{-# LANGUAGE CPP #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UnboxedTuples #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE TemplateHaskellQuotes #-}
module Data.Primitive.SmallArray
( SmallArray(..)
, SmallMutableArray(..)
, newSmallArray
, readSmallArray
, writeSmallArray
, copySmallArray
, copySmallMutableArray
, indexSmallArray
, indexSmallArrayM
, indexSmallArray##
, cloneSmallArray
, cloneSmallMutableArray
, freezeSmallArray
, unsafeFreezeSmallArray
, thawSmallArray
, unsafeThawSmallArray
, runSmallArray
, createSmallArray
, sizeofSmallArray
, getSizeofSmallMutableArray
, sizeofSmallMutableArray
#if MIN_VERSION_base(4,14,0)
, shrinkSmallMutableArray
, resizeSmallMutableArray
#endif
, emptySmallArray
, smallArrayFromList
, smallArrayFromListN
, mapSmallArray'
, traverseSmallArrayP
) where
import GHC.Exts hiding (toList)
import qualified GHC.Exts
import Control.Applicative
import Control.DeepSeq
import Control.Monad
import qualified Control.Monad.Fail as Fail
import Control.Monad.Fix
import Control.Monad.Primitive
import Control.Monad.ST
import Control.Monad.Zip
import Data.Data
import Data.Foldable as Foldable
import Data.Functor.Identity
import Data.Primitive.Internal.Read (Tag(..),lexTag)
import Text.Read (Read (..), parens, prec)
import qualified GHC.ST as GHCST
import Data.Semigroup
import Text.ParserCombinators.ReadP
import Text.ParserCombinators.ReadPrec (ReadPrec)
import qualified Text.ParserCombinators.ReadPrec as RdPrc
#if !MIN_VERSION_base(4,10,0)
import GHC.Base (runRW#)
#endif
import Data.Functor.Classes (Eq1(..), Ord1(..), Show1(..), Read1(..))
import Language.Haskell.TH.Syntax (Lift(..))
data SmallArray a = SmallArray (SmallArray# a)
deriving Typeable
#if MIN_VERSION_deepseq(1,4,3)
instance NFData1 SmallArray where
liftRnf :: forall a. (a -> ()) -> SmallArray a -> ()
liftRnf a -> ()
r = forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' (\()
_ -> a -> ()
r) ()
#endif
instance NFData a => NFData (SmallArray a) where
rnf :: SmallArray a -> ()
rnf = forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' (\()
_ -> forall a. NFData a => a -> ()
rnf) ()
data SmallMutableArray s a = SmallMutableArray (SmallMutableArray# s a)
deriving Typeable
instance Lift a => Lift (SmallArray a) where
#if MIN_VERSION_template_haskell(2,16,0)
liftTyped :: forall (m :: * -> *).
Quote m =>
SmallArray a -> Code m (SmallArray a)
liftTyped SmallArray a
ary = case [a]
lst of
[] -> [|| SmallArray (emptySmallArray# (##)) ||]
[a
x] -> [|| pure $! x ||]
a
x : [a]
xs -> [|| unsafeSmallArrayFromListN' len x xs ||]
#else
lift ary = case lst of
[] -> [| SmallArray (emptySmallArray# (##)) |]
[x] -> [| pure $! x |]
x : xs -> [| unsafeSmallArrayFromListN' len x xs |]
#endif
where
len :: Int
len = forall (t :: * -> *) a. Foldable t => t a -> Int
length SmallArray a
ary
lst :: [a]
lst = forall (t :: * -> *) a. Foldable t => t a -> [a]
toList SmallArray a
ary
unsafeSmallArrayFromListN' :: Int -> a -> [a] -> SmallArray a
unsafeSmallArrayFromListN' :: forall a. Int -> a -> [a] -> SmallArray a
unsafeSmallArrayFromListN' Int
n a
y [a]
ys =
forall a.
Int
-> a
-> (forall s. SmallMutableArray s a -> ST s ())
-> SmallArray a
createSmallArray Int
n a
y forall a b. (a -> b) -> a -> b
$ \SmallMutableArray s a
sma ->
let go :: Int -> [a] -> ST s ()
go !Int
_ix [] = forall (m :: * -> *) a. Monad m => a -> m a
return ()
go !Int
ix (!a
x : [a]
xs) = do
forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a -> Int -> a -> m ()
writeSmallArray SmallMutableArray s a
sma Int
ix a
x
Int -> [a] -> ST s ()
go (Int
ixforall a. Num a => a -> a -> a
+Int
1) [a]
xs
in Int -> [a] -> ST s ()
go Int
1 [a]
ys
newSmallArray
:: PrimMonad m
=> Int
-> a
-> m (SmallMutableArray (PrimState m) a)
newSmallArray :: forall (m :: * -> *) a.
PrimMonad m =>
Int -> a -> m (SmallMutableArray (PrimState m) a)
newSmallArray (I# Int#
i#) a
x = forall (m :: * -> *) a.
PrimMonad m =>
(State# (PrimState m) -> (# State# (PrimState m), a #)) -> m a
primitive forall a b. (a -> b) -> a -> b
$ \State# (PrimState m)
s ->
case forall a d.
Int# -> a -> State# d -> (# State# d, SmallMutableArray# d a #)
newSmallArray# Int#
i# a
x State# (PrimState m)
s of
(# State# (PrimState m)
s', SmallMutableArray# (PrimState m) a
sma# #) -> (# State# (PrimState m)
s', forall s a. SmallMutableArray# s a -> SmallMutableArray s a
SmallMutableArray SmallMutableArray# (PrimState m) a
sma# #)
{-# INLINE newSmallArray #-}
readSmallArray
:: PrimMonad m
=> SmallMutableArray (PrimState m) a
-> Int
-> m a
readSmallArray :: forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a -> Int -> m a
readSmallArray (SmallMutableArray SmallMutableArray# (PrimState m) a
sma#) (I# Int#
i#) =
forall (m :: * -> *) a.
PrimMonad m =>
(State# (PrimState m) -> (# State# (PrimState m), a #)) -> m a
primitive forall a b. (a -> b) -> a -> b
$ forall d a.
SmallMutableArray# d a -> Int# -> State# d -> (# State# d, a #)
readSmallArray# SmallMutableArray# (PrimState m) a
sma# Int#
i#
{-# INLINE readSmallArray #-}
writeSmallArray
:: PrimMonad m
=> SmallMutableArray (PrimState m) a
-> Int
-> a
-> m ()
writeSmallArray :: forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a -> Int -> a -> m ()
writeSmallArray (SmallMutableArray SmallMutableArray# (PrimState m) a
sma#) (I# Int#
i#) a
x =
forall (m :: * -> *).
PrimMonad m =>
(State# (PrimState m) -> State# (PrimState m)) -> m ()
primitive_ forall a b. (a -> b) -> a -> b
$ forall d a.
