module Language.Parser.Ptera.Data.Alignable.Map (
    T,
    Map,
    empty,
    singleton,
    insert,
    lookup,
    assocs,
    toAscList,
    restrictGreaterOrEqual,
) where

import           Language.Parser.Ptera.Prelude                        hiding
                                                                      (empty,
                                                                       lookup)

import qualified Data.IntMap.Strict                                   as IntMap
import qualified Language.Parser.Ptera.Data.Alignable                 as Alignable
import qualified Language.Parser.Ptera.Data.IntMap.GreaterRestriction as GreaterRestriction


type T = Map

newtype Map n a = Map (IntMap.IntMap a)
    deriving (Map n a -> Map n a -> Bool
(Map n a -> Map n a -> Bool)
-> (Map n a -> Map n a -> Bool) -> Eq (Map n a)
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
forall k (n :: k) a. Eq a => Map n a -> Map n a -> Bool
/= :: Map n a -> Map n a -> Bool
$c/= :: forall k (n :: k) a. Eq a => Map n a -> Map n a -> Bool
== :: Map n a -> Map n a -> Bool
$c== :: forall k (n :: k) a. Eq a => Map n a -> Map n a -> Bool
Eq, Int -> Map n a -> ShowS
[Map n a] -> ShowS
Map n a -> String
(Int -> Map n a -> ShowS)
-> (Map n a -> String) -> ([Map n a] -> ShowS) -> Show (Map n a)
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
forall k (n :: k) a. Show a => Int -> Map n a -> ShowS
forall k (n :: k) a. Show a => [Map n a] -> ShowS
forall k (n :: k) a. Show a => Map n a -> String
showList :: [Map n a] -> ShowS
$cshowList :: forall k (n :: k) a. Show a => [Map n a] -> ShowS
show :: Map n a -> String
$cshow :: forall k (n :: k) a. Show a => Map n a -> String
showsPrec :: Int -> Map n a -> ShowS
$cshowsPrec :: forall k (n :: k) a. Show a => Int -> Map n a -> ShowS
Show, a -> Map n b -> Map n a
(a -> b) -> Map n a -> Map n b
(forall a b. (a -> b) -> Map n a -> Map n b)
-> (forall a b. a -> Map n b -> Map n a) -> Functor (Map n)
forall k (n :: k) a b. a -> Map n b -> Map n a
forall k (n :: k) a b. (a -> b) -> Map n a -> Map n b
forall a b. a -> Map n b -> Map n a
forall a b. (a -> b) -> Map n a -> Map n b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: a -> Map n b -> Map n a
$c<$ :: forall k (n :: k) a b. a -> Map n b -> Map n a
fmap :: (a -> b) -> Map n a -> Map n b
$cfmap :: forall k (n :: k) a b. (a -> b) -> Map n a -> Map n b
Functor, Map n a -> Bool
(a -> m) -> Map n a -> m
(a -> b -> b) -> b -> Map n a -> b
(forall m. Monoid m => Map n m -> m)
-> (forall m a. Monoid m => (a -> m) -> Map n a -> m)
-> (forall m a. Monoid m => (a -> m) -> Map n a -> m)
-> (forall a b. (a -> b -> b) -> b -> Map n a -> b)
-> (forall a b. (a -> b -> b) -> b -> Map n a -> b)
-> (forall b a. (b -> a -> b) -> b -> Map n a -> b)
-> (forall b a. (b -> a -> b) -> b -> Map n a -> b)
-> (forall a. (a -> a -> a) -> Map n a -> a)
-> (forall a. (a -> a -> a) -> Map n a -> a)
-> (forall a. Map n a -> [a])
-> (forall a. Map n a -> Bool)
-> (forall a. Map n a -> Int)
-> (forall a. Eq a => a -> Map n a -> Bool)
-> (forall a. Ord a => Map n a -> a)
-> (forall a. Ord a => Map n a -> a)
-> (forall a. Num a => Map n a -> a)
-> (forall a. Num a => Map n a -> a)
-> Foldable (Map n)
forall a. Eq a => a -> Map n a -> Bool
forall a. Num a => Map n a -> a
forall a. Ord a => Map n a -> a
forall m. Monoid m => Map n m -> m
forall a. Map n a -> Bool
forall a. Map n a -> Int
forall a. Map n a -> [a]
forall a. (a -> a -> a) -> Map n a -> a
forall k (n :: k) a. Eq a => a -> Map n a -> Bool
forall k (n :: k) a. Num a => Map n a -> a
forall k (n :: k) a. Ord a => Map n a -> a
forall k (n :: k) m. Monoid m => Map n m -> m
forall k (n :: k) a. Map n a -> Bool
forall k (n :: k) a. Map n a -> Int
forall k (n :: k) a. Map n a -> [a]
forall k (n :: k) a. (a -> a -> a) -> Map n a -> a
forall k (n :: k) m a. Monoid m => (a -> m) -> Map n a -> m
forall k (n :: k) b a. (b -> a -> b) -> b -> Map n a -> b
forall k (n :: k) a b. (a -> b -> b) -> b -> Map n a -> b
forall m a. Monoid m => (a -> m) -> Map n a -> m
forall b a. (b -> a -> b) -> b -> Map n a -> b
forall a b. (a -> b -> b) -> b -> Map n a -> b
