functor g =>
(forall (a :: k). p a -> q a) -> g p -> g q
<$> g p
g)
instance (Functor g, Rank1.Functor p) => Functor (Compose g p) where
(<$>) :: forall q r. (forall a. q a -> r a) -> Compose g p q -> Compose g p r
forall (a :: k). q a -> r a
f <$> :: (forall (a :: k). q a -> r a) -> Compose g p q -> Compose g p r
<$> Compose g (Compose p q)
g = g (Compose p r) -> Compose g p r
forall k1 k (g :: (k1 -> *) -> *) (p :: k -> *) (q :: k1 -> k).
g (Compose p q) -> Compose g p q
Compose (forall (a :: k). Compose p q a -> Compose p r a
f' (forall (a :: k). Compose p q a -> Compose p r a)
-> g (Compose p q) -> g (Compose p r)
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *).
Functor g =>
(forall (a :: k). p a -> q a) -> g p -> g q
<$> g (Compose p q)
g)
where f' :: forall a. Rank1.Compose p q a -> Rank1.Compose p r a
f' :: Compose p q a -> Compose p r a
f' (Rank1.Compose p (q a)
q) = p (r a) -> Compose p r a
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Rank1.Compose (q a -> r a
forall (a :: k). q a -> r a
f (q a -> r a) -> p (q a) -> p (r a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.<$> p (q a)
q)
instance (Functor g, Functor h) => Functor (Product g h) where
forall (a :: k). p a -> q a
f <$> :: (forall (a :: k). p a -> q a) -> Product g h p -> Product g h q
<$> Pair g p
a h p
b = g q -> h q -> Product g h q
forall k (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair (forall (a :: k). p a -> q a
f (forall (a :: k). p a -> q a) -> g p -> g q
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *).
Functor g =>
(forall (a :: k). p a -> q a) -> g p -> g q
<$> g p
a) (forall (a :: k). p a -> q a
f (forall (a :: k). p a -> q a) -> h p -> h q
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *).
Functor g =>
(forall (a :: k). p a -> q a) -> g p -> g q
<$> h p
b)
instance (Functor g, Functor h) => Functor (Sum g h) where
forall (a :: k). p a -> q a
f <$> :: (forall (a :: k). p a -> q a) -> Sum g h p -> Sum g h q
<$> InL g p
g = g q -> Sum g h q
forall k (f :: k -> *) (g :: k -> *) (a :: k). f a -> Sum f g a
InL (forall (a :: k). p a -> q a
f (forall (a :: k). p a -> q a) -> g p -> g q
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *).
Functor g =>
(forall (a :: k). p a -> q a) -> g p -> g q
<$> g p
g)
forall (a :: k). p a -> q a
f <$> InR h p
h = h q -> Sum g h q
forall k (f :: k -> *) (g :: k -> *) (a :: k). g a -> Sum f g a
InR (forall (a :: k). p a -> q a
f (forall (a :: k). p a -> q a) -> h p -> h q
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *).
Functor g =>
(forall (a :: k). p a -> q a) -> g p -> g q
<$> h p
h)
instance Functor Generics.V1 where
<$> :: (forall (a :: k). p a -> q a) -> V1 p -> V1 q
(<$>) forall (a :: k). p a -> q a
_ = V1 p -> V1 q
coerce
instance Functor Generics.U1 where
<$> :: (forall (a :: k). p a -> q a) -> U1 p -> U1 q
(<$>) forall (a :: k). p a -> q a
_ = U1 p -> U1 q
coerce
instance Functor (Generics.K1 i c) where
<$> :: (forall (a :: k). p a -> q a) -> K1 i c p -> K1 i c q
(<$>) forall (a :: k). p a -> q a
_ = K1 i c p -> K1 i c q
coerce
instance Functor f => Functor (Generics.M1 i c f) where
forall (a :: k). p a -> q a
f <$> :: (forall (a :: k). p a -> q a) -> M1 i c f p -> M1 i c f q
<$> Generics.M1 f p
x = f q -> M1 i c f q
forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
Generics.M1 (forall (a :: k). p a -> q a
f (forall (a :: k). p a -> q a) -> f p -> f q
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *).
Functor g =>
(forall (a :: k). p a -> q a) -> g p -> g q
<$> f p
x)
instance Functor f => Functor (Generics.Rec1 f) where
forall (a :: k). p a -> q a
f <$> :: (forall (a :: k). p a -> q a) -> Rec1 f p -> Rec1 f q
<$> Generics.Rec1 f p
x = f q -> Rec1 f q
forall k (f :: k -> *) (p :: k). f p -> Rec1 f p
Generics.Rec1 (forall (a :: k). p a -> q a
f (forall (a :: k). p a -> q a) -> f p -> f q
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *).
Functor g =>
(forall (a :: k). p a -> q a) -> g p -> g q
<$> f p
x)
instance (Functor f, Functor g) => Functor ((Generics.:+:) f g) where
forall (a :: k). p a -> q a
f <$> :: (forall (a :: k). p a -> q a) -> (:+:) f g p -> (:+:) f g q
<$> Generics.L1 f p
x = f q -> (:+:) f g q
forall k (f :: k -> *) (g :: k -> *) (p :: k). f p -> (:+:) f g p
Generics.L1 (forall (a :: k). p a -> q a
f (forall (a :: k). p a -> q a) -> f p -> f q
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *).
Functor g =>
(forall (a :: k). p a -> q a) -> g p -> g q
<$> f p
x)
forall (a :: k). p a -> q a
f <$> Generics.R1 g p
x = g q -> (:+:) f g q
forall k (f :: k -> *) (g :: k -> *) (p :: k). g p -> (:+:) f g p
Generics.R1 (forall (a :: k). p a -> q a
f (forall (a :: k). p a -> q a) -> g p -> g q
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *).
Functor g =>
(forall (a :: k). p a -> q a) -> g p -> g q
<$> g p
x)
instance (Functor f, Functor g) => Functor ((Generics.:*:) f g) where
forall (a :: k). p a -> q a
f <$> :: (forall (a :: k). p a -> q a) -> (:*:) f g p -> (:*:) f g q
<$> (f p
x Generics.:*: g p
y) = (forall (a :: k). p a -> q a
f (forall (a :: k). p a -> q a) -> f p -> f q
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *).
Functor g =>
(forall (a :: k). p a -> q a) -> g p -> g q
<$> f p
x) f q -> g q -> (:*:) f g q
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
Generics.:*: (forall (a :: k). p a -> q a
f (forall (a :: k). p a -> q a) -> g p -> g q
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *).
Functor g =>
(forall (a :: k). p a -> q a) -> g p -> g q
<$> g p
y)
instance Foldable Empty where
foldMap :: (forall (a :: k). p a -> m) -> Empty p -> m
foldMap forall (a :: k). p a -> m
_ Empty p
_ = m
forall a. Monoid a => a
mempty
instance Foldable Proxy where
foldMap :: (forall (a :: k). p a -> m) -> Proxy p -> m
foldMap forall (a :: k). p a -> m
_ Proxy p
_ = m
forall a. Monoid a => a
mempty
instance Foldable (Const x) where
foldMap :: (forall (a :: k). p a -> m) -> Const x p -> m
foldMap forall (a :: k). p a -> m
_ Const x p
_ = m
forall a. Monoid a => a
mempty
instance Foldable (Only x) where
foldMap :: (forall (a :: k). p a -> m) -> Only x p -> m
foldMap forall (a :: k). p a -> m
f (Only p x
x) = p x -> m
forall (a :: k). p a -> m
f p x
x
instance Foldable g => Foldable (Identity g) where
foldMap :: (forall (a :: k). p a -> m) -> Identity g p -> m
foldMap forall (a :: k). p a -> m
f (Identity g p
g) = (forall (a :: k). p a -> m) -> g p -> m
forall k (g :: (k -> *) -> *) m (p :: k -> *).