SmallMutableArray# d a -> Int# -> a -> State# d -> State# d
writeSmallArray# SmallMutableArray# (PrimState m) a
sma# Int#
i# a
x
{-# INLINE writeSmallArray #-}
indexSmallArrayM
:: Applicative m
=> SmallArray a
-> Int
-> m a
indexSmallArrayM :: forall (m :: * -> *) a. Applicative m => SmallArray a -> Int -> m a
indexSmallArrayM (SmallArray SmallArray# a
sa#) (I# Int#
i#) =
case forall a. SmallArray# a -> Int# -> (# a #)
indexSmallArray# SmallArray# a
sa# Int#
i# of
(# a
x #) -> forall (f :: * -> *) a. Applicative f => a -> f a
pure a
x
{-# INLINE indexSmallArrayM #-}
indexSmallArray
:: SmallArray a
-> Int
-> a
indexSmallArray :: forall a. SmallArray a -> Int -> a
indexSmallArray SmallArray a
sa Int
i = forall a. Identity a -> a
runIdentity forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) a. Applicative m => SmallArray a -> Int -> m a
indexSmallArrayM SmallArray a
sa Int
i
{-# INLINE indexSmallArray #-}
indexSmallArray## :: SmallArray a -> Int -> (# a #)
indexSmallArray## :: forall a. SmallArray a -> Int -> (# a #)
indexSmallArray## (SmallArray SmallArray# a
ary) (I# Int#
i) = forall a. SmallArray# a -> Int# -> (# a #)
indexSmallArray# SmallArray# a
ary Int#
i
{-# INLINE indexSmallArray## #-}
cloneSmallArray
:: SmallArray a
-> Int
-> Int
-> SmallArray a
cloneSmallArray :: forall a. SmallArray a -> Int -> Int -> SmallArray a
cloneSmallArray (SmallArray SmallArray# a
sa#) (I# Int#
i#) (I# Int#
j#) =
forall a. SmallArray# a -> SmallArray a
SmallArray (forall a. SmallArray# a -> Int# -> Int# -> SmallArray# a
cloneSmallArray# SmallArray# a
sa# Int#
i# Int#
j#)
{-# INLINE cloneSmallArray #-}
cloneSmallMutableArray
:: PrimMonad m
=> SmallMutableArray (PrimState m) a
-> Int
-> Int
-> m (SmallMutableArray (PrimState m) a)
cloneSmallMutableArray :: forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a
-> Int -> Int -> m (SmallMutableArray (PrimState m) a)
cloneSmallMutableArray (SmallMutableArray SmallMutableArray# (PrimState m) a
sma#) (I# Int#
o#) (I# Int#
l#) =
forall (m :: * -> *) a.
PrimMonad m =>
(State# (PrimState m) -> (# State# (PrimState m), a #)) -> m a
primitive forall a b. (a -> b) -> a -> b
$ \State# (PrimState m)
s -> case forall d a.
SmallMutableArray# d a
-> Int#
-> Int#
-> State# d
-> (# State# d, SmallMutableArray# d a #)
cloneSmallMutableArray# SmallMutableArray# (PrimState m) a
sma# Int#
o# Int#
l# State# (PrimState m)
s of
(# State# (PrimState m)
s', SmallMutableArray# (PrimState m) a
smb# #) -> (# State# (PrimState m)
s', forall s a. SmallMutableArray# s a -> SmallMutableArray s a
SmallMutableArray SmallMutableArray# (PrimState m) a
smb# #)
{-# INLINE cloneSmallMutableArray #-}
freezeSmallArray
:: PrimMonad m
=> SmallMutableArray (PrimState m) a
-> Int
-> Int
-> m (SmallArray a)
freezeSmallArray :: forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a -> Int -> Int -> m (SmallArray a)
freezeSmallArray (SmallMutableArray SmallMutableArray# (PrimState m) a
sma#) (I# Int#
i#) (I# Int#
j#) =
forall (m :: * -> *) a.
PrimMonad m =>
(State# (PrimState m) -> (# State# (PrimState m), a #)) -> m a
primitive forall a b. (a -> b) -> a -> b
$ \State# (PrimState m)
s -> case forall d a.
SmallMutableArray# d a
-> Int# -> Int# -> State# d -> (# State# d, SmallArray# a #)
freezeSmallArray# SmallMutableArray# (PrimState m) a
sma# Int#
i# Int#
j# State# (PrimState m)
s of
(# State# (PrimState m)
s', SmallArray# a
sa# #) -> (# State# (PrimState m)
s', forall a. SmallArray# a -> SmallArray a
SmallArray SmallArray# a
sa# #)
{-# INLINE freezeSmallArray #-}
unsafeFreezeSmallArray
:: PrimMonad m => SmallMutableArray (PrimState m) a -> m (SmallArray a)
unsafeFreezeSmallArray :: forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a -> m (SmallArray a)
unsafeFreezeSmallArray (SmallMutableArray SmallMutableArray# (PrimState m) a
sma#) =
forall (m :: * -> *) a.
PrimMonad m =>
(State# (PrimState m) -> (# State# (PrimState m), a #)) -> m a
primitive forall a b. (a -> b) -> a -> b
$ \State# (PrimState m)
s -> case forall d a.
SmallMutableArray# d a -> State# d -> (# State# d, SmallArray# a #)
unsafeFreezeSmallArray# SmallMutableArray# (PrimState m) a
sma# State# (PrimState m)
s of
(# State# (PrimState m)
s', SmallArray# a
sa# #) -> (# State# (PrimState m)
s', forall a. SmallArray# a -> SmallArray a
SmallArray SmallArray# a
sa# #)
{-# INLINE unsafeFreezeSmallArray #-}
thawSmallArray
:: PrimMonad m
=> SmallArray a
-> Int
-> Int
-> m (SmallMutableArray (PrimState m) a)
thawSmallArray :: forall (m :: * -> *) a.
PrimMonad m =>
SmallArray a -> Int -> Int -> m (SmallMutableArray (PrimState m) a)
thawSmallArray (SmallArray SmallArray# a
sa#) (I# Int#
o#) (I# Int#
l#) =
forall (m :: * -> *) a.
PrimMonad m =>
(State# (PrimState m) -> (# State# (PrimState m), a #)) -> m a
primitive forall a b. (a -> b) -> a -> b
$ \State# (PrimState m)
s -> case forall a d.
