Safe Haskell | None |
---|---|
Language | Haskell2010 |
Synopsis
- newtype StdSimplex as = StdSimplex Int
- stdSimplex :: Distribution StdSimplex [a] => Int -> RVar [a]
- stdSimplexT :: Distribution StdSimplex [a] => Int -> RVarT m [a]
- fractionalStdSimplex :: (Ord a, Fractional a, Distribution StdUniform a) => Int -> RVar [a]
Documentation
newtype StdSimplex as Source #
Uniform distribution over a standard simplex.
StdSimplex Int |
|
Instances
(Ord a, Fractional a, Distribution StdUniform a) => Distribution StdSimplex [a] Source # | |
Defined in Data.Random.Distribution.Simplex | |
Eq (StdSimplex as) Source # | |
Defined in Data.Random.Distribution.Simplex (==) :: StdSimplex as -> StdSimplex as -> Bool # (/=) :: StdSimplex as -> StdSimplex as -> Bool # | |
Show (StdSimplex as) Source # | |
Defined in Data.Random.Distribution.Simplex showsPrec :: Int -> StdSimplex as -> ShowS # show :: StdSimplex as -> String # showList :: [StdSimplex as] -> ShowS # |
stdSimplex :: Distribution StdSimplex [a] => Int -> RVar [a] Source #
stdSimplex k
returns a random variable being uniformly distributed over
a standard simplex of dimension k
.
stdSimplexT :: Distribution StdSimplex [a] => Int -> RVarT m [a] Source #
fractionalStdSimplex :: (Ord a, Fractional a, Distribution StdUniform a) => Int -> RVar [a] Source #
An algorithm proposed by Rubinstein & Melamed (1998). See, e.g., S. Onn, I. Weissman. Generating uniform random vectors over a simplex with implications to the volume of a certain polytope and to multivariate extremes. Ann Oper Res (2011) 189:331-342.