(Foldable g, Monoid m) =>
(forall (a :: k). p a -> m) -> g p -> m
foldMap forall (a :: k). p a -> m
f g p
g
instance (Foldable g, Rank1.Foldable p) => Foldable (Compose g p) where
foldMap :: (forall (a :: k). p a -> m) -> Compose g p p -> m
foldMap forall (a :: k). p a -> m
f (Compose g (Compose p p)
g) = (forall (a :: k). Compose p p a -> m) -> g (Compose p p) -> m
forall k (g :: (k -> *) -> *) m (p :: k -> *).
(Foldable g, Monoid m) =>
(forall (a :: k). p a -> m) -> g p -> m
foldMap ((p a -> m) -> p (p a) -> m
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
Rank1.foldMap p a -> m
forall (a :: k). p a -> m
f (p (p a) -> m) -> (Compose p p a -> p (p a)) -> Compose p p a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Compose p p a -> p (p a)
forall k1 (f :: k1 -> *) k2 (g :: k2 -> k1) (a :: k2).
Compose f g a -> f (g a)
Rank1.getCompose) g (Compose p p)
g
instance (Foldable g, Foldable h) => Foldable (Product g h) where
foldMap :: (forall (a :: k). p a -> m) -> Product g h p -> m
foldMap forall (a :: k). p a -> m
f (Pair g p
g h p
h) = (forall (a :: k). p a -> m) -> g p -> m
forall k (g :: (k -> *) -> *) m (p :: k -> *).
(Foldable g, Monoid m) =>
(forall (a :: k). p a -> m) -> g p -> m
foldMap forall (a :: k). p a -> m
f g p
g m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` (forall (a :: k). p a -> m) -> h p -> m
forall k (g :: (k -> *) -> *) m (p :: k -> *).
(Foldable g, Monoid m) =>
(forall (a :: k). p a -> m) -> g p -> m
foldMap forall (a :: k). p a -> m
f h p
h
instance (Foldable g, Foldable h) => Foldable (Sum g h) where
foldMap :: (forall (a :: k). p a -> m) -> Sum g h p -> m
foldMap forall (a :: k). p a -> m
f (InL g p
g) = (forall (a :: k). p a -> m) -> g p -> m
forall k (g :: (k -> *) -> *) m (p :: k -> *).
(Foldable g, Monoid m) =>
(forall (a :: k). p a -> m) -> g p -> m
foldMap forall (a :: k). p a -> m
f g p
g
foldMap forall (a :: k). p a -> m
f (InR h p
h) = (forall (a :: k). p a -> m) -> h p -> m
forall k (g :: (k -> *) -> *) m (p :: k -> *).
(Foldable g, Monoid m) =>
(forall (a :: k). p a -> m) -> g p -> m
foldMap forall (a :: k). p a -> m
f h p
h
instance Foldable Generics.V1 where
foldMap :: (forall (a :: k). p a -> m) -> V1 p -> m
foldMap forall (a :: k). p a -> m
_ V1 p
v = case V1 p
v of {}
instance Foldable Generics.U1 where
foldMap :: (forall (a :: k). p a -> m) -> U1 p -> m
foldMap forall (a :: k). p a -> m
_ U1 p
_ = m
forall a. Monoid a => a
mempty
instance Foldable (Generics.K1 i c) where
foldMap :: (forall (a :: k). p a -> m) -> K1 i c p -> m
foldMap forall (a :: k). p a -> m
_ K1 i c p
_ = m
forall a. Monoid a => a
mempty
instance Foldable f => Foldable (Generics.M1 i c f) where
foldMap :: (forall (a :: k). p a -> m) -> M1 i c f p -> m
foldMap forall (a :: k). p a -> m
f (Generics.M1 f p
x) = (forall (a :: k). p a -> m) -> f p -> m
forall k (g :: (k -> *) -> *) m (p :: k -> *).
(Foldable g, Monoid m) =>
(forall (a :: k). p a -> m) -> g p -> m
foldMap forall (a :: k). p a -> m
f f p
x
instance Foldable f => Foldable (Generics.Rec1 f) where
foldMap :: (forall (a :: k). p a -> m) -> Rec1 f p -> m
foldMap forall (a :: k). p a -> m
f (Generics.Rec1 f p
x) = (forall (a :: k). p a -> m) -> f p -> m
forall k (g :: (k -> *) -> *) m (p :: k -> *).
(Foldable g, Monoid m) =>
(forall (a :: k). p a -> m) -> g p -> m
foldMap forall (a :: k). p a -> m
f f p
x
instance (Foldable f, Foldable g) => Foldable ((Generics.:+:) f g) where
foldMap :: (forall (a :: k). p a -> m) -> (:+:) f g p -> m
foldMap forall (a :: k). p a -> m
f (Generics.L1 f p
x) = (forall (a :: k). p a -> m) -> f p -> m
forall k (g :: (k -> *) -> *) m (p :: k -> *).
(Foldable g, Monoid m) =>
(forall (a :: k). p a -> m) -> g p -> m
foldMap forall (a :: k). p a -> m
f f p
x
foldMap forall (a :: k). p a -> m
f (Generics.R1 g p
x) = (forall (a :: k). p a -> m) -> g p -> m
forall k (g :: (k -> *) -> *) m (p :: k -> *).
(Foldable g, Monoid m) =>
(forall (a :: k). p a -> m) -> g p -> m
foldMap forall (a :: k). p a -> m
f g p
x
instance (Foldable f, Foldable g) => Foldable ((Generics.:*:) f g) where
foldMap :: (forall (a :: k). p a -> m) -> (:*:) f g p -> m
foldMap forall (a :: k). p a -> m
f (f p
x Generics.:*: g p
y) = (forall (a :: k). p a -> m) -> f p -> m
forall k (g :: (k -> *) -> *) m (p :: k -> *).
(Foldable g, Monoid m) =>
(forall (a :: k). p a -> m) -> g p -> m
foldMap forall (a :: k). p a -> m
f f p
x m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` (forall (a :: k). p a -> m) -> g p -> m
forall k (g :: (k -> *) -> *) m (p :: k -> *).
(Foldable g, Monoid m) =>
(forall (a :: k). p a -> m) -> g p -> m
foldMap forall (a :: k). p a -> m
f g p
y
instance Traversable Empty where
traverse :: (forall (a :: k). p a -> m (q a)) -> Empty p -> m (Empty q)
traverse forall (a :: k). p a -> m (q a)
_ Empty p
_ = Empty q -> m (Empty q)
forall (f :: * -> *) a. Applicative f => a -> f a
Rank1.pure Empty q
forall k (f :: k). Empty f
Empty
instance Traversable Proxy where
traverse :: (forall (a :: k). p a -> m (q a)) -> Proxy p -> m (Proxy q)
traverse forall (a :: k). p a -> m (q a)
_ Proxy p
_ = Proxy q -> m (Proxy q)
forall (f :: * -> *) a. Applicative f => a -> f a
Rank1.pure Proxy q
forall k (t :: k). Proxy t
Proxy
instance Traversable (Const x) where
traverse :: (forall (a :: k). p a -> m (q a)) -> Const x p -> m (Const x q)
traverse forall (a :: k). p a -> m (q a)
_ (Const x
x) = Const x q -> m (Const x q)
forall (f :: * -> *) a. Applicative f => a -> f a
Rank1.pure (x -> Const x q
forall k a (b :: k). a -> Const a b
Const x
x)
instance Traversable (Only x) where
traverse :: (forall (a :: k). p a -> m (q a)) -> Only x p -> m (Only x q)
traverse forall (a :: k). p a -> m (q a)
f (Only p x
x) = q x -> Only x q
forall k (a :: k) (f :: k -> *). f a -> Only a f
Only (q x -> Only x q) -> m (q x) -> m (Only x q)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.<$> p x -> m (q x)
forall (a :: k). p a -> m (q a)
f p x
x
instance Traversable g => Traversable (Identity g) where
traverse :: (forall (a :: k). p a -> m (q a))
-> Identity g p -> m (Identity g q)
traverse forall (a :: k). p a -> m (q a)
f (Identity g p
g) = g q -> Identity g q
forall k (g :: k -> *) (f :: k). g f -> Identity g f
Identity (g q -> Identity g q) -> m (g q) -> m (Identity g q)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.<$> (forall (a :: k). p a -> m (q a)) -> g p -> m (g q)
forall k (g :: (k -> *) -> *) (m :: * -> *) (p :: k -> *)
(q :: k -> *).