SmallArray# a
-> Int#
-> Int#
-> State# d
-> (# State# d, SmallMutableArray# d a #)
thawSmallArray# SmallArray# a
sa# Int#
o# Int#
l# State# (PrimState m)
s of
(# State# (PrimState m)
s', SmallMutableArray# (PrimState m) a
sma# #) -> (# State# (PrimState m)
s', forall s a. SmallMutableArray# s a -> SmallMutableArray s a
SmallMutableArray SmallMutableArray# (PrimState m) a
sma# #)
{-# INLINE thawSmallArray #-}
unsafeThawSmallArray
:: PrimMonad m => SmallArray a -> m (SmallMutableArray (PrimState m) a)
unsafeThawSmallArray :: forall (m :: * -> *) a.
PrimMonad m =>
SmallArray a -> m (SmallMutableArray (PrimState m) a)
unsafeThawSmallArray (SmallArray SmallArray# a
sa#) =
forall (m :: * -> *) a.
PrimMonad m =>
(State# (PrimState m) -> (# State# (PrimState m), a #)) -> m a
primitive forall a b. (a -> b) -> a -> b
$ \State# (PrimState m)
s -> case forall a d.
SmallArray# a -> State# d -> (# State# d, SmallMutableArray# d a #)
unsafeThawSmallArray# SmallArray# a
sa# State# (PrimState m)
s of
(# State# (PrimState m)
s', SmallMutableArray# (PrimState m) a
sma# #) -> (# State# (PrimState m)
s', forall s a. SmallMutableArray# s a -> SmallMutableArray s a
SmallMutableArray SmallMutableArray# (PrimState m) a
sma# #)
{-# INLINE unsafeThawSmallArray #-}
copySmallArray
:: PrimMonad m
=> SmallMutableArray (PrimState m) a
-> Int
-> SmallArray a
-> Int
-> Int
-> m ()
copySmallArray :: forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a
-> Int -> SmallArray a -> Int -> Int -> m ()
copySmallArray
(SmallMutableArray SmallMutableArray# (PrimState m) a
dst#) (I# Int#
do#) (SmallArray SmallArray# a
src#) (I# Int#
so#) (I# Int#
l#) =
forall (m :: * -> *).
PrimMonad m =>
(State# (PrimState m) -> State# (PrimState m)) -> m ()
primitive_ forall a b. (a -> b) -> a -> b
$ forall a d.
SmallArray# a
-> Int#
-> SmallMutableArray# d a
-> Int#
-> Int#
-> State# d
-> State# d
copySmallArray# SmallArray# a
src# Int#
so# SmallMutableArray# (PrimState m) a
dst# Int#
do# Int#
l#
{-# INLINE copySmallArray #-}
copySmallMutableArray
:: PrimMonad m
=> SmallMutableArray (PrimState m) a
-> Int
-> SmallMutableArray (PrimState m) a
-> Int
-> Int
-> m ()
copySmallMutableArray :: forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a
-> Int -> SmallMutableArray (PrimState m) a -> Int -> Int -> m ()
copySmallMutableArray
(SmallMutableArray SmallMutableArray# (PrimState m) a
dst#) (I# Int#
do#)
(SmallMutableArray SmallMutableArray# (PrimState m) a
src#) (I# Int#
so#)
(I# Int#
l#) =
forall (m :: * -> *).
PrimMonad m =>
(State# (PrimState m) -> State# (PrimState m)) -> m ()
primitive_ forall a b. (a -> b) -> a -> b
$ forall d a.
SmallMutableArray# d a
-> Int#
-> SmallMutableArray# d a
-> Int#
-> Int#
-> State# d
-> State# d
copySmallMutableArray# SmallMutableArray# (PrimState m) a
src# Int#
so# SmallMutableArray# (PrimState m) a
dst# Int#
do# Int#
l#
{-# INLINE copySmallMutableArray #-}
sizeofSmallArray :: SmallArray a -> Int
sizeofSmallArray :: forall a. SmallArray a -> Int
sizeofSmallArray (SmallArray SmallArray# a
sa#) = Int# -> Int
I# (forall a. SmallArray# a -> Int#
sizeofSmallArray# SmallArray# a
sa#)
{-# INLINE sizeofSmallArray #-}
getSizeofSmallMutableArray
:: PrimMonad m
=> SmallMutableArray (PrimState m) a
-> m Int
#if MIN_VERSION_base(4,14,0)
getSizeofSmallMutableArray :: forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a -> m Int
getSizeofSmallMutableArray (SmallMutableArray SmallMutableArray# (PrimState m) a
sa#) = forall (m :: * -> *) a.
PrimMonad m =>
(State# (PrimState m) -> (# State# (PrimState m), a #)) -> m a
primitive forall a b. (a -> b) -> a -> b
$ \State# (PrimState m)
s ->
case forall d a.
SmallMutableArray# d a -> State# d -> (# State# d, Int# #)
getSizeofSmallMutableArray# SmallMutableArray# (PrimState m) a
sa# State# (PrimState m)
s of
(# State# (PrimState m)
s', Int#
sz# #) -> (# State# (PrimState m)
s', Int# -> Int
I# Int#
sz# #)
#else
getSizeofSmallMutableArray sa = pure $! sizeofSmallMutableArray sa
#endif
{-# INLINE getSizeofSmallMutableArray #-}
sizeofSmallMutableArray :: SmallMutableArray s a -> Int
sizeofSmallMutableArray :: forall s a. SmallMutableArray s a -> Int
sizeofSmallMutableArray (SmallMutableArray SmallMutableArray# s a
sa#) =
Int# -> Int
I# (forall d a. SmallMutableArray# d a -> Int#
sizeofSmallMutableArray# SmallMutableArray# s a
sa#)
{-# DEPRECATED sizeofSmallMutableArray "use getSizeofSmallMutableArray instead" #-}
{-# INLINE sizeofSmallMutableArray #-}
traverseSmallArrayP
:: PrimMonad m
=> (a -> m b)
-> SmallArray a
-> m (SmallArray b)
traverseSmallArrayP :: forall (m :: * -> *) a b.
PrimMonad m =>
(a -> m b) -> SmallArray a -> m (SmallArray b)
traverseSmallArrayP a -> m b
f = \ !SmallArray a
ary ->
let
!sz :: Int
sz = forall a. SmallArray a -> Int
sizeofSmallArray SmallArray a
ary
go :: Int -> SmallMutableArray (PrimState m) b -> m (SmallArray b)
go !Int
i !SmallMutableArray (PrimState m) b
mary
| Int
i forall a. Eq a => a -> a -> Bool
== Int
sz
= forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a -> m (SmallArray a)
unsafeFreezeSmallArray SmallMutableArray (PrimState m) b
mary
| Bool
otherwise
= do
a
a <- forall (m :: * -> *) a. Applicative m => SmallArray a -> Int -> m a
indexSmallArrayM SmallArray a
ary Int
i
b
b <- a -> m b
f a
a
forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a -> Int -> a -> m ()
writeSmallArray SmallMutableArray (PrimState m) b
mary Int
i b
b
Int -> SmallMutableArray (PrimState m) b -> m (SmallArray b)
go (Int
i forall a. Num a => a -> a -> a
+ Int
1) SmallMutableArray (PrimState m) b
mary
in do
SmallMutableArray (PrimState m) b
mary <- forall (m :: * -> *) a.
