{-# LANGUAGE CPP #-}
{-# LANGUAGE ScopedTypeVariables #-}
#if HAVE_QUANTIFIED_CONSTRAINTS
{-# LANGUAGE QuantifiedConstraints #-}
#endif
{-# OPTIONS_GHC -Wall #-}
module Test.QuickCheck.Classes.Semigroupoid
(
#if defined(HAVE_SEMIGROUPOIDS) && defined(HAVE_BINARY_LAWS)
semigroupoidLaws
, commutativeSemigroupoidLaws
#endif
) where
#if defined(HAVE_SEMIGROUPOIDS) && defined(HAVE_BINARY_LAWS)
import Prelude hiding (id, (.))
import Data.Semigroupoid (Semigroupoid(..))
import Test.QuickCheck hiding ((.&.))
import Data.Functor.Classes (Eq2,Show2)
import Test.QuickCheck.Property (Property)
import Test.QuickCheck.Classes.Common
import Test.QuickCheck.Classes.Compat (eq2)
semigroupoidLaws :: forall proxy s.
#if HAVE_QUANTIFIED_CONSTRAINTS
(Semigroupoid s, forall a b. (Eq a, Eq b) => Eq (s a b), forall a b. (Show a, Show b) => Show (s a b), forall a b. (Arbitrary a, Arbitrary b) => Arbitrary (s a b))
#else
(Semigroupoid s, Eq2 s, Show2 s, Arbitrary2 s)
#endif
=> proxy s -> Laws
semigroupoidLaws p = Laws "Semigroupoid"
[ ("Associativity", semigroupoidAssociativity p)
]
commutativeSemigroupoidLaws :: forall proxy s.
#if HAVE_QUANTIFIED_CONSTRAINTS
(Semigroupoid s, forall a b. (Eq a, Eq b) => Eq (s a b), forall a b. (Show a, Show b) => Show (s a b), forall a b. (Arbitrary a, Arbitrary b) => Arbitrary (s a b))
#else
(Semigroupoid s, Eq2 s, Show2 s, Arbitrary2 s)
#endif
=> proxy s -> Laws
commutativeSemigroupoidLaws p = Laws "Commutative Semigroupoid" $ lawsProperties (semigroupoidLaws p) ++
[ ("Commutative", semigroupoidCommutativity p)
]
semigroupoidAssociativity :: forall proxy s.
#if HAVE_QUANTIFIED_CONSTRAINTS
(Semigroupoid s, forall a b. (Eq a, Eq b) => Eq (s a b), forall a b. (Show a, Show b) => Show (s a b), forall a b. (Arbitrary a, Arbitrary b) => Arbitrary (s a b))
#else
(Semigroupoid s, Eq2 s, Show2 s, Arbitrary2 s)
#endif
=> proxy s -> Property
semigroupoidAssociativity _ = property $ \(Apply2 (f :: s Integer Integer)) (Apply2 (g :: s Integer Integer)) (Apply2 (h :: s Integer Integer)) -> eq2 (f `o` (g `o` h)) ((f `o` g) `o` h)
semigroupoidCommutativity :: forall proxy s.
#if HAVE_QUANTIFIED_CONSTRAINTS
(Semigroupoid s, forall a b. (Eq a, Eq b) => Eq (s a b), forall a b. (Show a, Show b) => Show (s a b), forall a b. (Arbitrary a, Arbitrary b) => Arbitrary (s a b))
#else
(Semigroupoid s, Eq2 s, Show2 s, Arbitrary2 s)
#endif
=> proxy s -> Property
semigroupoidCommutativity _ = property $ \(Apply2 (f :: s Integer Integer)) (Apply2 (g :: s Integer Integer)) -> eq2 (f `o` g) (g `o` f)
#endif