(Traversable g, Applicative m) =>
(forall (a :: k). p a -> m (q a)) -> g p -> m (g q)
traverse forall (a :: k). p a -> m (q a)
f g p
g
instance (Traversable g, Rank1.Traversable p) => Traversable (Compose g p) where
traverse :: forall m q r. Rank1.Applicative m => (forall a. q a -> m (r a)) -> Compose g p q -> m (Compose g p r)
traverse :: (forall (a :: k). q a -> m (r a))
-> Compose g p q -> m (Compose g p r)
traverse forall (a :: k). q a -> m (r a)
f (Compose g (Compose p q)
g) = g (Compose p r) -> Compose g p r
forall k1 k (g :: (k1 -> *) -> *) (p :: k -> *) (q :: k1 -> k).
g (Compose p q) -> Compose g p q
Compose (g (Compose p r) -> Compose g p r)
-> m (g (Compose p r)) -> m (Compose g p r)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.<$> (forall (a :: k). Compose p q a -> m (Compose p r a))
-> g (Compose p q) -> m (g (Compose p r))
forall k (g :: (k -> *) -> *) (m :: * -> *) (p :: k -> *)
(q :: k -> *).
(Traversable g, Applicative m) =>
(forall (a :: k). p a -> m (q a)) -> g p -> m (g q)
traverse forall (a :: k). Compose p q a -> m (Compose p r a)
f' g (Compose p q)
g
where f' :: forall a. Rank1.Compose p q a -> m (Rank1.Compose p r a)
f' :: Compose p q a -> m (Compose p r a)
f' (Rank1.Compose p (q a)
q) = p (r a) -> Compose p r a
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Rank1.Compose (p (r a) -> Compose p r a) -> m (p (r a)) -> m (Compose p r a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.<$> (q a -> m (r a)) -> p (q a) -> m (p (r a))
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
Rank1.traverse q a -> m (r a)
forall (a :: k). q a -> m (r a)
f p (q a)
q
instance (Traversable g, Traversable h) => Traversable (Product g h) where
traverse :: (forall (a :: k). p a -> m (q a))
-> Product g h p -> m (Product g h q)
traverse forall (a :: k). p a -> m (q a)
f (Pair g p
g h p
h) = (g q -> h q -> Product g h q)
-> m (g q) -> m (h q) -> m (Product g h q)
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
Rank1.liftA2 g q -> h q -> Product g h q
forall k (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair ((forall (a :: k). p a -> m (q a)) -> g p -> m (g q)
forall k (g :: (k -> *) -> *) (m :: * -> *) (p :: k -> *)
(q :: k -> *).
(Traversable g, Applicative m) =>
(forall (a :: k). p a -> m (q a)) -> g p -> m (g q)
traverse forall (a :: k). p a -> m (q a)
f g p
g) ((forall (a :: k). p a -> m (q a)) -> h p -> m (h q)
forall k (g :: (k -> *) -> *) (m :: * -> *) (p :: k -> *)
(q :: k -> *).
(Traversable g, Applicative m) =>
(forall (a :: k). p a -> m (q a)) -> g p -> m (g q)
traverse forall (a :: k). p a -> m (q a)
f h p
h)
instance (Traversable g, Traversable h) => Traversable (Sum g h) where
traverse :: (forall (a :: k). p a -> m (q a)) -> Sum g h p -> m (Sum g h q)
traverse forall (a :: k). p a -> m (q a)
f (InL g p
g) = g q -> Sum g h q
forall k (f :: k -> *) (g :: k -> *) (a :: k). f a -> Sum f g a
InL (g q -> Sum g h q) -> m (g q) -> m (Sum g h q)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.<$> (forall (a :: k). p a -> m (q a)) -> g p -> m (g q)
forall k (g :: (k -> *) -> *) (m :: * -> *) (p :: k -> *)
(q :: k -> *).
(Traversable g, Applicative m) =>
(forall (a :: k). p a -> m (q a)) -> g p -> m (g q)
traverse forall (a :: k). p a -> m (q a)
f g p
g
traverse forall (a :: k). p a -> m (q a)
f (InR h p
h) = h q -> Sum g h q
forall k (f :: k -> *) (g :: k -> *) (a :: k). g a -> Sum f g a
InR (h q -> Sum g h q) -> m (h q) -> m (Sum g h q)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.<$> (forall (a :: k). p a -> m (q a)) -> h p -> m (h q)
forall k (g :: (k -> *) -> *) (m :: * -> *) (p :: k -> *)
(q :: k -> *).
(Traversable g, Applicative m) =>
(forall (a :: k). p a -> m (q a)) -> g p -> m (g q)
traverse forall (a :: k). p a -> m (q a)
f h p
h
instance Traversable Generics.V1 where
traverse :: (forall (a :: k). p a -> m (q a)) -> V1 p -> m (V1 q)
traverse forall (a :: k). p a -> m (q a)
_ = V1 q -> m (V1 q)
forall (f :: * -> *) a. Applicative f => a -> f a
Rank1.pure (V1 q -> m (V1 q)) -> (V1 p -> V1 q) -> V1 p -> m (V1 q)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. V1 p -> V1 q
coerce
instance Traversable Generics.U1 where
traverse :: (forall (a :: k). p a -> m (q a)) -> U1 p -> m (U1 q)
traverse forall (a :: k). p a -> m (q a)
_ = U1 q -> m (U1 q)
forall (f :: * -> *) a. Applicative f => a -> f a
Rank1.pure (U1 q -> m (U1 q)) -> (U1 p -> U1 q) -> U1 p -> m (U1 q)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. U1 p -> U1 q
coerce
instance Traversable (Generics.K1 i c) where
traverse :: (forall (a :: k). p a -> m (q a)) -> K1 i c p -> m (K1 i c q)
traverse forall (a :: k). p a -> m (q a)
_ = K1 i c q -> m (K1 i c q)
forall (f :: * -> *) a. Applicative f => a -> f a
Rank1.pure (K1 i c q -> m (K1 i c q))
-> (K1 i c p -> K1 i c q) -> K1 i c p -> m (K1 i c q)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. K1 i c p -> K1 i c q
coerce
instance Traversable f => Traversable (Generics.M1 i c f) where
traverse :: (forall (a :: k). p a -> m (q a)) -> M1 i c f p -> m (M1 i c f q)
traverse forall (a :: k). p a -> m (q a)
f (Generics.M1 f p
x) = (f q -> M1 i c f q) -> m (f q) -> m (M1 i c f q)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.fmap f q -> M1 i c f q
forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
Generics.M1 ((forall (a :: k). p a -> m (q a)) -> f p -> m (f q)
forall k (g :: (k -> *) -> *) (m :: * -> *) (p :: k -> *)
(q :: k -> *).
(Traversable g, Applicative m) =>
(forall (a :: k). p a -> m (q a)) -> g p -> m (g q)
traverse forall (a :: k). p a -> m (q a)
f f p
x)
instance Traversable f => Traversable (Generics.Rec1 f) where
traverse :: (forall (a :: k). p a -> m (q a)) -> Rec1 f p -> m (Rec1 f q)
traverse forall (a :: k). p a -> m (q a)
f (Generics.Rec1 f p
x) = (f q -> Rec1 f q) -> m (f q) -> m (Rec1 f q)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.fmap f q -> Rec1 f q
forall k (f :: k -> *) (p :: k). f p -> Rec1 f p
Generics.Rec1 ((forall (a :: k). p a -> m (q a)) -> f p -> m (f q)
forall k (g :: (k -> *) -> *) (m :: * -> *) (p :: k -> *)
(q :: k -> *).