PrimMonad m =>
Int -> a -> m (SmallMutableArray (PrimState m) a)
newSmallArray Int
sz forall a. a
badTraverseValue
Int -> SmallMutableArray (PrimState m) b -> m (SmallArray b)
go Int
0 SmallMutableArray (PrimState m) b
mary
{-# INLINE traverseSmallArrayP #-}
mapSmallArray' :: (a -> b) -> SmallArray a -> SmallArray b
mapSmallArray' :: forall a b. (a -> b) -> SmallArray a -> SmallArray b
mapSmallArray' a -> b
f SmallArray a
sa = forall a.
Int
-> a
-> (forall s. SmallMutableArray s a -> ST s ())
-> SmallArray a
createSmallArray (forall (t :: * -> *) a. Foldable t => t a -> Int
length SmallArray a
sa) (forall a. String -> String -> a
die String
"mapSmallArray'" String
"impossible") forall a b. (a -> b) -> a -> b
$ \SmallMutableArray s b
smb ->
forall a. (a -> a) -> a
fix forall a b c. (a -> b -> c) -> b -> a -> c
? Int
0 forall a b. (a -> b) -> a -> b
$ \Int -> ST s ()
go Int
i ->
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
i forall a. Ord a => a -> a -> Bool
< forall (t :: * -> *) a. Foldable t => t a -> Int
length SmallArray a
sa) forall a b. (a -> b) -> a -> b
$ do
a
x <- forall (m :: * -> *) a. Applicative m => SmallArray a -> Int -> m a
indexSmallArrayM SmallArray a
sa Int
i
let !y :: b
y = a -> b
f a
x
forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a -> Int -> a -> m ()
writeSmallArray SmallMutableArray s b
smb Int
i b
y forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> Int -> ST s ()
go (Int
i forall a. Num a => a -> a -> a
+ Int
1)
{-# INLINE mapSmallArray' #-}
runSmallArray
:: (forall s. ST s (SmallMutableArray s a))
-> SmallArray a
runSmallArray :: forall a. (forall s. ST s (SmallMutableArray s a)) -> SmallArray a
runSmallArray forall s. ST s (SmallMutableArray s a)
m = forall a. SmallArray# a -> SmallArray a
SmallArray (forall a. (forall s. ST s (SmallMutableArray s a)) -> SmallArray# a
runSmallArray# forall s. ST s (SmallMutableArray s a)
m)
runSmallArray#
:: (forall s. ST s (SmallMutableArray s a))
-> SmallArray# a
runSmallArray# :: forall a. (forall s. ST s (SmallMutableArray s a)) -> SmallArray# a
runSmallArray# forall s. ST s (SmallMutableArray s a)
m = case forall o. (State# RealWorld -> o) -> o
runRW# forall a b. (a -> b) -> a -> b
$ \State# RealWorld
s ->
case forall s a. ST s a -> State# s -> (# State# s, a #)
unST forall s. ST s (SmallMutableArray s a)
m State# RealWorld
s of { (# State# RealWorld
s', SmallMutableArray SmallMutableArray# RealWorld a
mary# #) ->
forall d a.
SmallMutableArray# d a -> State# d -> (# State# d, SmallArray# a #)
unsafeFreezeSmallArray# SmallMutableArray# RealWorld a
mary# State# RealWorld
s'} of (# State# RealWorld
_, SmallArray# a
ary# #) -> SmallArray# a
ary#
unST :: ST s a -> State# s -> (# State# s, a #)
unST :: forall s a. ST s a -> State# s -> (# State# s, a #)
unST (GHCST.ST STRep s a
f) = STRep s a
f
createSmallArray
:: Int
-> a
-> (forall s. SmallMutableArray s a -> ST s ())
-> SmallArray a
createSmallArray :: forall a.
Int
-> a
-> (forall s. SmallMutableArray s a -> ST s ())
-> SmallArray a
createSmallArray Int
0 a
_ forall s. SmallMutableArray s a -> ST s ()
_ = forall a. SmallArray# a -> SmallArray a
SmallArray (forall a. (# #) -> SmallArray# a
emptySmallArray# (# #))
createSmallArray Int
n a
x forall s. SmallMutableArray s a -> ST s ()
f = forall a. (forall s. ST s (SmallMutableArray s a)) -> SmallArray a
runSmallArray forall a b. (a -> b) -> a -> b
$ do
SmallMutableArray s a
mary <- forall (m :: * -> *) a.
PrimMonad m =>
Int -> a -> m (SmallMutableArray (PrimState m) a)
newSmallArray Int
n a
x
forall s. SmallMutableArray s a -> ST s ()
f SmallMutableArray s a
mary
forall (f :: * -> *) a. Applicative f => a -> f a
pure SmallMutableArray s a
mary
emptySmallArray# :: (# #) -> SmallArray# a
emptySmallArray# :: forall a. (# #) -> SmallArray# a
emptySmallArray# (# #)
_ = case forall a. SmallArray a
emptySmallArray of SmallArray SmallArray# a
ar -> SmallArray# a
ar
{-# NOINLINE emptySmallArray# #-}
die :: String -> String -> a
die :: forall a. String -> String -> a
die String
fun String
problem = forall a. HasCallStack => String -> a
error forall a b. (a -> b) -> a -> b
$ String
"Data.Primitive.SmallArray." forall a. [a] -> [a] -> [a]
++ String
fun forall a. [a] -> [a] -> [a]
++ String
": " forall a. [a] -> [a] -> [a]
++ String
problem
emptySmallArray :: SmallArray a
emptySmallArray :: forall a. SmallArray a
emptySmallArray =
forall a. (forall s. ST s a) -> a
runST forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) a.
PrimMonad m =>
Int -> a -> m (SmallMutableArray (PrimState m) a)
newSmallArray Int
0 (forall a. String -> String -> a
die String
"emptySmallArray" String
"impossible")
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a -> m (SmallArray a)
unsafeFreezeSmallArray
{-# NOINLINE emptySmallArray #-}
infixl 1 ?
(?) :: (a -> b -> c) -> (b -> a -> c)
? :: forall a b c. (a -> b -> c) -> b -> a -> c
(?) = forall a b c. (a -> b -> c) -> b -> a -> c
flip
{-# INLINE (?) #-}
noOp :: a -> ST s ()
noOp :: forall a s. a -> ST s ()
noOp = forall a b. a -> b -> a
const forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a. Applicative f => a -> f a
pure ()
smallArrayLiftEq :: (a -> b -> Bool) -> SmallArray a -> SmallArray b -> Bool
smallArrayLiftEq :: forall a b.