forall (t :: * -> *).
(forall m. Monoid m => t m -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. t a -> [a])
-> (forall a. t a -> Bool)
-> (forall a. t a -> Int)
-> (forall a. Eq a => a -> t a -> Bool)
-> (forall a. Ord a => t a -> a)
-> (forall a. Ord a => t a -> a)
-> (forall a. Num a => t a -> a)
-> (forall a. Num a => t a -> a)
-> Foldable t
product :: Map n a -> a
$cproduct :: forall k (n :: k) a. Num a => Map n a -> a
sum :: Map n a -> a
$csum :: forall k (n :: k) a. Num a => Map n a -> a
minimum :: Map n a -> a
$cminimum :: forall k (n :: k) a. Ord a => Map n a -> a
maximum :: Map n a -> a
$cmaximum :: forall k (n :: k) a. Ord a => Map n a -> a
elem :: a -> Map n a -> Bool
$celem :: forall k (n :: k) a. Eq a => a -> Map n a -> Bool
length :: Map n a -> Int
$clength :: forall k (n :: k) a. Map n a -> Int
null :: Map n a -> Bool
$cnull :: forall k (n :: k) a. Map n a -> Bool
toList :: Map n a -> [a]
$ctoList :: forall k (n :: k) a. Map n a -> [a]
foldl1 :: (a -> a -> a) -> Map n a -> a
$cfoldl1 :: forall k (n :: k) a. (a -> a -> a) -> Map n a -> a
foldr1 :: (a -> a -> a) -> Map n a -> a
$cfoldr1 :: forall k (n :: k) a. (a -> a -> a) -> Map n a -> a
foldl' :: (b -> a -> b) -> b -> Map n a -> b
$cfoldl' :: forall k (n :: k) b a. (b -> a -> b) -> b -> Map n a -> b
foldl :: (b -> a -> b) -> b -> Map n a -> b
$cfoldl :: forall k (n :: k) b a. (b -> a -> b) -> b -> Map n a -> b
foldr' :: (a -> b -> b) -> b -> Map n a -> b
$cfoldr' :: forall k (n :: k) a b. (a -> b -> b) -> b -> Map n a -> b
foldr :: (a -> b -> b) -> b -> Map n a -> b
$cfoldr :: forall k (n :: k) a b. (a -> b -> b) -> b -> Map n a -> b
foldMap' :: (a -> m) -> Map n a -> m
$cfoldMap' :: forall k (n :: k) m a. Monoid m => (a -> m) -> Map n a -> m
foldMap :: (a -> m) -> Map n a -> m
$cfoldMap :: forall k (n :: k) m a. Monoid m => (a -> m) -> Map n a -> m
fold :: Map n m -> m
$cfold :: forall k (n :: k) m. Monoid m => Map n m -> m
Foldable, Functor (Map n)
Foldable (Map n)
Functor (Map n)
-> Foldable (Map n)
-> (forall (f :: * -> *) a b.
    Applicative f =>
    (a -> f b) -> Map n a -> f (Map n b))
-> (forall (f :: * -> *) a.
    Applicative f =>
    Map n (f a) -> f (Map n a))
-> (forall (m :: * -> *) a b.
    Monad m =>
    (a -> m b) -> Map n a -> m (Map n b))
-> (forall (m :: * -> *) a. Monad m => Map n (m a) -> m (Map n a))
-> Traversable (Map n)
(a -> f b) -> Map n a -> f (Map n b)
forall k (n :: k). Functor (Map n)
forall k (n :: k). Foldable (Map n)
forall k (n :: k) (m :: * -> *) a.
Monad m =>
Map n (m a) -> m (Map n a)
forall k (n :: k) (f :: * -> *) a.
Applicative f =>
Map n (f a) -> f (Map n a)
forall k (n :: k) (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Map n a -> m (Map n b)
forall k (n :: k) (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Map n a -> f (Map n b)
forall (t :: * -> *).
Functor t
-> Foldable t
-> (forall (f :: * -> *) a b.
    Applicative f =>
    (a -> f b) -> t a -> f (t b))
-> (forall (f :: * -> *) a. Applicative f => t (f a) -> f (t a))
-> (forall (m :: * -> *) a b.
    Monad m =>
    (a -> m b) -> t a -> m (t b))
-> (forall (m :: * -> *) a. Monad m => t (m a) -> m (t a))
-> Traversable t
forall (m :: * -> *) a. Monad m => Map n (m a) -> m (Map n a)
forall (f :: * -> *) a. Applicative f => Map n (f a) -> f (Map n a)
forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Map n a -> m (Map n b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Map n a -> f (Map n b)
sequence :: Map n (m a) -> m (Map n a)
$csequence :: forall k (n :: k) (m :: * -> *) a.
Monad m =>
Map n (m a) -> m (Map n a)
mapM :: (a -> m b) -> Map n a -> m (Map n b)
$cmapM :: forall k (n :: k) (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Map n a -> m (Map n b)
sequenceA :: Map n (f a) -> f (Map n a)
$csequenceA :: forall k (n :: k) (f :: * -> *) a.
Applicative f =>
Map n (f a) -> f (Map n a)
traverse :: (a -> f b) -> Map n a -> f (Map n b)
$ctraverse :: forall k (n :: k) (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Map n a -> f (Map n b)
$cp2Traversable :: forall k (n :: k). Foldable (Map n)
$cp1Traversable :: forall k (n :: k). Functor (Map n)
Traversable)