(Traversable g, Applicative m) =>
(forall (a :: k). p a -> m (q a)) -> g p -> m (g q)
traverse forall (a :: k). p a -> m (q a)
f f p
x)
instance (Traversable f, Traversable g) => Traversable ((Generics.:+:) f g) where
traverse :: (forall (a :: k). p a -> m (q a)) -> (:+:) f g p -> m ((:+:) f g q)
traverse forall (a :: k). p a -> m (q a)
f (Generics.L1 f p
x) = (f q -> (:+:) f g q) -> m (f q) -> m ((:+:) f g q)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.fmap f q -> (:+:) f g q
forall k (f :: k -> *) (g :: k -> *) (p :: k). f p -> (:+:) f g p
Generics.L1 ((forall (a :: k). p a -> m (q a)) -> f p -> m (f q)
forall k (g :: (k -> *) -> *) (m :: * -> *) (p :: k -> *)
(q :: k -> *).
(Traversable g, Applicative m) =>
(forall (a :: k). p a -> m (q a)) -> g p -> m (g q)
traverse forall (a :: k). p a -> m (q a)
f f p
x)
traverse forall (a :: k). p a -> m (q a)
f (Generics.R1 g p
x) = (g q -> (:+:) f g q) -> m (g q) -> m ((:+:) f g q)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.fmap g q -> (:+:) f g q
forall k (f :: k -> *) (g :: k -> *) (p :: k). g p -> (:+:) f g p
Generics.R1 ((forall (a :: k). p a -> m (q a)) -> g p -> m (g q)
forall k (g :: (k -> *) -> *) (m :: * -> *) (p :: k -> *)
(q :: k -> *).
(Traversable g, Applicative m) =>
(forall (a :: k). p a -> m (q a)) -> g p -> m (g q)
traverse forall (a :: k). p a -> m (q a)
f g p
x)
instance (Traversable f, Traversable g) => Traversable ((Generics.:*:) f g) where
traverse :: (forall (a :: k). p a -> m (q a)) -> (:*:) f g p -> m ((:*:) f g q)
traverse forall (a :: k). p a -> m (q a)
f (f p
x Generics.:*: g p
y) = (f q -> g q -> (:*:) f g q)
-> m (f q) -> m (g q) -> m ((:*:) f g q)
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
Rank1.liftA2 f q -> g q -> (:*:) f g q
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
(Generics.:*:) ((forall (a :: k). p a -> m (q a)) -> f p -> m (f q)
forall k (g :: (k -> *) -> *) (m :: * -> *) (p :: k -> *)
(q :: k -> *).
(Traversable g, Applicative m) =>
(forall (a :: k). p a -> m (q a)) -> g p -> m (g q)
traverse forall (a :: k). p a -> m (q a)
f f p
x) ((forall (a :: k). p a -> m (q a)) -> g p -> m (g q)
forall k (g :: (k -> *) -> *) (m :: * -> *) (p :: k -> *)
(q :: k -> *).
(Traversable g, Applicative m) =>
(forall (a :: k). p a -> m (q a)) -> g p -> m (g q)
traverse forall (a :: k). p a -> m (q a)
f g p
y)
instance Apply Empty where
Empty (p ~> q)
_ <*> :: Empty (p ~> q) -> Empty p -> Empty q
<*> Empty p
_ = Empty q
forall k (f :: k). Empty f
Empty
liftA2 :: (forall (a :: k). p a -> q a -> r a)
-> Empty p -> Empty q -> Empty r
liftA2 forall (a :: k). p a -> q a -> r a
_ Empty p
_ Empty q
_ = Empty r
forall k (f :: k). Empty f
Empty
instance Apply Proxy where
Proxy (p ~> q)
_ <*> :: Proxy (p ~> q) -> Proxy p -> Proxy q
<*> Proxy p
_ = Proxy q
forall k (t :: k). Proxy t
Proxy
liftA2 :: (forall (a :: k). p a -> q a -> r a)
-> Proxy p -> Proxy q -> Proxy r
liftA2 forall (a :: k). p a -> q a -> r a
_ Proxy p
_ Proxy q
_ = Proxy r
forall k (t :: k). Proxy t
Proxy
instance Semigroup x => Apply (Const x) where
Const x
x <*> :: Const x (p ~> q) -> Const x p -> Const x q
<*> Const x
y = x -> Const x q
forall k a (b :: k). a -> Const a b
Const (x
x x -> x -> x
forall a. Semigroup a => a -> a -> a
<> x
y)
liftA2 :: (forall (a :: k). p a -> q a -> r a)
-> Const x p -> Const x q -> Const x r
liftA2 forall (a :: k). p a -> q a -> r a
_ (Const x
x) (Const x
y) = x -> Const x r
forall k a (b :: k). a -> Const a b
Const (x
x x -> x -> x
forall a. Semigroup a => a -> a -> a
<> x
y)
instance Apply (Only x) where
Only (~>) p q x
f <*> :: Only x (p ~> q) -> Only x p -> Only x q
<*> Only p x
x = q x -> Only x q
forall k (a :: k) (f :: k -> *). f a -> Only a f
Only ((~>) p q x -> p x -> q x
forall k (p :: k -> *) (q :: k -> *) (a :: k).
Arrow p q a -> p a -> q a
apply (~>) p q x
f p x
x)
liftA2 :: (forall (a :: k). p a -> q a -> r a)
-> Only x p -> Only x q -> Only x r
liftA2 forall (a :: k). p a -> q a -> r a
f (Only p x
x) (Only q x
y) = r x -> Only x r
forall k (a :: k) (f :: k -> *). f a -> Only a f
Only (p x -> q x -> r x
forall (a :: k). p a -> q a -> r a
f p x
x q x
y)
instance Apply g => Apply (Identity g) where
Identity g (p ~> q)
g <*> :: Identity g (p ~> q) -> Identity g p -> Identity g q
<*> Identity g p
h = g q -> Identity g q
forall k (g :: k -> *) (f :: k). g f -> Identity g f
Identity (g (p ~> q)
g g (p ~> q) -> g p -> g q
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *).
Apply g =>
g (p ~> q) -> g p -> g q
<*> g p
h)
liftA2 :: (forall (a :: k). p a -> q a -> r a)
-> Identity g p -> Identity g q -> Identity g r
liftA2 forall (a :: k). p a -> q a -> r a
f (Identity g p
g) (Identity g q
h) = g r -> Identity g r
forall k (g :: k -> *) (f :: k). g f -> Identity g f
Identity ((forall (a :: k). p a -> q a -> r a) -> g p -> g q -> g r
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *)
(r :: k -> *).
Apply g =>
(forall (a :: k). p a -> q a -> r a) -> g p -> g q -> g r
liftA2 forall (a :: k). p a -> q a -> r a
f g p
g g q
h)
instance (Apply g, Rank1.Applicative p) => Apply (Compose g p) where
(<*>) :: forall q r. Compose g p (q ~> r) -> Compose g p q -> Compose g p r
liftA2 :: forall q r s. (forall a. q a -> r a -> s a) -> Compose g p q -> Compose g p r -> Compose g p s
Compose g (Compose p (q ~> r))
g <*> :: Compose g p (q ~> r) -> Compose g p q -> Compose g p r
<*> Compose g (Compose p q)
h = g (Compose p r) -> Compose g p r
forall k1 k (g :: (k1 -> *) -> *) (p :: k -> *) (q :: k1 -> k).
g (Compose p q) -> Compose g p q
Compose ((forall (a :: k).
Compose p (q ~> r) a -> Compose p q a -> Compose p r a)
-> g (Compose p (q ~> r)) -> g (Compose p q) -> g (Compose p r)
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *)
(r :: k -> *).
Apply g =>
(forall (a :: k). p a -> q a -> r a) -> g p -> g q -> g r
liftA2 forall (a :: k).
Compose p (q ~> r) a -> Compose p q a -> Compose p r a
f' g (Compose p (q ~> r))
g g (Compose p q)
h)
where f' :: forall a. Rank1.Compose p (q ~> r) a -> Rank1.Compose p q a -> Rank1.Compose p r a
f' :: Compose p (q ~> r) a -> Compose p q a -> Compose p r a
f' (Rank1.Compose p ((~>) q r a)
f) (Rank1.Compose p (q a)
q) = p (r a) -> Compose p r a
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Rank1.Compose (((~>) q r a -> q a -> r a) -> p ((~>) q r a) -> p (q a) -> p (r a)
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
Rank1.liftA2 (~>) q r a -> q a -> r a
forall k (p :: k -> *) (q :: k -> *) (a :: k).
