{-# LANGUAGE
MultiParamTypeClasses,
FlexibleInstances, FlexibleContexts, UndecidableInstances
#-}
{-# OPTIONS_GHC -fno-warn-simplifiable-class-constraints #-}
module Data.Random.Distribution.Poisson where
import Data.Random.RVar
import Data.Random.Distribution
import Data.Random.Distribution.Uniform
import Data.Random.Distribution.Gamma
import Data.Random.Distribution.Binomial
import Control.Monad
import Data.Int
import Data.Word
integralPoisson :: (Integral a, RealFloat b, Distribution StdUniform b, Distribution (Erlang a) b, Distribution (Binomial b) a) => b -> RVarT m a
integralPoisson :: b -> RVarT m a
integralPoisson = a -> b -> RVarT m a
forall a b (m :: * -> *).
(Integral a, RealFloat b, Distribution StdUniform b,
Distribution (Erlang a) b, Distribution (Binomial b) a) =>
a -> b -> RVarT m a
psn a
0
where
psn :: (Integral a, RealFloat b, Distribution StdUniform b, Distribution (Erlang a) b, Distribution (Binomial b) a) => a -> b -> RVarT m a
psn :: a -> b -> RVarT m a
psn a
j b
mu
| b
mu b -> b -> Bool
forall a. Ord a => a -> a -> Bool
> b
10 = do
let m :: a
m = b -> a
forall a b. (RealFrac a, Integral b) => a -> b
floor (b
mu b -> b -> b
forall a. Num a => a -> a -> a
* (b
7b -> b -> b
forall a. Fractional a => a -> a -> a
/b
8))
b
x <- a -> RVarT m b
forall a b (m :: * -> *).
Distribution (Erlang a) b =>
a -> RVarT m b
erlangT a
m
if b
x b -> b -> Bool
forall a. Ord a => a -> a -> Bool
>= b
mu
then do
a
b <- a -> b -> RVarT m a
forall b a (m :: * -> *).
Distribution (Binomial b) a =>
a -> b -> RVarT m a
binomialT (a
m a -> a -> a
forall a. Num a => a -> a -> a
- a
1) (b
mu b -> b -> b
forall a. Fractional a => a -> a -> a
/ b
x)
a -> RVarT m a
forall (m :: * -> *) a. Monad m => a -> m a
return (a
j a -> a -> a
forall a. Num a => a -> a -> a
+ a
b)
else a -> b -> RVarT m a
forall a b (m :: * -> *).
(Integral a, RealFloat b, Distribution StdUniform b,
Distribution (Erlang a) b, Distribution (Binomial b) a) =>
a -> b -> RVarT m a
psn (a
j a -> a -> a
forall a. Num a => a -> a -> a
+ a
m) (b
mu b -> b -> b
forall a. Num a => a -> a -> a
- b
x)
| Bool
otherwise = b -> a -> RVarT m a
forall b (m :: * -> *). Num b => b -> b -> RVarT m b
prod b
1 a
j
where
emu :: b
emu = b -> b
forall a. Floating a => a -> a
exp (-b
mu)
prod :: b -> b -> RVarT m b
prod b
p b
k = do
b
u <- RVarT m b
forall a (m :: * -> *). Distribution StdUniform a => RVarT m a
stdUniformT
if b
p b -> b -> b
forall a. Num a => a -> a -> a
* b
u b -> b -> Bool
forall a. Ord a => a -> a -> Bool
> b
emu
then b -> b -> RVarT m b
prod (b
p b -> b -> b
forall a. Num a => a -> a -> a
* b
u) (b
k b -> b -> b
forall a. Num a => a -> a -> a
+ b
1)
else b -> RVarT m b
forall (m :: * -> *) a. Monad m => a -> m a
return b
k
integralPoissonCDF :: (Integral a, Real b) => b -> a -> Double
integralPoissonCDF :: b -> a -> Double
integralPoissonCDF b
mu a
k = Double -> Double
forall a. Floating a => a -> a
exp (Double -> Double
forall a. Num a => a -> a
negate Double
lambda) Double -> Double -> Double
forall a. Num a => a -> a -> a
* [Double] -> Double
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum
[ Double -> Double
forall a. Floating a => a -> a
exp (a -> Double
forall a b. (Integral a, Num b) => a -> b
fromIntegral a
i Double -> Double -> Double
forall a. Num a => a -> a -> a
* Double -> Double
forall a. Floating a => a -> a
log Double
lambda Double -> Double -> Double
forall a. Num a => a -> a -> a
- Double
i_fac_ln)
| (a
i, Double
i_fac_ln) <- [a] -> [Double] -> [(a, Double)]
forall a b. [a] -> [b] -> [(a, b)]
zip [a
0..a
k] ((Double -> Double -> Double) -> Double -> [Double] -> [Double]
forall b a. (b -> a -> b) -> b -> [a] -> [b]
scanl Double -> Double -> Double
forall a. Num a => a -> a -> a
(+) Double
0 ((Double -> Double) -> [Double] -> [Double]
forall a b. (a -> b) -> [a] -> [b]
map Double -> Double
forall a. Floating a => a -> a
log [Double
1..]))