(a -> b -> Bool) -> SmallArray a -> SmallArray b -> Bool
smallArrayLiftEq a -> b -> Bool
p SmallArray a
sa1 SmallArray b
sa2 = forall (t :: * -> *) a. Foldable t => t a -> Int
length SmallArray a
sa1 forall a. Eq a => a -> a -> Bool
== forall (t :: * -> *) a. Foldable t => t a -> Int
length SmallArray b
sa2 Bool -> Bool -> Bool
&& Int -> Bool
loop (forall (t :: * -> *) a. Foldable t => t a -> Int
length SmallArray a
sa1 forall a. Num a => a -> a -> a
- Int
1)
where
loop :: Int -> Bool
loop Int
i
| Int
i forall a. Ord a => a -> a -> Bool
< Int
0
= Bool
True
| (# a
x #) <- forall a. SmallArray a -> Int -> (# a #)
indexSmallArray## SmallArray a
sa1 Int
i
, (# b
y #) <- forall a. SmallArray a -> Int -> (# a #)
indexSmallArray## SmallArray b
sa2 Int
i
= a -> b -> Bool
p a
x b
y Bool -> Bool -> Bool
&& Int -> Bool
loop (Int
i forall a. Num a => a -> a -> a
- Int
1)
instance Eq1 SmallArray where
liftEq :: forall a b.
(a -> b -> Bool) -> SmallArray a -> SmallArray b -> Bool
liftEq = forall a b.
(a -> b -> Bool) -> SmallArray a -> SmallArray b -> Bool
smallArrayLiftEq
instance Eq a => Eq (SmallArray a) where
SmallArray a
sa1 == :: SmallArray a -> SmallArray a -> Bool
== SmallArray a
sa2 = forall a b.
(a -> b -> Bool) -> SmallArray a -> SmallArray b -> Bool
smallArrayLiftEq forall a. Eq a => a -> a -> Bool
(==) SmallArray a
sa1 SmallArray a
sa2
instance Eq (SmallMutableArray s a) where
SmallMutableArray SmallMutableArray# s a
sma1# == :: SmallMutableArray s a -> SmallMutableArray s a -> Bool
== SmallMutableArray SmallMutableArray# s a
sma2# =
Int# -> Bool
isTrue# (forall d a.
SmallMutableArray# d a -> SmallMutableArray# d a -> Int#
sameSmallMutableArray# SmallMutableArray# s a
sma1# SmallMutableArray# s a
sma2#)
smallArrayLiftCompare :: (a -> b -> Ordering) -> SmallArray a -> SmallArray b -> Ordering
smallArrayLiftCompare :: forall a b.
(a -> b -> Ordering) -> SmallArray a -> SmallArray b -> Ordering
smallArrayLiftCompare a -> b -> Ordering
elemCompare SmallArray a
a1 SmallArray b
a2 = Int -> Ordering
loop Int
0
where
mn :: Int
mn = forall (t :: * -> *) a. Foldable t => t a -> Int
length SmallArray a
a1 forall a. Ord a => a -> a -> a
`min` forall (t :: * -> *) a. Foldable t => t a -> Int
length SmallArray b
a2
loop :: Int -> Ordering
loop Int
i
| Int
i forall a. Ord a => a -> a -> Bool
< Int
mn
, (# a
x1 #) <- forall a. SmallArray a -> Int -> (# a #)
indexSmallArray## SmallArray a
a1 Int
i
, (# b
x2 #) <- forall a. SmallArray a -> Int -> (# a #)
indexSmallArray## SmallArray b
a2 Int
i
= a -> b -> Ordering
elemCompare a
x1 b
x2 forall a. Monoid a => a -> a -> a
`mappend` Int -> Ordering
loop (Int
i forall a. Num a => a -> a -> a
+ Int
1)
| Bool
otherwise = forall a. Ord a => a -> a -> Ordering
compare (forall (t :: * -> *) a. Foldable t => t a -> Int
length SmallArray a
a1) (forall (t :: * -> *) a. Foldable t => t a -> Int
length SmallArray b
a2)
instance Ord1 SmallArray where
liftCompare :: forall a b.
(a -> b -> Ordering) -> SmallArray a -> SmallArray b -> Ordering
liftCompare = forall a b.
(a -> b -> Ordering) -> SmallArray a -> SmallArray b -> Ordering
smallArrayLiftCompare
instance Ord a => Ord (SmallArray a) where
compare :: SmallArray a -> SmallArray a -> Ordering
compare SmallArray a
sa1 SmallArray a
sa2 = forall a b.
(a -> b -> Ordering) -> SmallArray a -> SmallArray b -> Ordering
smallArrayLiftCompare forall a. Ord a => a -> a -> Ordering
compare SmallArray a
sa1 SmallArray a
sa2
instance Foldable SmallArray where
foldr :: forall a b. (a -> b -> b) -> b -> SmallArray a -> b
foldr a -> b -> b
f = \b
z !SmallArray a
ary ->
let
!sz :: Int
sz = forall a. SmallArray a -> Int
sizeofSmallArray SmallArray a
ary
go :: Int -> b
go Int
i
| Int
i forall a. Eq a => a -> a -> Bool
== Int
sz = b
z
| (# a
x #) <- forall a. SmallArray a -> Int -> (# a #)
indexSmallArray## SmallArray a
ary Int
i
= a -> b -> b
f a
x (Int -> b
go (Int
i forall a. Num a => a -> a -> a
+ Int
1))
in Int -> b
go Int
0
{-# INLINE foldr #-}
foldl :: forall b a. (b -> a -> b) -> b -> SmallArray a -> b
foldl b -> a -> b
f = \b
z !SmallArray a
ary ->
let
go :: Int -> b
go Int
i
| Int
i forall a. Ord a => a -> a -> Bool
< Int
0 = b
z
| (# a
x #) <- forall a. SmallArray a -> Int -> (# a #)
indexSmallArray## SmallArray a
ary Int
i
= b -> a -> b
f (Int -> b
go (Int
i forall a. Num a => a -> a -> a
- Int
1)) a
x
in Int -> b
go (forall a. SmallArray a -> Int
sizeofSmallArray SmallArray a
ary forall a. Num a => a -> a -> a
- Int
1)
{-# INLINE foldl #-}
foldr1 :: forall a. (a -> a -> a) -> SmallArray a -> a
foldr1 a -> a -> a
f = \ !SmallArray a
ary ->
let
!sz :: Int
sz = forall a. SmallArray a -> Int
sizeofSmallArray SmallArray a
ary forall a. Num a => a -> a -> a
- Int
1
go :: Int -> a
go Int
i =
case forall a. SmallArray a -> Int -> (# a #)
indexSmallArray## SmallArray a
ary Int
i of
(# a
x #) | Int
i forall a. Eq a => a -> a -> Bool
== Int
sz -> a
x
| Bool
otherwise -> a -> a -> a
f a
x (Int -> a
go (Int
i forall a. Num a => a -> a -> a