Arrow p q a -> p a -> q a
apply p ((~>) q r a)
f p (q a)
q)
liftA2 :: (forall (a :: k). q a -> r a -> s a)
-> Compose g p q -> Compose g p r -> Compose g p s
liftA2 forall (a :: k). q a -> r a -> s a
f (Compose g (Compose p q)
g) (Compose g (Compose p r)
h) = g (Compose p s) -> Compose g p s
forall k1 k (g :: (k1 -> *) -> *) (p :: k -> *) (q :: k1 -> k).
g (Compose p q) -> Compose g p q
Compose ((forall (a :: k). Compose p q a -> Compose p r a -> Compose p s a)
-> g (Compose p q) -> g (Compose p r) -> g (Compose p s)
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *)
(r :: k -> *).
Apply g =>
(forall (a :: k). p a -> q a -> r a) -> g p -> g q -> g r
liftA2 forall (a :: k). Compose p q a -> Compose p r a -> Compose p s a
f' g (Compose p q)
g g (Compose p r)
h)
where f' :: forall a. Rank1.Compose p q a -> Rank1.Compose p r a -> Rank1.Compose p s a
f' :: Compose p q a -> Compose p r a -> Compose p s a
f' (Rank1.Compose p (q a)
q) (Rank1.Compose p (r a)
r) = p (s a) -> Compose p s a
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Rank1.Compose ((q a -> r a -> s a) -> p (q a) -> p (r a) -> p (s a)
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
Rank1.liftA2 q a -> r a -> s a
forall (a :: k). q a -> r a -> s a
f p (q a)
q p (r a)
r)
instance (Apply g, Apply h) => Apply (Product g h) where
Pair g (p ~> q)
gf h (p ~> q)
hf <*> :: Product g h (p ~> q) -> Product g h p -> Product g h q
<*> ~(Pair g p
gx h p
hx) = g q -> h q -> Product g h q
forall k (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair (g (p ~> q)
gf g (p ~> q) -> g p -> g q
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *).
Apply g =>
g (p ~> q) -> g p -> g q
<*> g p
gx) (h (p ~> q)
hf h (p ~> q) -> h p -> h q
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *).
Apply g =>
g (p ~> q) -> g p -> g q
<*> h p
hx)
liftA2 :: (forall (a :: k). p a -> q a -> r a)
-> Product g h p -> Product g h q -> Product g h r
liftA2 forall (a :: k). p a -> q a -> r a
f (Pair g p
g1 h p
h1) ~(Pair g q
g2 h q
h2) = g r -> h r -> Product g h r
forall k (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair ((forall (a :: k). p a -> q a -> r a) -> g p -> g q -> g r
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *)
(r :: k -> *).
Apply g =>
(forall (a :: k). p a -> q a -> r a) -> g p -> g q -> g r
liftA2 forall (a :: k). p a -> q a -> r a
f g p
g1 g q
g2) ((forall (a :: k). p a -> q a -> r a) -> h p -> h q -> h r
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *)
(r :: k -> *).
Apply g =>
(forall (a :: k). p a -> q a -> r a) -> g p -> g q -> g r
liftA2 forall (a :: k). p a -> q a -> r a
f h p
h1 h q
h2)
liftA3 :: (forall (a :: k). p a -> q a -> r a -> s a)
-> Product g h p -> Product g h q -> Product g h r -> Product g h s
liftA3 forall (a :: k). p a -> q a -> r a -> s a
f (Pair g p
g1 h p
h1) ~(Pair g q
g2 h q
h2) ~(Pair g r
g3 h r
h3) = g s -> h s -> Product g h s
forall k (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair ((forall (a :: k). p a -> q a -> r a -> s a)
-> g p -> g q -> g r -> g s
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *)
(r :: k -> *) (s :: k -> *).
Apply g =>
(forall (a :: k). p a -> q a -> r a -> s a)
-> g p -> g q -> g r -> g s
liftA3 forall (a :: k). p a -> q a -> r a -> s a
f g p
g1 g q
g2 g r
g3) ((forall (a :: k). p a -> q a -> r a -> s a)
-> h p -> h q -> h r -> h s
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *)
(r :: k -> *) (s :: k -> *).
Apply g =>
(forall (a :: k). p a -> q a -> r a -> s a)
-> g p -> g q -> g r -> g s
liftA3 forall (a :: k). p a -> q a -> r a -> s a
f h p
h1 h q
h2 h r
h3)
instance Apply Generics.V1 where
<*> :: V1 (p ~> q) -> V1 p -> V1 q
(<*>) V1 (p ~> q)
_ = V1 p -> V1 q
coerce
instance Apply Generics.U1 where
<*> :: U1 (p ~> q) -> U1 p -> U1 q
(<*>) U1 (p ~> q)
_ = U1 p -> U1 q
coerce
instance Semigroup c => Apply (Generics.K1 i c) where
Generics.K1 c
x <*> :: K1 i c (p ~> q) -> K1 i c p -> K1 i c q
<*> Generics.K1 c
y = c -> K1 i c q
forall k i c (p :: k). c -> K1 i c p
Generics.K1 (c
x c -> c -> c
forall a. Semigroup a => a -> a -> a
<> c
y)
instance Apply f => Apply (Generics.M1 i c f) where
Generics.M1 f (p ~> q)
f <*> :: M1 i c f (p ~> q) -> M1 i c f p -> M1 i c f q
<*> Generics.M1 f p
x = f q -> M1 i c f q
forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
Generics.M1 (f (p ~> q)
f f (p ~> q) -> f p -> f q
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *).
Apply g =>
g (p ~> q) -> g p -> g q
<*> f p
x)
instance Apply f => Apply (Generics.Rec1 f) where
Generics.Rec1 f (p ~> q)
f <*> :: Rec1 f (p ~> q) -> Rec1 f p -> Rec1 f q
<*> Generics.Rec1 f p
x = f q -> Rec1 f q
forall k (f :: k -> *) (p :: k). f p -> Rec1 f p
Generics.Rec1 (f (p ~> q)
f f (p ~> q) -> f p -> f q
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *).
Apply g =>
g (p ~> q) -> g p -> g q
<*> f p
x)
instance (Apply f, Apply g) => Apply ((Generics.:*:) f g) where
(f (p ~> q)
x1 Generics.:*: g (p ~> q)
y1) <*> :: (:*:) f g (p ~> q) -> (:*:) f g p -> (:*:) f g q
<*> (f p
x2 Generics.:*: g p
y2) = (f (p ~> q)
x1 f (p ~> q) -> f p -> f q
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *).
Apply g =>
g (p ~> q) -> g p -> g q
<*> f p
x2) f q -> g q -> (:*:) f g q
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
Generics.:*: (g (p ~> q)
y1 g (p ~> q) -> g p -> g q
forall k (g :: (k -> *) -> *) (p :: k -> *) (q :: k -> *).
Apply g =>
g (p ~> q) -> g p -> g q
<*> g p
y2)
instance Applicative Empty where
pure :: (forall (a :: k). f a) -> Empty f
pure forall (a :: k). f a
_ = Empty f
forall k (f :: k). Empty f
Empty
instance Applicative Proxy where
pure :: (forall (a :: k). f a) -> Proxy f
pure forall (a :: k). f a
_ = Proxy f
forall k (t :: k). Proxy t
Proxy
instance (Semigroup x, Monoid x) => Applicative (Const x) where
pure :: (forall (a :: k). f a) -> Const x f
pure forall (a :: k). f a
_ = x -> Const x f
forall k a (b :: k). a -> Const a b
Const x
forall a. Monoid a => a
mempty
instance Applicative (Only x) where
pure :: (forall (a :: k). f a) -> Only x f
pure forall (a :: k). f a
f = f x -> Only x f
forall k (a :: k) (f :: k -> *). f a -> Only a f
Only f x
forall (a :: k). f a
f
instance Applicative g => Applicative (Identity g) where
pure :: (forall (a :: k). f a) -> Identity g f
pure forall (a :: k). f a
f = g f -> Identity g f
forall k (g :: k -> *) (f :: k). g f -> Identity g f
Identity ((forall (a :: k). f a) -> g f
forall k (g :: (k -> *) -> *) (f :: k -> *).