]
where lambda :: Double
lambda = b -> Double
forall a b. (Real a, Fractional b) => a -> b
realToFrac b
mu
integralPoissonPDF :: (Integral a, Real b) => b -> a -> Double
integralPoissonPDF :: b -> a -> Double
integralPoissonPDF b
mu a
k = Double -> Double
forall a. Floating a => a -> a
exp (Double -> Double
forall a. Num a => a -> a
negate Double
lambda) Double -> Double -> Double
forall a. Num a => a -> a -> a
*
Double -> Double
forall a. Floating a => a -> a
exp (a -> Double
forall a b. (Integral a, Num b) => a -> b
fromIntegral a
k Double -> Double -> Double
forall a. Num a => a -> a -> a
* Double -> Double
forall a. Floating a => a -> a
log Double
lambda Double -> Double -> Double
forall a. Num a => a -> a -> a
- Double
k_fac_ln)
where
k_fac_ln :: Double
k_fac_ln = (Double -> Double -> Double) -> Double -> [Double] -> Double
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl Double -> Double -> Double
forall a. Num a => a -> a -> a
(+) Double
0 ((a -> Double) -> [a] -> [Double]
forall a b. (a -> b) -> [a] -> [b]
map (Double -> Double
forall a. Floating a => a -> a
log (Double -> Double) -> (a -> Double) -> a -> Double
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Double
forall a b. (Integral a, Num b) => a -> b
fromIntegral) [a
1..a
k])
lambda :: Double
lambda = b -> Double
forall a b. (Real a, Fractional b) => a -> b
realToFrac b
mu
fractionalPoisson :: (Num a, Distribution (Poisson b) Integer) => b -> RVarT m a
fractionalPoisson :: b -> RVarT m a
fractionalPoisson b
mu = (Integer -> a) -> RVarT m Integer -> RVarT m a
forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r
liftM Integer -> a
forall a. Num a => Integer -> a
fromInteger (b -> RVarT m Integer
forall b a (m :: * -> *).
