random-fu-0.3.0.1: Random number generation
Safe HaskellSafe-Inferred
LanguageHaskell2010

Data.Random.Distribution.Poisson

Synopsis

Documentation

integralPoissonPDF :: (Integral a, Real b) => b -> a -> Double Source #

The probability of getting exactly k successes is given by the probability mass function:

\[ f(k;\lambda) = \Pr(X = k) = \frac{\lambda^k e^{-\lambda}}{k!} \]

Note that in integralPoissonPDF the parameter of the mass function are given first and the range of the random variable distributed according to the Poisson distribution is given last. That is, \(f(2;0.5)\) is calculated by integralPoissonPDF 0.5 2.

poissonT :: Distribution (Poisson b) a => b -> RVarT m a Source #

newtype Poisson b a Source #

Constructors

Poisson b 

Instances

Instances details
(Real b, Distribution (Poisson b) Int16) => CDF (Poisson b) Int16 Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

Methods

cdf :: Poisson b Int16 -> Int16 -> Double Source #

(Real b, Distribution (Poisson b) Int32) => CDF (Poisson b) Int32 Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

Methods

cdf :: Poisson b Int32 -> Int32 -> Double Source #

(Real b, Distribution (Poisson b) Int64) => CDF (Poisson b) Int64 Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

Methods

cdf :: Poisson b Int64 -> Int64 -> Double Source #

(Real b, Distribution (Poisson b) Int8) => CDF (Poisson b) Int8 Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

Methods

cdf :: Poisson b Int8 -> Int8 -> Double Source #

(Real b, Distribution (Poisson b) Word16) => CDF (Poisson b) Word16 Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

Methods

cdf :: Poisson b Word16 -> Word16 -> Double Source #

(Real b, Distribution (Poisson b) Word32) => CDF (Poisson b) Word32 Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

Methods

cdf :: Poisson b Word32 -> Word32 -> Double Source #

(Real b, Distribution (Poisson b) Word64) => CDF (Poisson b) Word64 Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

Methods

cdf :: Poisson b Word64 -> Word64 -> Double Source #

(Real b, Distribution (Poisson b) Word8) => CDF (Poisson b) Word8 Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

Methods

cdf :: Poisson b Word8 -> Word8 -> Double Source #

(Real b, Distribution (Poisson b) Integer) => CDF (Poisson b) Integer Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

CDF (Poisson b) Integer => CDF (Poisson b) Double Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

Methods

cdf :: Poisson b Double -> Double -> Double Source #

CDF (Poisson b) Integer => CDF (Poisson b) Float Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

Methods

cdf :: Poisson b Float -> Float -> Double Source #

(Real b, Distribution (Poisson b) Int) => CDF (Poisson b) Int Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

Methods

cdf :: Poisson b Int -> Int -> Double Source #

(Real b, Distribution (Poisson b) Word) => CDF (Poisson b) Word Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

Methods

cdf :: Poisson b Word -> Word -> Double Source #

(RealFloat b, Distribution StdUniform b, Distribution (Erlang Int16) b, Distribution (Binomial b) Int16) => Distribution (Poisson b) Int16 Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

Methods

rvar :: Poisson b Int16 -> RVar Int16 Source #

rvarT :: forall (n :: Type -> Type). Poisson b Int16 -> RVarT n Int16 Source #

(RealFloat b, Distribution StdUniform b, Distribution (Erlang Int32) b, Distribution (Binomial b) Int32) => Distribution (Poisson b) Int32 Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

Methods

rvar :: Poisson b Int32 -> RVar Int32 Source #

rvarT :: forall (n :: Type -> Type). Poisson b Int32 -> RVarT n Int32 Source #

(RealFloat b, Distribution StdUniform b, Distribution (Erlang Int64) b, Distribution (Binomial b) Int64) => Distribution (Poisson b) Int64 Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

Methods

rvar :: Poisson b Int64 -> RVar Int64 Source #

rvarT :: forall (n :: Type -> Type). Poisson b Int64 -> RVarT n Int64 Source #

(RealFloat b, Distribution StdUniform b, Distribution (Erlang Int8) b, Distribution (Binomial b) Int8) => Distribution (Poisson b) Int8 Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