Applicative g =>
(forall (a :: k). f a) -> g f
pure forall (a :: k). f a
f)
instance (Applicative g, Rank1.Applicative p) => Applicative (Compose g p) where
pure :: (forall (a :: k). f a) -> Compose g p f
pure forall (a :: k). f a
f = g (Compose p f) -> Compose g p f
forall k1 k (g :: (k1 -> *) -> *) (p :: k -> *) (q :: k1 -> k).
g (Compose p q) -> Compose g p q
Compose ((forall (a :: k). Compose p f a) -> g (Compose p f)
forall k (g :: (k -> *) -> *) (f :: k -> *).
Applicative g =>
(forall (a :: k). f a) -> g f
pure (p (f a) -> Compose p f a
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Rank1.Compose (f a -> p (f a)
forall (f :: * -> *) a. Applicative f => a -> f a
Rank1.pure f a
forall (a :: k). f a
f)))
instance (Applicative g, Applicative h) => Applicative (Product g h) where
pure :: (forall (a :: k). f a) -> Product g h f
pure forall (a :: k). f a
f = g f -> h f -> Product g h f
forall k (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair ((forall (a :: k). f a) -> g f
forall k (g :: (k -> *) -> *) (f :: k -> *).
Applicative g =>
(forall (a :: k). f a) -> g f
pure forall (a :: k). f a
f) ((forall (a :: k). f a) -> h f
forall k (g :: (k -> *) -> *) (f :: k -> *).
Applicative g =>
(forall (a :: k). f a) -> g f
pure forall (a :: k). f a
f)
instance (Semigroup c, Monoid c) => Applicative (Generics.K1 i c) where
pure :: (forall (a :: k). f a) -> K1 i c f
pure forall (a :: k). f a
_ = c -> K1 i c f
forall k i c (p :: k). c -> K1 i c p
Generics.K1 c
forall a. Monoid a => a
mempty
instance Applicative f => Applicative (Generics.M1 i c f) where
pure :: (forall (a :: k). f a) -> M1 i c f f
pure forall (a :: k). f a
f = f f -> M1 i c f f
forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
Generics.M1 ((forall (a :: k). f a) -> f f
forall k (g :: (k -> *) -> *) (f :: k -> *).
Applicative g =>
(forall (a :: k). f a) -> g f
pure forall (a :: k). f a
f)
instance Applicative f => Applicative (Generics.Rec1 f) where
pure :: (forall (a :: k). f a) -> Rec1 f f
pure forall (a :: k). f a
f = f f -> Rec1 f f
forall k (f :: k -> *) (p :: k). f p -> Rec1 f p
Generics.Rec1 ((forall (a :: k). f a) -> f f
forall k (g :: (k -> *) -> *) (f :: k -> *).
Applicative g =>
(forall (a :: k). f a) -> g f
pure forall (a :: k). f a
f)
instance (Applicative f, Applicative g) => Applicative ((Generics.:*:) f g) where
pure :: (forall (a :: k). f a) -> (:*:) f g f
pure forall (a :: k). f a
f = (forall (a :: k). f a) -> f f
forall k (g :: (k -> *) -> *) (f :: k -> *).
Applicative g =>
(forall (a :: k). f a) -> g f
pure forall (a :: k). f a
f f f -> g f -> (:*:) f g f
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
Generics.:*: (forall (a :: k). f a) -> g f
forall k (g :: (k -> *) -> *) (f :: k -> *).
Applicative g =>
(forall (a :: k). f a) -> g f
pure forall (a :: k). f a
f
instance DistributiveTraversable Empty
instance DistributiveTraversable Proxy
instance DistributiveTraversable (Only x)
instance DistributiveTraversable g => DistributiveTraversable (Identity g) where
cotraverseTraversable :: (forall (x :: k). f1 (f2 x) -> f x)
-> f1 (Identity g f2) -> Identity g f
cotraverseTraversable forall (x :: k). f1 (f2 x) -> f x
w f1 (Identity g f2)
f = g f -> Identity g f
forall k (g :: k -> *) (f :: k). g f -> Identity g f
Identity ((forall (x :: k). f1 (f2 x) -> f x) -> f1 (g f2) -> g f
forall k (g :: (k -> *) -> *) (f1 :: * -> *) (f2 :: k -> *)
(f :: k -> *).
(DistributiveTraversable g, Traversable f1) =>
(forall (x :: k). f1 (f2 x) -> f x) -> f1 (g f2) -> g f
cotraverseTraversable forall (x :: k). f1 (f2 x) -> f x
w ((Identity g f2 -> g f2) -> f1 (Identity g f2) -> f1 (g f2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.fmap Identity g f2 -> g f2
forall k (g :: k -> *) (f :: k). Identity g f -> g f
runIdentity f1 (Identity g f2)
f))
instance (DistributiveTraversable g, Rank1.Distributive p) => DistributiveTraversable (Compose g p) where
cotraverseTraversable :: (forall (x :: k). f1 (f2 x) -> f x)
-> f1 (Compose g p f2) -> Compose g p f
cotraverseTraversable forall (x :: k). f1 (f2 x) -> f x
w f1 (Compose g p f2)
f = g (Compose p f) -> Compose g p f
forall k1 k (g :: (k1 -> *) -> *) (p :: k -> *) (q :: k1 -> k).
g (Compose p q) -> Compose g p q
Compose ((forall (x :: k). f1 (Compose p f2 x) -> Compose p f x)
-> f1 (g (Compose p f2)) -> g (Compose p f)
forall k (g :: (k -> *) -> *) (f1 :: * -> *) (f2 :: k -> *)
(f :: k -> *).
(DistributiveTraversable g, Traversable f1) =>
(forall (x :: k). f1 (f2 x) -> f x) -> f1 (g f2) -> g f
cotraverseTraversable
(p (f x) -> Compose p f x
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Rank1.Compose (p (f x) -> Compose p f x)
-> (f1 (Compose p f2 x) -> p (f x))
-> f1 (Compose p f2 x)
-> Compose p f x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (f1 (f2 x) -> f x) -> p (f1 (f2 x)) -> p (f x)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.fmap f1 (f2 x) -> f x
forall (x :: k). f1 (f2 x) -> f x
w (p (f1 (f2 x)) -> p (f x))
-> (f1 (Compose p f2 x) -> p (f1 (f2 x)))
-> f1 (Compose p f2 x)
-> p (f x)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f1 (p (f2 x)) -> p (f1 (f2 x))
forall (g :: * -> *) (f :: * -> *) a.
(Distributive g, Functor f) =>
f (g a) -> g (f a)
Rank1.distribute (f1 (p (f2 x)) -> p (f1 (f2 x)))
-> (f1 (Compose p f2 x) -> f1 (p (f2 x)))
-> f1 (Compose p f2 x)
-> p (f1 (f2 x))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Compose p f2 x -> p (f2 x))
-> f1 (Compose p f2 x) -> f1 (p (f2 x))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.fmap Compose p f2 x -> p (f2 x)
forall k1 (f :: k1 -> *) k2 (g :: k2 -> k1) (a :: k2).
Compose f g a -> f (g a)
Rank1.getCompose)
((Compose g p f2 -> g (Compose p f2))
-> f1 (Compose g p f2) -> f1 (g (Compose p f2))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.fmap Compose g p f2 -> g (Compose p f2)
forall k1 (g :: (k1 -> *) -> *) k (p :: k -> *) (q :: k1 -> k).
Compose g p q -> g (Compose p q)
getCompose f1 (Compose g p f2)
f))
instance (DistributiveTraversable g, DistributiveTraversable h) => DistributiveTraversable (Product g h) where
cotraverseTraversable :: (forall (x :: k). f1 (f2 x) -> f x)
-> f1 (Product g h f2) -> Product g h f
cotraverseTraversable forall (x :: k). f1 (f2 x) -> f x
w f1 (Product g h f2)
f = g f -> h f -> Product g h f
forall k (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair ((forall (x :: k). f1 (f2 x) -> f x) -> f1 (g f2) -> g f
forall k (g :: (k -> *) -> *) (f1 :: * -> *) (f2 :: k -> *)
(f :: k -> *).