Distribution (Poisson b) a =>
b -> RVarT m a
poissonT b
mu)
fractionalPoissonCDF :: (CDF (Poisson b) Integer, RealFrac a) => b -> a -> Double
fractionalPoissonCDF :: b -> a -> Double
fractionalPoissonCDF b
mu a
k = Poisson b Integer -> Integer -> Double
forall (d :: * -> *) t. CDF d t => d t -> t -> Double
cdf (b -> Poisson b Integer
forall b a. b -> Poisson b a
Poisson b
mu) (a -> Integer
forall a b. (RealFrac a, Integral b) => a -> b
floor a
k :: Integer)
fractionalPoissonPDF :: (PDF (Poisson b) Integer, RealFrac a) => b -> a -> Double
fractionalPoissonPDF :: b -> a -> Double
fractionalPoissonPDF b
mu a
k = Poisson b Integer -> Integer -> Double
forall (d :: * -> *) t. PDF d t => d t -> t -> Double
pdf (b -> Poisson b Integer
forall b a. b -> Poisson b a
Poisson b
mu) (a -> Integer
forall a b. (RealFrac a, Integral b) => a -> b
floor a
k :: Integer)
poisson :: (Distribution (Poisson b) a) => b -> RVar a
poisson :: b -> RVar a
poisson b
mu = Poisson b a -> RVar a
forall (d :: * -> *) t. Distribution d t => d t -> RVar t
rvar (b -> Poisson b a
forall b a. b -> Poisson b a
Poisson b
mu)
poissonT :: (Distribution (Poisson b) a) => b -> RVarT m a
poissonT :: b -> RVarT m a
poissonT b
mu = Poisson b a -> RVarT m a
forall (d :: * -> *) t (n :: * -> *).
Distribution d t =>
d t -> RVarT n t
rvarT (b -> Poisson b a
forall b a. b -> Poisson b a
Poisson b
mu)
newtype Poisson b a = Poisson b
instance (RealFloat b, Distribution StdUniform b, Distribution (Erlang Integer) b, Distribution (Binomial b) Integer) => Distribution (Poisson b) Integer where
rvarT :: Poisson b Integer -> RVarT n Integer
rvarT (Poisson b
mu) = b -> RVarT n Integer
forall a b (m :: * -> *).
(Integral a, RealFloat b, Distribution StdUniform b,
Distribution (Erlang a) b, Distribution (Binomial b) a) =>
b -> RVarT m a
integralPoisson b
mu
instance (Real b, Distribution (Poisson b) Integer) => CDF (Poisson b) Integer where
cdf :: Poisson b Integer -> Integer -> Double
cdf (Poisson b
mu) = b -> Integer -> Double
forall a b. (Integral a, Real b) => b -> a -> Double
integralPoissonCDF b
mu
instance (Real b, Distribution (Poisson b) Integer) => PDF (Poisson b) Integer where
pdf :: Poisson b Integer -> Integer -> Double
pdf (Poisson b
mu) = b -> Integer -> Double
forall a b. (Integral a, Real b) => b -> a -> Double
integralPoissonPDF b
mu
instance (RealFloat b, Distribution StdUniform b, Distribution (Erlang Int) b, Distribution (Binomial b) Int) => Distribution (Poisson b) Int where
rvarT :: Poisson b Int -> RVarT n Int
rvarT (Poisson b
mu) = b -> RVarT n Int
forall a b (m :: * -> *).
(Integral a, RealFloat b, Distribution StdUniform b,
Distribution (Erlang a) b, Distribution (Binomial b) a) =>
b -> RVarT m a
integralPoisson b
mu
instance (Real b, Distribution (Poisson b) Int) => CDF (Poisson b) Int where
cdf :: Poisson b Int -> Int -> Double
cdf (Poisson b
mu) = b -> Int -> Double
forall a b. (Integral a, Real b) => b -> a -> Double
integralPoissonCDF b
mu
instance (Real b, Distribution (Poisson b) Int) => PDF (Poisson b) Int where
pdf :: Poisson b Int -> Int -> Double
pdf (Poisson b
mu) = b -> Int -> Double
forall a b. (Integral a, Real b) => b -> a -> Double
integralPoissonPDF b
mu
instance (RealFloat b, Distribution StdUniform b, Distribution (Erlang Int8) b, Distribution (Binomial b) Int8) => Distribution (Poisson b) Int8 where
rvarT :: Poisson b Int8 -> RVarT n Int8
rvarT (Poisson b
mu) = b -> RVarT n Int8
forall a b (m :: * -> *).
