{-# LANGUAGE GADTs #-}
{-# LANGUAGE ExistentialQuantification #-}
module Data.Profunctor.Arrow (
arr
, ex1
, ex2
, inl
, inr
, braid
, ebraid
, loop
, left
, right
, first
, second
, returnA
, (***)
, (+++)
, (&&&)
, (|||)
, ($$$)
, adivide
, adivide'
, adivided
, aselect
, aselect'
, aselected
) where
import Control.Category hiding ((.), id)
import Data.Profunctor
import Data.Profunctor.Extra
import Prelude
import qualified Control.Category as C
arr :: Category p => Profunctor p => (a -> b) -> p a b
arr f = rmap f C.id
{-# INLINE arr #-}
ex1 :: Category p => Profunctor p => p (a , b) b
ex1 = arr snd
{-# INLINE ex1 #-}
ex2 :: Category p => Profunctor p => p (a , b) a
ex2 = arr fst
{-# INLINE ex2 #-}
inl :: Category p => Profunctor p => p a (a + b)
inl = arr Left
{-# INLINE inl #-}
inr :: Category p => Profunctor p => p b (a + b)
inr = arr Right
{-# INLINE inr #-}
braid :: Category p => Profunctor p => p (a , b) (b , a)
braid = arr swap
{-# INLINE braid #-}
ebraid :: Category p => Profunctor p => p (a + b) (b + a)
ebraid = arr eswap
{-# INLINE ebraid #-}
loop :: Costrong p => p (a, d) (b, d) -> p a b
loop = unfirst
{-# INLINE loop #-}
left :: Choice p => p a b -> p (a + c) (b + c)
left = left'
{-# INLINE left #-}
right :: Choice p => p a b -> p (c + a) (c + b)
right = right'
{-# INLINE right #-}
first :: Strong p => p a b -> p (a , c) (b , c)
first = first'
{-# INLINE first #-}
second :: Strong p => p a b -> p (c , a) (c , b)
second = second'
{-# INLINE second #-}
returnA :: Category p => Profunctor p => p a a
returnA = C.id
{-# INLINE returnA #-}
infixr 3 ***
(***) :: Category p => Strong p => p a1 b1 -> p a2 b2 -> p (a1 , a2) (b1 , b2)
x *** y = first x >>> arr swap >>> first y >>> arr swap
{-# INLINE (***) #-}
infixr 2 +++
(+++) :: Category p => Choice p => p a1 b1 -> p a2 b2 -> p (a1 + a2) (b1 + b2)
x +++ y = left x >>> arr eswap >>> left y >>> arr eswap
{-# INLINE (+++) #-}
infixr 3 &&&
(&&&) :: Category p => Strong p => p a b1 -> p a b2 -> p a (b1 , b2)
x &&& y = dimap fork id $ x *** y
{-# INLINE (&&&) #-}
infixr 2 |||
(|||) :: Category p => Choice p => p a1 b -> p a2 b -> p (a1 + a2) b
x ||| y = dimap id join $ x +++ y
{-# INLINE (|||) #-}
infixr 0 $$$
($$$) :: Category p => Strong p => p a (b -> c) -> p a b -> p a c
($$$) f x = dimap fork apply (f *** x)
{-# INLINE ($$$) #-}
adivide :: Category p => Strong p => (a -> (a1 , a2)) -> p a1 b -> p a2 b -> p a b
adivide f x y = dimap f fst $ x *** y
{-# INLINE adivide #-}
adivide' :: Category p => Strong p => p a b -> p a b -> p a b
adivide' = adivide fork
{-# INLINE adivide' #-}
adivided :: Category p => Strong p => p a1 b -> p a2 b -> p (a1 , a2) b
adivided = adivide id
{-# INLINE adivided #-}
aselect :: Category p => Choice p => ((b1 + b2) -> b) -> p a b1 -> p a b2 -> p a b
aselect f x y = dimap Left f $ x +++ y
{-# INLINE aselect #-}
aselect' :: Category p => Choice p => p a b -> p a b -> p a b
aselect' = aselect join
{-# INLINE aselect' #-}
aselected :: Category p => Choice p => p a b1 -> p a b2 -> p a (b1 + b2)
aselected = aselect id
{-# INLINE aselected #-}