+ Int
1))
in if Int
sz forall a. Ord a => a -> a -> Bool
< Int
0
then forall a. String -> String -> a
die String
"foldr1" String
"Empty SmallArray"
else Int -> a
go Int
0
{-# INLINE foldr1 #-}
foldl1 :: forall a. (a -> a -> a) -> SmallArray a -> a
foldl1 a -> a -> a
f = \ !SmallArray a
ary ->
let
!sz :: Int
sz = forall a. SmallArray a -> Int
sizeofSmallArray SmallArray a
ary forall a. Num a => a -> a -> a
- Int
1
go :: Int -> a
go Int
i =
case forall a. SmallArray a -> Int -> (# a #)
indexSmallArray## SmallArray a
ary Int
i of
(# a
x #) | Int
i forall a. Eq a => a -> a -> Bool
== Int
0 -> a
x
| Bool
otherwise -> a -> a -> a
f (Int -> a
go (Int
i forall a. Num a => a -> a -> a
- Int
1)) a
x
in if Int
sz forall a. Ord a => a -> a -> Bool
< Int
0
then forall a. String -> String -> a
die String
"foldl1" String
"Empty SmallArray"
else Int -> a
go Int
sz
{-# INLINE foldl1 #-}
foldr' :: forall a b. (a -> b -> b) -> b -> SmallArray a -> b
foldr' a -> b -> b
f = \b
z !SmallArray a
ary ->
let
go :: Int -> b -> b
go Int
i !b
acc
| Int
i forall a. Eq a => a -> a -> Bool
== -Int
1 = b
acc
| (# a
x #) <- forall a. SmallArray a -> Int -> (# a #)
indexSmallArray## SmallArray a
ary Int
i
= Int -> b -> b
go (Int
i forall a. Num a => a -> a -> a
- Int
1) (a -> b -> b
f a
x b
acc)
in Int -> b -> b
go (forall a. SmallArray a -> Int
sizeofSmallArray SmallArray a
ary forall a. Num a => a -> a -> a
- Int
1) b
z
{-# INLINE foldr' #-}
foldl' :: forall b a. (b -> a -> b) -> b -> SmallArray a -> b
foldl' b -> a -> b
f = \b
z !SmallArray a
ary ->
let
!sz :: Int
sz = forall a. SmallArray a -> Int
sizeofSmallArray SmallArray a
ary
go :: Int -> b -> b
go Int
i !b
acc
| Int
i forall a. Eq a => a -> a -> Bool
== Int
sz = b
acc
| (# a
x #) <- forall a. SmallArray a -> Int -> (# a #)
indexSmallArray## SmallArray a
ary Int
i
= Int -> b -> b
go (Int
i forall a. Num a => a -> a -> a
+ Int
1) (b -> a -> b
f b
acc a
x)
in Int -> b -> b
go Int
0 b
z
{-# INLINE foldl' #-}
null :: forall a. SmallArray a -> Bool
null SmallArray a
a = forall a. SmallArray a -> Int
sizeofSmallArray SmallArray a
a forall a. Eq a => a -> a -> Bool
== Int
0
{-# INLINE null #-}
length :: forall a. SmallArray a -> Int
length = forall a. SmallArray a -> Int
sizeofSmallArray
{-# INLINE length #-}
maximum :: forall a. Ord a => SmallArray a -> a
maximum SmallArray a
ary | Int
sz forall a. Eq a => a -> a -> Bool
== Int
0 = forall a. String -> String -> a
die String
"maximum" String
"Empty SmallArray"
| (# a
frst #) <- forall a. SmallArray a -> Int -> (# a #)
indexSmallArray## SmallArray a
ary Int
0
= Int -> a -> a
go Int
1 a
frst
where
sz :: Int
sz = forall a. SmallArray a -> Int
sizeofSmallArray SmallArray a
ary
go :: Int -> a -> a
go Int
i !a
e
| Int
i forall a. Eq a => a -> a -> Bool
== Int
sz = a
e
| (# a
x #) <- forall a. SmallArray a -> Int -> (# a #)
indexSmallArray## SmallArray a
ary Int
i
= Int -> a -> a
go (Int
i forall a. Num a => a -> a -> a
+ Int
1) (forall a. Ord a => a -> a -> a
max a
e a
x)
{-# INLINE maximum #-}
minimum :: forall a. Ord a => SmallArray a -> a
minimum SmallArray a
ary | Int
sz forall a. Eq a => a -> a -> Bool
== Int
0 = forall a. String -> String -> a
die String
"minimum" String
"Empty SmallArray"
| (# a
frst #) <- forall a. SmallArray a -> Int -> (# a #)
indexSmallArray## SmallArray a
ary Int
0
= Int -> a -> a
go Int
1 a
frst
where sz :: Int
sz = forall a. SmallArray a -> Int
sizeofSmallArray SmallArray a
ary
go :: Int -> a -> a
go Int
i !a
e
| Int
i forall a. Eq a => a -> a -> Bool
== Int
sz = a
e
| (# a
x #) <- forall a. SmallArray a -> Int -> (# a #)
indexSmallArray## SmallArray a
ary Int
i
= Int -> a -> a
go (Int
i forall a. Num a => a -> a -> a
+ Int
1) (forall a. Ord a => a -> a -> a
min a
e a
x)
{-# INLINE minimum #-}
sum :: forall a. Num a => SmallArray a -> a
sum = forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' forall a. Num a => a -> a -> a
(+) a
0
{-# INLINE sum #-}
product :: forall a. Num a => SmallArray a -> a
product = forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' forall a. Num a => a -> a -> a
(*) a
1
{-# INLINE product #-}
newtype STA a = STA { forall a.
STA a -> forall s. SmallMutableArray# s a -> ST s (SmallArray a)
_runSTA :: forall s. SmallMutableArray# s a -> ST s (SmallArray a) }
runSTA :: Int -> STA a -> SmallArray a
runSTA :: forall a. Int -> STA a -> SmallArray a
runSTA !Int
sz = \ (STA forall s. SmallMutableArray# s a -> ST s (SmallArray a)
m) -> forall a. (forall s. ST s a) -> a
runST forall a b. (a -> b) -> a -> b
$ forall s a. Int -> ST s (SmallMutableArray s a)
newSmallArray_ Int
sz forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>=
\ (SmallMutableArray SmallMutableArray# s a
ar#) -> forall s. SmallMutableArray# s a -> ST s (SmallArray a)
m SmallMutableArray# s a
ar#
{-# INLINE runSTA #-}
newSmallArray_ :: Int -> ST s (SmallMutableArray s a)
newSmallArray_ :: forall s a. Int -> ST s (SmallMutableArray s a)
newSmallArray_ !Int
n = forall (m :: * -> *) a.