(Integral a, RealFloat b, Distribution StdUniform b,
Distribution (Erlang a) b, Distribution (Binomial b) a) =>
b -> RVarT m a
integralPoisson b
mu
instance (Real b, Distribution (Poisson b) Int8) => CDF (Poisson b) Int8 where
cdf :: Poisson b Int8 -> Int8 -> Double
cdf (Poisson b
mu) = b -> Int8 -> Double
forall a b. (Integral a, Real b) => b -> a -> Double
integralPoissonCDF b
mu
instance (Real b, Distribution (Poisson b) Int8) => PDF (Poisson b) Int8 where
pdf :: Poisson b Int8 -> Int8 -> Double
pdf (Poisson b
mu) = b -> Int8 -> Double
forall a b. (Integral a, Real b) => b -> a -> Double
integralPoissonPDF b
mu
instance (RealFloat b, Distribution StdUniform b, Distribution (Erlang Int16) b, Distribution (Binomial b) Int16) => Distribution (Poisson b) Int16 where
rvarT :: Poisson b Int16 -> RVarT n Int16
rvarT (Poisson b
mu) = b -> RVarT n Int16
forall a b (m :: * -> *).
(Integral a, RealFloat b, Distribution StdUniform b,
Distribution (Erlang a) b, Distribution (Binomial b) a) =>
b -> RVarT m a
integralPoisson b
mu
instance (Real b, Distribution (Poisson b) Int16) => CDF (Poisson b) Int16 where
cdf :: Poisson b Int16 -> Int16 -> Double
cdf (Poisson b
mu) = b -> Int16 -> Double
forall a b. (Integral a, Real b) => b -> a -> Double
integralPoissonCDF b
mu
instance (Real b, Distribution (Poisson b) Int16) => PDF (Poisson b) Int16 where
pdf :: Poisson b Int16 -> Int16 -> Double
pdf (Poisson b
mu) = b -> Int16 -> Double
forall a b. (Integral a, Real b) => b -> a -> Double
integralPoissonPDF b
mu
instance (RealFloat b, Distribution StdUniform b, Distribution (Erlang Int32) b, Distribution (Binomial b) Int32) => Distribution (Poisson b) Int32 where
rvarT :: Poisson b Int32 -> RVarT n Int32
rvarT (Poisson b
mu) = b -> RVarT n Int32
forall a b (m :: * -> *).
(Integral a, RealFloat b, Distribution StdUniform b,
Distribution (Erlang a) b, Distribution (Binomial b) a) =>
b -> RVarT m a
integralPoisson b
mu
instance (Real b, Distribution (Poisson b) Int32) => CDF (Poisson b) Int32 where
cdf :: Poisson b Int32 -> Int32 -> Double
cdf (Poisson b
mu) = b -> Int32 -> Double
forall a b. (Integral a, Real b) => b -> a -> Double
integralPoissonCDF b
mu
instance (Real b, Distribution (Poisson b) Int32) => PDF (Poisson b) Int32 where
pdf :: Poisson b Int32 -> Int32 -> Double
pdf (Poisson b
mu) = b -> Int32 -> Double
forall a b. (Integral a, Real b) => b -> a -> Double
integralPoissonPDF b
mu
instance (RealFloat b, Distribution StdUniform b, Distribution (Erlang Int64) b, Distribution (Binomial b) Int64) => Distribution (Poisson b) Int64 where
rvarT :: Poisson b Int64 -> RVarT n Int64
rvarT (Poisson b
mu) = b -> RVarT n Int64
forall a b (m :: * -> *).
(Integral a, RealFloat b, Distribution StdUniform b,
Distribution (Erlang a) b, Distribution (Binomial b) a) =>
b -> RVarT m a
integralPoisson b
mu
instance (Real b, Distribution (Poisson b) Int64) => CDF (Poisson b) Int64 where
cdf :: Poisson b Int64 -> Int64 -> Double
cdf (Poisson b
mu) = b -> Int64 -> Double
forall a b. (Integral a, Real b) => b -> a -> Double
integralPoissonCDF b
mu
instance (Real b, Distribution (Poisson b) Int64) => PDF (Poisson b) Int64 where
pdf :: Poisson b Int64 -> Int64 -> Double
pdf (Poisson b
mu) = b -> Int64 -> Double
forall a b. (Integral a, Real b) => b -> a -> Double
integralPoissonPDF b
mu
instance (RealFloat b, Distribution StdUniform b, Distribution (Erlang Word) b, Distribution (Binomial b) Word) => Distribution (Poisson b) Word where
rvarT :: Poisson b Word -> RVarT n Word
rvarT (Poisson b
mu) = b -> RVarT n Word
forall a b (m :: * -> *).
