{-# LANGUAGE CPP #-}
{-# LANGUAGE ScopedTypeVariables #-}
#if HAVE_QUANTIFIED_CONSTRAINTS
{-# LANGUAGE QuantifiedConstraints #-}
#endif
{-# OPTIONS_GHC -Wall #-}
module Test.QuickCheck.Classes.Applicative
(
#if HAVE_UNARY_LAWS
applicativeLaws
#endif
) where
import Control.Applicative
import Test.QuickCheck hiding ((.&.))
#if HAVE_UNARY_LAWS
import Test.QuickCheck.Arbitrary (Arbitrary1(..))
import Data.Functor.Classes (Eq1,Show1)
#endif
import Test.QuickCheck.Property (Property)
import Test.QuickCheck.Classes.Common
#if HAVE_UNARY_LAWS
import Test.QuickCheck.Classes.Compat (eq1)
#endif
#if HAVE_UNARY_LAWS
applicativeLaws ::
#if HAVE_QUANTIFIED_CONSTRAINTS
(Applicative f, forall a. Eq a => Eq (f a), forall a. Show a => Show (f a), forall a. Arbitrary a => Arbitrary (f a))
#else
(Applicative f, Eq1 f, Show1 f, Arbitrary1 f)
#endif
=> proxy f -> Laws
applicativeLaws p = Laws "Applicative"
[ ("Identity", applicativeIdentity p)
, ("Composition", applicativeComposition p)
, ("Homomorphism", applicativeHomomorphism p)
, ("Interchange", applicativeInterchange p)
, ("LiftA2 Part 1", applicativeLiftA2_1 p)
]
applicativeIdentity :: forall proxy f.
#if HAVE_QUANTIFIED_CONSTRAINTS
(Applicative f, forall a. Eq a => Eq (f a), forall a. Show a => Show (f a), forall a. Arbitrary a => Arbitrary (f a))
#else
(Applicative f, Eq1 f, Show1 f, Arbitrary1 f)
#endif
=> proxy f -> Property
applicativeIdentity _ = property $ \(Apply (a :: f Integer)) -> eq1 (pure id <*> a) a
applicativeComposition :: forall proxy f.
#if HAVE_QUANTIFIED_CONSTRAINTS
(Applicative f, forall a. Eq a => Eq (f a), forall a. Show a => Show (f a), forall a. Arbitrary a => Arbitrary (f a))
#else
(Applicative f, Eq1 f, Show1 f, Arbitrary1 f)
#endif
=> proxy f -> Property
applicativeComposition _ = property $ \(Apply (u' :: f QuadraticEquation)) (Apply (v' :: f QuadraticEquation)) (Apply (w :: f Integer)) ->
let u = fmap runQuadraticEquation u'
v = fmap runQuadraticEquation v'
in eq1 (pure (.) <*> u <*> v <*> w) (u <*> (v <*> w))
applicativeHomomorphism :: forall proxy f.
#if HAVE_QUANTIFIED_CONSTRAINTS
(Applicative f, forall a. Eq a => Eq (f a), forall a. Show a => Show (f a))
#else
(Applicative f, Eq1 f, Show1 f)
#endif
=> proxy f -> Property
applicativeHomomorphism _ = property $ \(e :: QuadraticEquation) (a :: Integer) ->
let f = runQuadraticEquation e
in eq1 (pure f <*> pure a) (pure (f a) :: f Integer)
applicativeInterchange :: forall proxy f.
#if HAVE_QUANTIFIED_CONSTRAINTS
(Applicative f, forall a. Eq a => Eq (f a), forall a. Show a => Show (f a), forall a. Arbitrary a => Arbitrary (f a))
#else
(Applicative f, Eq1 f, Show1 f, Arbitrary1 f)
#endif
=> proxy f -> Property
applicativeInterchange _ = property $ \(Apply (u' :: f QuadraticEquation)) (y :: Integer) ->
let u = fmap runQuadraticEquation u'
in eq1 (u <*> pure y) (pure ($ y) <*> u)
applicativeLiftA2_1 :: forall proxy f.
#if HAVE_QUANTIFIED_CONSTRAINTS
(Applicative f, forall a. Eq a => Eq (f a), forall a. Show a => Show (f a), forall a. Arbitrary a => Arbitrary (f a))
#else
(Applicative f, Eq1 f, Show1 f, Arbitrary1 f)
#endif
=> proxy f -> Property
applicativeLiftA2_1 _ = property $ \(Apply (f' :: f QuadraticEquation)) (Apply (x :: f Integer)) ->
let f = fmap runQuadraticEquation f'
in eq1 (liftA2 id f x) (f <*> x)
#endif