empty :: Map n a
empty :: Map n a
empty = IntMap a -> Map n a
forall k (n :: k) a. IntMap a -> Map n a
Map IntMap a
forall a. IntMap a
IntMap.empty

singleton :: forall n a. Alignable.T n => n -> a -> Map n a
singleton :: n -> a -> Map n a
singleton = (Int -> a -> IntMap a) -> n -> a -> Map n a
coerce do Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
IntMap.singleton @a

insert :: forall n a. Alignable.T n => n -> a -> Map n a -> Map n a
insert :: n -> a -> Map n a -> Map n a
insert = (Int -> a -> IntMap a -> IntMap a) -> n -> a -> Map n a -> Map n a
coerce do Int -> a -> IntMap a -> IntMap a
forall a. Int -> a -> IntMap a -> IntMap a
IntMap.insert @a

lookup :: forall n a. Alignable.T n => n -> Map n a -> Maybe a
lookup :: n -> Map n a -> Maybe a
lookup = (Int -> IntMap a -> Maybe a) -> n -> Map n a -> Maybe a
coerce do Int -> IntMap a -> Maybe a
forall a. Int -> IntMap a -> Maybe a
IntMap.lookup @a

assocs :: forall n a. Alignable.T n => Map n a -> [(n, a)]
assocs :: Map n a -> [(n, a)]
assocs = (IntMap a -> [(Int, a)]) -> Map n a -> [(n, a)]
coerce do IntMap a -> [(Int, a)]
forall a. IntMap a -> [(Int, a)]
IntMap.assocs @a

toAscList :: forall n a. Alignable.T n => Map n a -> [(n, a)]
toAscList :: Map n a -> [(n, a)]
toAscList = (IntMap a -> [(Int, a)]) -> Map n a -> [(n, a)]
coerce do IntMap a -> [(Int, a)]
forall a. IntMap a -> [(Int, a)]
IntMap.toAscList @a

restrictGreaterOrEqual :: forall n a. Alignable.T n => n -> Map n a -> Map n a
restrictGreaterOrEqual :: n -> Map n a -> Map n a
restrictGreaterOrEqual n
n (Map IntMap a
m) = IntMap a -> Map n a
forall k (n :: k) a. IntMap a -> Map n a
Map do
    Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> IntMap a
GreaterRestriction.restrictGreater (n -> Int
coerce n
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) IntMap a
m