(Integral a, RealFloat b, Distribution StdUniform b,
Distribution (Erlang a) b, Distribution (Binomial b) a) =>
b -> RVarT m a
integralPoisson b
mu
instance (Real b, Distribution (Poisson b) Word) => CDF (Poisson b) Word where
cdf :: Poisson b Word -> Word -> Double
cdf (Poisson b
mu) = b -> Word -> Double
forall a b. (Integral a, Real b) => b -> a -> Double
integralPoissonCDF b
mu
instance (Real b, Distribution (Poisson b) Word) => PDF (Poisson b) Word where
pdf :: Poisson b Word -> Word -> Double
pdf (Poisson b
mu) = b -> Word -> Double
forall a b. (Integral a, Real b) => b -> a -> Double
integralPoissonPDF b
mu
instance (RealFloat b, Distribution StdUniform b, Distribution (Erlang Word8) b, Distribution (Binomial b) Word8) => Distribution (Poisson b) Word8 where
rvarT :: Poisson b Word8 -> RVarT n Word8
rvarT (Poisson b
mu) = b -> RVarT n Word8
forall a b (m :: * -> *).
(Integral a, RealFloat b, Distribution StdUniform b,
Distribution (Erlang a) b, Distribution (Binomial b) a) =>
b -> RVarT m a
integralPoisson b
mu
instance (Real b, Distribution (Poisson b) Word8) => CDF (Poisson b) Word8 where
cdf :: Poisson b Word8 -> Word8 -> Double
cdf (Poisson b
mu) = b -> Word8 -> Double
forall a b. (Integral a, Real b) => b -> a -> Double
integralPoissonCDF b
mu
instance (Real b, Distribution (Poisson b) Word8) => PDF (Poisson b) Word8 where
pdf :: Poisson b Word8 -> Word8 -> Double
pdf (Poisson b
mu) = b -> Word8 -> Double
forall a b. (Integral a, Real b) => b -> a -> Double
integralPoissonPDF b
mu
instance (RealFloat b, Distribution StdUniform b, Distribution (Erlang Word16) b, Distribution (Binomial b) Word16) => Distribution (Poisson b) Word16 where
rvarT :: Poisson b Word16 -> RVarT n Word16
rvarT (Poisson b
mu) = b -> RVarT n Word16
forall a b (m :: * -> *).
(Integral a, RealFloat b, Distribution StdUniform b,
Distribution (Erlang a) b, Distribution (Binomial b) a) =>
b -> RVarT m a
integralPoisson b
mu
instance (Real b, Distribution (Poisson b) Word16) => CDF (Poisson b) Word16 where
cdf :: Poisson b Word16 -> Word16 -> Double
cdf (Poisson b
mu) = b -> Word16 -> Double
forall a b. (Integral a, Real b) => b -> a -> Double
integralPoissonCDF b
mu
instance (Real b, Distribution (Poisson b) Word16) => PDF (Poisson b) Word16 where
pdf :: Poisson b Word16 -> Word16 -> Double
pdf (Poisson b
mu) = b -> Word16 -> Double
forall a b. (Integral a, Real b) => b -> a -> Double
integralPoissonPDF b
mu
instance (RealFloat b, Distribution StdUniform b, Distribution (Erlang Word32) b, Distribution (Binomial b) Word32) => Distribution (Poisson b) Word32 where
rvarT :: Poisson b Word32 -> RVarT n Word32
rvarT (Poisson b
mu) = b -> RVarT n Word32
forall a b (m :: * -> *).