(DistributiveTraversable g, Traversable f1) =>
(forall (x :: k). f1 (f2 x) -> f x) -> f1 (g f2) -> g f
cotraverseTraversable forall (x :: k). f1 (f2 x) -> f x
w ((Product g h f2 -> g f2) -> f1 (Product g h f2) -> f1 (g f2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.fmap Product g h f2 -> g f2
forall k (g :: k -> *) (h :: k -> *) (p :: k). Product g h p -> g p
fst f1 (Product g h f2)
f))
((forall (x :: k). f1 (f2 x) -> f x) -> f1 (h f2) -> h f
forall k (g :: (k -> *) -> *) (f1 :: * -> *) (f2 :: k -> *)
(f :: k -> *).
(DistributiveTraversable g, Traversable f1) =>
(forall (x :: k). f1 (f2 x) -> f x) -> f1 (g f2) -> g f
cotraverseTraversable forall (x :: k). f1 (f2 x) -> f x
w ((Product g h f2 -> h f2) -> f1 (Product g h f2) -> f1 (h f2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.fmap Product g h f2 -> h f2
forall k (g :: k -> *) (h :: k -> *) (p :: k). Product g h p -> h p
snd f1 (Product g h f2)
f))
instance DistributiveTraversable f => DistributiveTraversable (Generics.M1 i c f) where
cotraverseTraversable :: (forall (x :: k). f1 (f2 x) -> f x)
-> f1 (M1 i c f f2) -> M1 i c f f
cotraverseTraversable forall (x :: k). f1 (f2 x) -> f x
w f1 (M1 i c f f2)
f = f f -> M1 i c f f
forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
Generics.M1 ((forall (x :: k). f1 (f2 x) -> f x) -> f1 (f f2) -> f f
forall k (g :: (k -> *) -> *) (f1 :: * -> *) (f2 :: k -> *)
(f :: k -> *).
(DistributiveTraversable g, Traversable f1) =>
(forall (x :: k). f1 (f2 x) -> f x) -> f1 (g f2) -> g f
cotraverseTraversable forall (x :: k). f1 (f2 x) -> f x
w ((M1 i c f f2 -> f f2) -> f1 (M1 i c f f2) -> f1 (f f2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.fmap M1 i c f f2 -> f f2
forall i (c :: Meta) k (f :: k -> *) (p :: k). M1 i c f p -> f p
Generics.unM1 f1 (M1 i c f f2)
f))
instance DistributiveTraversable f => DistributiveTraversable (Generics.Rec1 f) where
cotraverseTraversable :: (forall (x :: k). f1 (f2 x) -> f x) -> f1 (Rec1 f f2) -> Rec1 f f
cotraverseTraversable forall (x :: k). f1 (f2 x) -> f x
w f1 (Rec1 f f2)
f = f f -> Rec1 f f
forall k (f :: k -> *) (p :: k). f p -> Rec1 f p
Generics.Rec1 ((forall (x :: k). f1 (f2 x) -> f x) -> f1 (f f2) -> f f
forall k (g :: (k -> *) -> *) (f1 :: * -> *) (f2 :: k -> *)
(f :: k -> *).
(DistributiveTraversable g, Traversable f1) =>
(forall (x :: k). f1 (f2 x) -> f x) -> f1 (g f2) -> g f
cotraverseTraversable forall (x :: k). f1 (f2 x) -> f x
w ((Rec1 f f2 -> f f2) -> f1 (Rec1 f f2) -> f1 (f f2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.fmap Rec1 f f2 -> f f2
forall k (f :: k -> *) (p :: k). Rec1 f p -> f p
Generics.unRec1 f1 (Rec1 f f2)
f))
instance (DistributiveTraversable f, DistributiveTraversable g) => DistributiveTraversable ((Generics.:*:) f g) where
cotraverseTraversable :: (forall (x :: k). f1 (f2 x) -> f x)
-> f1 ((:*:) f g f2) -> (:*:) f g f
cotraverseTraversable forall (x :: k). f1 (f2 x) -> f x
w f1 ((:*:) f g f2)
f = (forall (x :: k). f1 (f2 x) -> f x) -> f1 (f f2) -> f f
forall k (g :: (k -> *) -> *) (f1 :: * -> *) (f2 :: k -> *)
(f :: k -> *).
(DistributiveTraversable g, Traversable f1) =>
(forall (x :: k). f1 (f2 x) -> f x) -> f1 (g f2) -> g f
cotraverseTraversable forall (x :: k). f1 (f2 x) -> f x
w (((:*:) f g f2 -> f f2) -> f1 ((:*:) f g f2) -> f1 (f f2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.fmap (\(f f2
a Generics.:*: g f2
_) -> f f2
a) f1 ((:*:) f g f2)
f) f f -> g f -> (:*:) f g f
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
Generics.:*: (forall (x :: k). f1 (f2 x) -> f x) -> f1 (g f2) -> g f
forall k (g :: (k -> *) -> *) (f1 :: * -> *) (f2 :: k -> *)
(f :: k -> *).
(DistributiveTraversable g, Traversable f1) =>
(forall (x :: k). f1 (f2 x) -> f x) -> f1 (g f2) -> g f
cotraverseTraversable forall (x :: k). f1 (f2 x) -> f x
w (((:*:) f g f2 -> g f2) -> f1 ((:*:) f g f2) -> f1 (g f2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.fmap (\(f f2
_ Generics.:*: g f2
b) -> g f2
b) f1 ((:*:) f g f2)
f)
instance Distributive Empty where
cotraverse :: (forall (a :: k). m (p a) -> q a) -> m (Empty p) -> Empty q
cotraverse forall (a :: k). m (p a) -> q a
_ m (Empty p)
_ = Empty q
forall k (f :: k). Empty f
Empty
instance Distributive Proxy where
cotraverse :: (forall (a :: k). m (p a) -> q a) -> m (Proxy p) -> Proxy q
cotraverse forall (a :: k). m (p a) -> q a
_ m (Proxy p)
_ = Proxy q
forall k (t :: k). Proxy t
Proxy
instance Monoid x => DistributiveTraversable (Const x) where
cotraverseTraversable :: (forall (x :: k). f1 (f2 x) -> f x) -> f1 (Const x f2) -> Const x f
cotraverseTraversable forall (x :: k). f1 (f2 x) -> f x
_ f1 (Const x f2)
f = Const x f2 -> Const x f
coerce (f1 (Const x f2) -> Const x f2
forall (t :: * -> *) m. (Foldable t, Monoid m) => t m -> m
Rank1.fold f1 (Const x f2)
f)
instance Distributive (Only x) where
cotraverse :: (forall (a :: k). m (p a) -> q a) -> m (Only x p) -> Only x q
cotraverse forall (a :: k). m (p a) -> q a
w m (Only x p)
f = q x -> Only x q
forall k (a :: k) (f :: k -> *). f a -> Only a f
Only (m (p x) -> q x
forall (a :: k). m (p a) -> q a
w ((Only x p -> p x) -> m (Only x p) -> m (p x)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.fmap Only x p -> p x
forall k (a :: k) (f :: k -> *). Only a f -> f a
fromOnly m (Only x p)
f))
instance Distributive g => Distributive (Identity g) where
cotraverse :: (forall (a :: k). m (p a) -> q a)
-> m (Identity g p) -> Identity g q
cotraverse forall (a :: k). m (p a) -> q a
w m (Identity g p)
f = g q -> Identity g q
forall k (g :: k -> *) (f :: k). g f -> Identity g f
Identity ((forall (a :: k). m (p a) -> q a) -> m (g p) -> g q
forall k (g :: (k -> *) -> *) (m :: * -> *) (p :: k -> *)
(q :: k -> *).