Methods

rvar :: Poisson b Int8 -> RVar Int8 Source #

rvarT :: forall (n :: Type -> Type). Poisson b Int8 -> RVarT n Int8 Source #

(RealFloat b, Distribution StdUniform b, Distribution (Erlang Word16) b, Distribution (Binomial b) Word16) => Distribution (Poisson b) Word16 Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

Methods

rvar :: Poisson b Word16 -> RVar Word16 Source #

rvarT :: forall (n :: Type -> Type). Poisson b Word16 -> RVarT n Word16 Source #

(RealFloat b, Distribution StdUniform b, Distribution (Erlang Word32) b, Distribution (Binomial b) Word32) => Distribution (Poisson b) Word32 Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

Methods

rvar :: Poisson b Word32 -> RVar Word32 Source #

rvarT :: forall (n :: Type -> Type). Poisson b Word32 -> RVarT n Word32 Source #

(RealFloat b, Distribution StdUniform b, Distribution (Erlang Word64) b, Distribution (Binomial b) Word64) => Distribution (Poisson b) Word64 Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

Methods

rvar :: Poisson b Word64 -> RVar Word64 Source #

rvarT :: forall (n :: Type -> Type). Poisson b Word64 -> RVarT n Word64 Source #

(RealFloat b, Distribution StdUniform b, Distribution (Erlang Word8) b, Distribution (Binomial b) Word8) => Distribution (Poisson b) Word8 Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

Methods

rvar :: Poisson b Word8 -> RVar Word8 Source #

rvarT :: forall (n :: Type -> Type). Poisson b Word8 -> RVarT n Word8 Source #

(RealFloat b, Distribution StdUniform b, Distribution (Erlang Integer) b, Distribution (Binomial b) Integer) => Distribution (Poisson b) Integer Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

Methods

rvar :: Poisson b Integer -> RVar Integer Source #

rvarT :: forall (n :: Type -> Type). Poisson b Integer -> RVarT n Integer Source #

Distribution (Poisson b) Integer => Distribution (Poisson b) Double Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

Methods

rvar :: Poisson b Double -> RVar Double Source #

rvarT :: forall (n :: Type -> Type). Poisson b Double -> RVarT n Double Source #

Distribution (Poisson b) Integer => Distribution (Poisson b) Float Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

Methods

rvar :: Poisson b Float -> RVar Float Source #

rvarT :: forall (n :: Type -> Type). Poisson b Float -> RVarT n Float Source #

(RealFloat b, Distribution StdUniform b, Distribution (Erlang Int) b, Distribution (Binomial b) Int) => Distribution (Poisson b) Int Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

Methods

rvar :: Poisson b Int -> RVar Int Source #

rvarT :: forall (n :: Type -> Type). Poisson b Int -> RVarT n Int Source #

(RealFloat b, Distribution StdUniform b, Distribution (Erlang Word) b, Distribution (Binomial b) Word) => Distribution (Poisson b) Word Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

Methods

rvar :: Poisson b Word -> RVar Word Source #

rvarT :: forall (n :: Type -> Type). Poisson b Word -> RVarT n Word Source #

(Real b, Distribution (Poisson b) Int16) => PDF (Poisson b) Int16 Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

(Real b, Distribution (Poisson b) Int32) => PDF (Poisson b) Int32 Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

(Real b, Distribution (Poisson b) Int64) => PDF (Poisson b) Int64 Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

(Real b, Distribution (Poisson b) Int8) => PDF (Poisson b) Int8 Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

(Real b, Distribution (Poisson b) Word16) => PDF (Poisson b) Word16 Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

(Real b, Distribution (Poisson b) Word32) => PDF (Poisson b) Word32 Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

(Real b, Distribution (Poisson b) Word64) => PDF (Poisson b) Word64 Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

(Real b, Distribution (Poisson b) Word8) => PDF (Poisson b) Word8 Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

(Real b, Distribution (Poisson b) Integer) => PDF (Poisson b) Integer Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

PDF (Poisson b) Integer => PDF (Poisson b) Double Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

PDF (Poisson b) Integer => PDF (Poisson b) Float Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

(Real b, Distribution (Poisson b) Int) => PDF (Poisson b) Int Source # 
Instance details

Defined in Data.Random.Distribution.Poisson

Methods

pdf :: Poisson b Int -> Int -> Double Source #

logPdf :: Poisson b Int -> Int -> Double Source #

(Real b, Distribution (Poisson b) Word) => PDF (Poisson b) Word Source # 
Instance details

Defined in Data.Random.Distribution.Poisson