(Integral a, RealFloat b, Distribution StdUniform b,
Distribution (Erlang a) b, Distribution (Binomial b) a) =>
b -> RVarT m a
integralPoisson b
mu
instance (Real b, Distribution (Poisson b) Word32) => CDF (Poisson b) Word32 where
cdf :: Poisson b Word32 -> Word32 -> Double
cdf (Poisson b
mu) = b -> Word32 -> Double
forall a b. (Integral a, Real b) => b -> a -> Double
integralPoissonCDF b
mu
instance (Real b, Distribution (Poisson b) Word32) => PDF (Poisson b) Word32 where
pdf :: Poisson b Word32 -> Word32 -> Double
pdf (Poisson b
mu) = b -> Word32 -> Double
forall a b. (Integral a, Real b) => b -> a -> Double
integralPoissonPDF b
mu
instance (RealFloat b, Distribution StdUniform b, Distribution (Erlang Word64) b, Distribution (Binomial b) Word64) => Distribution (Poisson b) Word64 where
rvarT :: Poisson b Word64 -> RVarT n Word64
rvarT (Poisson b
mu) = b -> RVarT n Word64
forall a b (m :: * -> *).
(Integral a, RealFloat b, Distribution StdUniform b,
Distribution (Erlang a) b, Distribution (Binomial b) a) =>
b -> RVarT m a
integralPoisson b
mu
instance (Real b, Distribution (Poisson b) Word64) => CDF (Poisson b) Word64 where
cdf :: Poisson b Word64 -> Word64 -> Double
cdf (Poisson b
mu) = b -> Word64 -> Double
forall a b. (Integral a, Real b) => b -> a -> Double
integralPoissonCDF b
mu
instance (Real b, Distribution (Poisson b) Word64) => PDF (Poisson b) Word64 where
pdf :: Poisson b Word64 -> Word64 -> Double
pdf (Poisson b
mu) = b -> Word64 -> Double
forall a b. (Integral a, Real b) => b -> a -> Double
integralPoissonPDF b
mu
instance Distribution (Poisson b) Integer => Distribution (Poisson b) Float where
rvarT :: Poisson b Float -> RVarT n Float
rvarT (Poisson b
mu) = b -> RVarT n Float
forall a b (m :: * -> *).
(Num a, Distribution (Poisson b) Integer) =>
b -> RVarT m a
fractionalPoisson b
mu
instance CDF (Poisson b) Integer => CDF (Poisson b) Float where
cdf :: Poisson b Float -> Float -> Double
cdf (Poisson b
mu) = b -> Float -> Double
forall b a.
(CDF (Poisson b) Integer, RealFrac a) =>
b -> a -> Double
fractionalPoissonCDF b
mu
instance PDF (Poisson b) Integer => PDF (Poisson b) Float where
pdf :: Poisson b Float -> Float -> Double
pdf (Poisson b
mu) = b -> Float -> Double
forall b a.
(PDF (Poisson b) Integer, RealFrac a) =>
b -> a -> Double
fractionalPoissonPDF b
mu
instance Distribution (Poisson b) Integer => Distribution (Poisson b) Double where
rvarT :: Poisson b Double -> RVarT n Double
rvarT (Poisson b
mu) = b -> RVarT n Double
forall a b (m :: * -> *).
(Num a, Distribution (Poisson b) Integer) =>
b -> RVarT m a
fractionalPoisson b
mu
instance CDF (Poisson b) Integer => CDF (Poisson b) Double where
cdf :: Poisson b Double -> Double -> Double
cdf (Poisson b
mu) = b -> Double -> Double
forall b a.
(CDF (Poisson b) Integer, RealFrac a) =>
b -> a -> Double
fractionalPoissonCDF b
mu
instance PDF (Poisson b) Integer => PDF (Poisson b) Double where
pdf :: Poisson b Double -> Double -> Double
pdf (Poisson b
mu) = b -> Double -> Double
forall b a.
(PDF (Poisson b) Integer, RealFrac a) =>
b -> a -> Double
fractionalPoissonPDF b
mu