PrimMonad m =>
Int -> a -> m (SmallMutableArray (PrimState m) a)
newSmallArray Int
n forall a. a
badTraverseValue
badTraverseValue :: a
badTraverseValue :: forall a. a
badTraverseValue = forall a. String -> String -> a
die String
"traverse" String
"bad indexing"
{-# NOINLINE badTraverseValue #-}
instance Traversable SmallArray where
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> SmallArray a -> f (SmallArray b)
traverse a -> f b
f = forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> SmallArray a -> f (SmallArray b)
traverseSmallArray a -> f b
f
{-# INLINE traverse #-}
traverseSmallArray
:: Applicative f
=> (a -> f b) -> SmallArray a -> f (SmallArray b)
traverseSmallArray :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> SmallArray a -> f (SmallArray b)
traverseSmallArray a -> f b
f = \ !SmallArray a
ary ->
let
!len :: Int
len = forall a. SmallArray a -> Int
sizeofSmallArray SmallArray a
ary
go :: Int -> f (STA b)
go !Int
i
| Int
i forall a. Eq a => a -> a -> Bool
== Int
len
= forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ forall a.
(forall s. SmallMutableArray# s a -> ST s (SmallArray a)) -> STA a
STA forall a b. (a -> b) -> a -> b
$ \SmallMutableArray# s b
mary -> forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a -> m (SmallArray a)
unsafeFreezeSmallArray (forall s a. SmallMutableArray# s a -> SmallMutableArray s a
SmallMutableArray SmallMutableArray# s b
mary)
| (# a
x #) <- forall a. SmallArray a -> Int -> (# a #)
indexSmallArray## SmallArray a
ary Int
i
= forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 (\b
b (STA forall s. SmallMutableArray# s b -> ST s (SmallArray b)
m) -> forall a.
(forall s. SmallMutableArray# s a -> ST s (SmallArray a)) -> STA a
STA forall a b. (a -> b) -> a -> b
$ \SmallMutableArray# s b
mary ->
forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a -> Int -> a -> m ()
writeSmallArray (forall s a. SmallMutableArray# s a -> SmallMutableArray s a
SmallMutableArray SmallMutableArray# s b
mary) Int
i b
b forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> forall s. SmallMutableArray# s b -> ST s (SmallArray b)
m SmallMutableArray# s b
mary)
(a -> f b
f a
x) (Int -> f (STA b)
go (Int
i forall a. Num a => a -> a -> a
+ Int
1))
in if Int
len forall a. Eq a => a -> a -> Bool
== Int
0
then forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a. SmallArray a
emptySmallArray
else forall a. Int -> STA a -> SmallArray a
runSTA Int
len forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> f (STA b)
go Int
0
{-# INLINE [1] traverseSmallArray #-}
{-# RULES
"traverse/ST" forall (f :: a -> ST s b). traverseSmallArray f = traverseSmallArrayP f
"traverse/IO" forall (f :: a -> IO b). traverseSmallArray f = traverseSmallArrayP f
"traverse/Id" forall (f :: a -> Identity b). traverseSmallArray f =
(coerce :: (SmallArray a -> SmallArray (Identity b))
-> SmallArray a -> Identity (SmallArray b)) (fmap f)
#-}
instance Functor SmallArray where
fmap :: forall a b. (a -> b) -> SmallArray a -> SmallArray b
fmap a -> b
f SmallArray a
sa = forall a.
Int
-> a
-> (forall s. SmallMutableArray s a -> ST s ())
-> SmallArray a
createSmallArray (forall (t :: * -> *) a. Foldable t => t a -> Int
length SmallArray a
sa) (forall a. String -> String -> a
die String
"fmap" String
"impossible") forall a b. (a -> b) -> a -> b
$ \SmallMutableArray s b
smb ->
forall a. (a -> a) -> a
fix forall a b c. (a -> b -> c) -> b -> a -> c
? Int
0 forall a b. (a -> b) -> a -> b
$ \Int -> ST s ()
go Int
i ->
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
i forall a. Ord a => a -> a -> Bool
< forall (t :: * -> *) a. Foldable t => t a -> Int
length SmallArray a
sa) forall a b. (a -> b) -> a -> b
$ do
a
x <- forall (m :: * -> *) a. Applicative m => SmallArray a -> Int -> m a
indexSmallArrayM SmallArray a
sa Int
i
forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a -> Int -> a -> m ()
writeSmallArray SmallMutableArray s b
smb Int
i (a -> b
f a
x) forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> Int -> ST s ()
go (Int
i forall a. Num a => a -> a -> a
+ Int
1)
{-# INLINE fmap #-}
a
x <$ :: forall a b. a -> SmallArray b -> SmallArray a
<$ SmallArray b
sa = forall a.
Int
-> a
-> (forall s. SmallMutableArray s a -> ST s ())
-> SmallArray a
createSmallArray (forall (t :: * -> *) a. Foldable t => t a -> Int
length SmallArray b
sa) a
x forall a s. a -> ST s ()
noOp
instance Applicative SmallArray where
pure :: forall a. a -> SmallArray a
pure a
x = forall a.
Int
-> a
-> (forall s. SmallMutableArray s a -> ST s ())
-> SmallArray a
createSmallArray Int
1 a
x forall a s. a -> ST s ()
noOp
SmallArray a
sa *> :: forall a b. SmallArray a -> SmallArray b -> SmallArray b
*> SmallArray b
sb = forall a.
Int
-> a
-> (forall s. SmallMutableArray s a -> ST s ())
-> SmallArray a
createSmallArray (Int
la forall a. Num a => a -> a -> a
* Int
lb) (forall a. String -> String -> a
die String
"*>" String
"impossible") forall a b. (a -> b) -> a -> b
$ \SmallMutableArray s b
smb ->
forall a. (a -> a) -> a
fix forall a b c. (a -> b -> c) -> b -> a -> c
? Int
0 forall a b. (a -> b) -> a -> b
$ \Int -> ST s ()
go Int
i ->
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
i forall a. Ord a => a -> a -> Bool
< Int
la) forall a b. (a -> b) -> a -> b
$
forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a
-> Int -> SmallArray a -> Int -> Int -> m ()
copySmallArray SmallMutableArray s b
smb (Int
i forall a. Num a => a -> a -> a
* Int
lb) SmallArray b
sb Int
0 Int
lb forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> Int -> ST s ()
go (Int
i forall a. Num a => a -> a -> a
+ Int
1)
where
la :: Int
la = forall (t :: * -> *) a. Foldable t => t a -> Int
length SmallArray a
sa; lb :: Int
lb = forall (t :: * -> *) a. Foldable t => t a -> Int
length SmallArray b
sb
SmallArray a
a <* :: forall a b. SmallArray a -> SmallArray b -> SmallArray a
<* SmallArray b
b = forall a.
