{-# LANGUAGE CPP #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# OPTIONS_GHC -Wall #-}
module Test.QuickCheck.Classes.Foldable
(
#if MIN_VERSION_base(4,9,0) || MIN_VERSION_transformers(0,4,0)
foldableLaws
#endif
) where
import Data.Monoid
import Data.Foldable
import Test.QuickCheck hiding ((.&.))
#if MIN_VERSION_QuickCheck(2,10,0)
import Control.Exception (ErrorCall,try,evaluate)
import Control.Monad.Trans.Class (lift)
import Test.QuickCheck.Arbitrary (Arbitrary1(..))
import Test.QuickCheck.Monadic (monadicIO)
#if MIN_VERSION_base(4,9,0) || MIN_VERSION_transformers(0,4,0)
import Data.Functor.Classes
#endif
#endif
import Test.QuickCheck.Property (Property)
import qualified Data.Foldable as F
import qualified Data.Semigroup as SG
import Test.QuickCheck.Classes.Common
#if MIN_VERSION_QuickCheck(2,10,0)
#if MIN_VERSION_base(4,9,0) || MIN_VERSION_transformers(0,4,0)
foldableLaws :: (Foldable f, Eq1 f, Show1 f, Arbitrary1 f) => proxy f -> Laws
foldableLaws = foldableLawsInternal
foldableLawsInternal :: forall proxy f. (Foldable f, Eq1 f, Show1 f, Arbitrary1 f) => proxy f -> Laws
foldableLawsInternal p = Laws "Foldable"
[ (,) "fold" $ property $ \(Apply (a :: f (SG.Sum Integer))) ->
F.fold a == F.foldMap id a
, (,) "foldMap" $ property $ \(Apply (a :: f Integer)) (e :: QuadraticEquation) ->
let f = SG.Sum . runQuadraticEquation e
in F.foldMap f a == F.foldr (mappend . f) mempty a
, (,) "foldr" $ property $ \(e :: LinearEquationTwo) (z :: Integer) (Apply (t :: f Integer)) ->
let f = runLinearEquationTwo e
in F.foldr f z t == SG.appEndo (foldMap (SG.Endo . f) t) z
, (,) "foldr'" (foldableFoldr' p)
, (,) "foldl" $ property $ \(e :: LinearEquationTwo) (z :: Integer) (Apply (t :: f Integer)) ->
let f = runLinearEquationTwo e
in F.foldl f z t == SG.appEndo (SG.getDual (F.foldMap (SG.Dual . SG.Endo . flip f) t)) z
, (,) "foldl'" (foldableFoldl' p)
, (,) "foldl1" $ property $ \(e :: LinearEquationTwo) (Apply (t :: f Integer)) ->
case compatToList t of
[] -> True
x : xs ->
let f = runLinearEquationTwo e
in F.foldl1 f t == F.foldl f x xs
, (,) "foldr1" $ property $ \(e :: LinearEquationTwo) (Apply (t :: f Integer)) ->
case unsnoc (compatToList t) of
Nothing -> True
Just (xs,x) ->
let f = runLinearEquationTwo e
in F.foldr1 f t == F.foldr f x xs
, (,) "toList" $ property $ \(Apply (t :: f Integer)) ->
eq1 (F.toList t) (F.foldr (:) [] t)
#if MIN_VERSION_base(4,8,0)
, (,) "null" $ property $ \(Apply (t :: f Integer)) ->
null t == F.foldr (const (const False)) True t
, (,) "length" $ property $ \(Apply (t :: f Integer)) ->
F.length t == SG.getSum (F.foldMap (const (SG.Sum 1)) t)
#endif
]
unsnoc :: [a] -> Maybe ([a],a)
unsnoc [] = Nothing
unsnoc [x] = Just ([],x)
unsnoc (x:y:xs) = fmap (\(bs,b) -> (x:bs,b)) (unsnoc (y : xs))
compatToList :: Foldable f => f a -> [a]
compatToList = foldMap (\x -> [x])
foldableFoldl' :: forall proxy f. (Foldable f, Eq1 f, Show1 f, Arbitrary1 f) => proxy f -> Property
foldableFoldl' _ = property $ \(_ :: ChooseSecond) (_ :: LastNothing) (Apply (xs :: f (Bottom Integer))) ->
monadicIO $ do
let f :: Integer -> Bottom Integer -> Integer
f a b = case b of
BottomUndefined -> error "foldableFoldl' example"
BottomValue v -> if even v
then a
else v
z0 = 0
r1 <- lift $ do
let f' x k z = k $! f z x
e <- try (evaluate (F.foldr f' id xs z0))
case e of
Left (_ :: ErrorCall) -> return Nothing
Right i -> return (Just i)
r2 <- lift $ do
e <- try (evaluate (F.foldl' f z0 xs))
case e of
Left (_ :: ErrorCall) -> return Nothing
Right i -> return (Just i)
return (r1 == r2)
foldableFoldr' :: forall proxy f. (Foldable f, Eq1 f, Show1 f, Arbitrary1 f) => proxy f -> Property
foldableFoldr' _ = property $ \(_ :: ChooseFirst) (_ :: LastNothing) (Apply (xs :: f (Bottom Integer))) ->
monadicIO $ do
let f :: Bottom Integer -> Integer -> Integer
f a b = case a of
BottomUndefined -> error "foldableFoldl' example"
BottomValue v -> if even v
then v
else b
z0 = 0
r1 <- lift $ do
let f' k x z = k $! f x z
e <- try (evaluate (F.foldl f' id xs z0))
case e of
Left (_ :: ErrorCall) -> return Nothing
Right i -> return (Just i)
r2 <- lift $ do
e <- try (evaluate (F.foldr' f z0 xs))
case e of
Left (_ :: ErrorCall) -> return Nothing
Right i -> return (Just i)
return (r1 == r2)
#endif
#endif