(Distributive g, Functor m) =>
(forall (a :: k). m (p a) -> q a) -> m (g p) -> g q
cotraverse forall (a :: k). m (p a) -> q a
w ((Identity g p -> g p) -> m (Identity g p) -> m (g p)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.fmap Identity g p -> g p
forall k (g :: k -> *) (f :: k). Identity g f -> g f
runIdentity m (Identity g p)
f))
instance (Distributive g, Rank1.Distributive p) => Distributive (Compose g p) where
cotraverse :: (forall (a :: k). m (p a) -> q a)
-> m (Compose g p p) -> Compose g p q
cotraverse forall (a :: k). m (p a) -> q a
w m (Compose g p p)
f = g (Compose p q) -> Compose g p q
forall k1 k (g :: (k1 -> *) -> *) (p :: k -> *) (q :: k1 -> k).
g (Compose p q) -> Compose g p q
Compose ((forall (a :: k). m (Compose p p a) -> Compose p q a)
-> m (g (Compose p p)) -> g (Compose p q)
forall k (g :: (k -> *) -> *) (m :: * -> *) (p :: k -> *)
(q :: k -> *).
(Distributive g, Functor m) =>
(forall (a :: k). m (p a) -> q a) -> m (g p) -> g q
cotraverse (p (q a) -> Compose p q a
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Rank1.Compose (p (q a) -> Compose p q a)
-> (m (Compose p p a) -> p (q a))
-> m (Compose p p a)
-> Compose p q a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (m (p a) -> q a) -> p (m (p a)) -> p (q a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.fmap m (p a) -> q a
forall (a :: k). m (p a) -> q a
w (p (m (p a)) -> p (q a))
-> (m (Compose p p a) -> p (m (p a)))
-> m (Compose p p a)
-> p (q a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. m (p (p a)) -> p (m (p a))
forall (g :: * -> *) (f :: * -> *) a.
(Distributive g, Functor f) =>
f (g a) -> g (f a)
Rank1.distribute (m (p (p a)) -> p (m (p a)))
-> (m (Compose p p a) -> m (p (p a)))
-> m (Compose p p a)
-> p (m (p a))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Compose p p a -> p (p a)) -> m (Compose p p a) -> m (p (p a))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.fmap Compose p p a -> p (p a)
forall k1 (f :: k1 -> *) k2 (g :: k2 -> k1) (a :: k2).
Compose f g a -> f (g a)
Rank1.getCompose)
((Compose g p p -> g (Compose p p))
-> m (Compose g p p) -> m (g (Compose p p))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.fmap Compose g p p -> g (Compose p p)
forall k1 (g :: (k1 -> *) -> *) k (p :: k -> *) (q :: k1 -> k).
Compose g p q -> g (Compose p q)
getCompose m (Compose g p p)
f))
instance (Distributive g, Distributive h) => Distributive (Product g h) where
cotraverse :: (forall (a :: k). m (p a) -> q a)
-> m (Product g h p) -> Product g h q
cotraverse forall (a :: k). m (p a) -> q a
w m (Product g h p)
f = g q -> h q -> Product g h q
forall k (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair ((forall (a :: k). m (p a) -> q a) -> m (g p) -> g q
forall k (g :: (k -> *) -> *) (m :: * -> *) (p :: k -> *)
(q :: k -> *).
(Distributive g, Functor m) =>
(forall (a :: k). m (p a) -> q a) -> m (g p) -> g q
cotraverse forall (a :: k). m (p a) -> q a
w ((Product g h p -> g p) -> m (Product g h p) -> m (g p)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.fmap Product g h p -> g p
forall k (g :: k -> *) (h :: k -> *) (p :: k). Product g h p -> g p
fst m (Product g h p)
f)) ((forall (a :: k). m (p a) -> q a) -> m (h p) -> h q
forall k (g :: (k -> *) -> *) (m :: * -> *) (p :: k -> *)
(q :: k -> *).
(Distributive g, Functor m) =>
(forall (a :: k). m (p a) -> q a) -> m (g p) -> g q
cotraverse forall (a :: k). m (p a) -> q a
w ((Product g h p -> h p) -> m (Product g h p) -> m (h p)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.fmap Product g h p -> h p
forall k (g :: k -> *) (h :: k -> *) (p :: k). Product g h p -> h p
snd m (Product g h p)
f))
instance Monoid c => DistributiveTraversable (Generics.K1 i c) where
cotraverseTraversable :: (forall (x :: k). f1 (f2 x) -> f x) -> f1 (K1 i c f2) -> K1 i c f
cotraverseTraversable forall (x :: k). f1 (f2 x) -> f x
_ f1 (K1 i c f2)
f = c -> K1 i c f
coerce ((K1 i c f2 -> c) -> f1 (K1 i c f2) -> c
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
Rank1.foldMap K1 i c f2 -> c
forall i c k (p :: k). K1 i c p -> c
Generics.unK1 f1 (K1 i c f2)
f)
instance Distributive f => Distributive (Generics.M1 i c f) where
cotraverse :: (forall (a :: k). m (p a) -> q a) -> m (M1 i c f p) -> M1 i c f q
cotraverse forall (a :: k). m (p a) -> q a
w m (M1 i c f p)
f = f q -> M1 i c f q
forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
Generics.M1 ((forall (a :: k). m (p a) -> q a) -> m (f p) -> f q
forall k (g :: (k -> *) -> *) (m :: * -> *) (p :: k -> *)
(q :: k -> *).
(Distributive g, Functor m) =>
(forall (a :: k). m (p a) -> q a) -> m (g p) -> g q
cotraverse forall (a :: k). m (p a) -> q a
w ((M1 i c f p -> f p) -> m (M1 i c f p) -> m (f p)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.fmap M1 i c f p -> f p
forall i (c :: Meta) k (f :: k -> *) (p :: k). M1 i c f p -> f p
Generics.unM1 m (M1 i c f p)
f))
instance Distributive f => Distributive (Generics.Rec1 f) where
cotraverse :: (forall (a :: k). m (p a) -> q a) -> m (Rec1 f p) -> Rec1 f q
cotraverse forall (a :: k). m (p a) -> q a
w m (Rec1 f p)
f = f q -> Rec1 f q
forall k (f :: k -> *) (p :: k). f p -> Rec1 f p
Generics.Rec1 ((forall (a :: k). m (p a) -> q a) -> m (f p) -> f q
forall k (g :: (k -> *) -> *) (m :: * -> *) (p :: k -> *)
(q :: k -> *).
(Distributive g, Functor m) =>
(forall (a :: k). m (p a) -> q a) -> m (g p) -> g q
cotraverse forall (a :: k). m (p a) -> q a
w ((Rec1 f p -> f p) -> m (Rec1 f p) -> m (f p)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.fmap Rec1 f p -> f p
forall k (f :: k -> *) (p :: k). Rec1 f p -> f p
Generics.unRec1 m (Rec1 f p)
f))
instance (Distributive f, Distributive g) => Distributive ((Generics.:*:) f g) where
cotraverse :: (forall (a :: k). m (p a) -> q a) -> m ((:*:) f g p) -> (:*:) f g q
cotraverse forall (a :: k). m (p a) -> q a
w m ((:*:) f g p)
f = (forall (a :: k). m (p a) -> q a) -> m (f p) -> f q
forall k (g :: (k -> *) -> *) (m :: * -> *) (p :: k -> *)
(q :: k -> *).
(Distributive g, Functor m) =>
(forall (a :: k). m (p a) -> q a) -> m (g p) -> g q
cotraverse forall (a :: k). m (p a) -> q a
w (((:*:) f g p -> f p) -> m ((:*:) f g p) -> m (f p)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.fmap (\(f p
a Generics.:*: g p
_) -> f p
a) m ((:*:) f g p)
f) f q -> g q -> (:*:) f g q
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
Generics.:*: (forall (a :: k). m (p a) -> q a) -> m (g p) -> g q
forall k (g :: (k -> *) -> *) (m :: * -> *) (p :: k -> *)
(q :: k -> *).
(Distributive g, Functor m) =>
(forall (a :: k). m (p a) -> q a) -> m (g p) -> g q
cotraverse forall (a :: k). m (p a) -> q a
w (((:*:) f g p -> g p) -> m ((:*:) f g p) -> m (g p)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Rank1.fmap (\(f p
_ Generics.:*: g p
b) -> g p
b) m ((:*:) f g p)
f)