Int
-> a
-> (forall s. SmallMutableArray s a -> ST s ())
-> SmallArray a
createSmallArray (Int
sza forall a. Num a => a -> a -> a
* Int
szb) (forall a. String -> String -> a
die String
"<*" String
"impossible") forall a b. (a -> b) -> a -> b
$ \SmallMutableArray s a
ma ->
let fill :: Int -> Int -> a -> ST s ()
fill Int
off Int
i a
e = forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
i forall a. Ord a => a -> a -> Bool
< Int
szb) forall a b. (a -> b) -> a -> b
$
forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a -> Int -> a -> m ()
writeSmallArray SmallMutableArray s a
ma (Int
off forall a. Num a => a -> a -> a
+ Int
i) a
e forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Int -> Int -> a -> ST s ()
fill Int
off (Int
i forall a. Num a => a -> a -> a
+ Int
1) a
e
go :: Int -> ST s ()
go Int
i = forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
i forall a. Ord a => a -> a -> Bool
< Int
sza) forall a b. (a -> b) -> a -> b
$ do
a
x <- forall (m :: * -> *) a. Applicative m => SmallArray a -> Int -> m a
indexSmallArrayM SmallArray a
a Int
i
Int -> Int -> a -> ST s ()
fill (Int
i forall a. Num a => a -> a -> a
* Int
szb) Int
0 a
x
Int -> ST s ()
go (Int
i forall a. Num a => a -> a -> a
+ Int
1)
in Int -> ST s ()
go Int
0
where sza :: Int
sza = forall a. SmallArray a -> Int
sizeofSmallArray SmallArray a
a; szb :: Int
szb = forall a. SmallArray a -> Int
sizeofSmallArray SmallArray b
b
SmallArray (a -> b)
ab <*> :: forall a b. SmallArray (a -> b) -> SmallArray a -> SmallArray b
<*> SmallArray a
a = forall a.
Int
-> a
-> (forall s. SmallMutableArray s a -> ST s ())
-> SmallArray a
createSmallArray (Int
szab forall a. Num a => a -> a -> a
* Int
sza) (forall a. String -> String -> a
die String
"<*>" String
"impossible") forall a b. (a -> b) -> a -> b
$ \SmallMutableArray s b
mb ->
let go1 :: Int -> ST s ()
go1 Int
i = forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
i forall a. Ord a => a -> a -> Bool
< Int
szab) forall a b. (a -> b) -> a -> b
$
do
a -> b
f <- forall (m :: * -> *) a. Applicative m => SmallArray a -> Int -> m a
indexSmallArrayM SmallArray (a -> b)
ab Int
i
Int -> (a -> b) -> Int -> ST s ()
go2 (Int
i forall a. Num a => a -> a -> a
* Int
sza) a -> b
f Int
0
Int -> ST s ()
go1 (Int
i forall a. Num a => a -> a -> a
+ Int
1)
go2 :: Int -> (a -> b) -> Int -> ST s ()
go2 Int
off a -> b
f Int
j = forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
j forall a. Ord a => a -> a -> Bool
< Int
sza) forall a b. (a -> b) -> a -> b
$
do
a
x <- forall (m :: * -> *) a. Applicative m => SmallArray a -> Int -> m a
indexSmallArrayM SmallArray a
a Int
j
forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a -> Int -> a -> m ()
writeSmallArray SmallMutableArray s b
mb (Int
off forall a. Num a => a -> a -> a
+ Int
j) (a -> b
f a
x)
Int -> (a -> b) -> Int -> ST s ()
go2 Int
off a -> b
f (Int
j forall a. Num a => a -> a -> a
+ Int
1)
in Int -> ST s ()
go1 Int
0
where szab :: Int
szab = forall a. SmallArray a -> Int
sizeofSmallArray SmallArray (a -> b)
ab; sza :: Int
sza = forall a. SmallArray a -> Int
sizeofSmallArray SmallArray a
a
instance Alternative SmallArray where
empty :: forall a. SmallArray a
empty = forall a. SmallArray a
emptySmallArray
SmallArray a
sl <|> :: forall a. SmallArray a -> SmallArray a -> SmallArray a
<|> SmallArray a
sr =
forall a.
Int
-> a
-> (forall s. SmallMutableArray s a -> ST s ())
-> SmallArray a
createSmallArray (forall (t :: * -> *) a. Foldable t => t a -> Int
length SmallArray a
sl forall a. Num a => a -> a -> a
+ forall (t :: * -> *) a. Foldable t => t a -> Int
length SmallArray a
sr) (forall a. String -> String -> a
die String
"<|>" String
"impossible") forall a b. (a -> b) -> a -> b
$ \SmallMutableArray s a
sma ->
forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a
-> Int -> SmallArray a -> Int -> Int -> m ()
copySmallArray SmallMutableArray s a
sma Int
0 SmallArray a
sl Int
0 (forall (t :: * -> *) a. Foldable t => t a -> Int
length SmallArray a
sl)
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a
-> Int -> SmallArray a -> Int -> Int -> m ()
copySmallArray SmallMutableArray s a
sma (forall (t :: * -> *) a. Foldable t => t a -> Int
length SmallArray a
sl) SmallArray a
sr Int
0 (forall (t :: * -> *) a. Foldable t => t a -> Int
length SmallArray a
sr)
many :: forall a. SmallArray a -> SmallArray [a]
many SmallArray a
sa | forall (t :: * -> *) a. Foldable t => t a -> Bool
null SmallArray a
sa = forall (f :: * -> *) a. Applicative f => a -> f a
pure []
| Bool
otherwise = forall a. String -> String -> a
die String
"many" String
"infinite arrays are not well defined"
some :: forall a. SmallArray a -> SmallArray [a]
some SmallArray a
sa | forall (t :: * -> *) a. Foldable t => t a -> Bool
null SmallArray a
sa = forall a. SmallArray a
emptySmallArray
| Bool
otherwise = forall a. String -> String -> a
die String
"some" String
"infinite arrays are not well defined"
data ArrayStack a
= PushArray !(SmallArray a) !(ArrayStack a)
| EmptyStack
instance Monad SmallArray where
return :: forall a. a -> SmallArray a
return = forall (f :: * -> *) a. Applicative f => a -> f a
pure
>> :: forall a b. SmallArray a -> SmallArray b -> SmallArray b
(>>) = forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
(*>)
SmallArray a
sa >>= :: forall a b. SmallArray a -> (a -> SmallArray b) -> SmallArray b
>>= a -> SmallArray b
f = Int -> ArrayStack b -> Int -> SmallArray b
collect Int
0 forall a. ArrayStack a
EmptyStack (Int
la forall a. Num a => a -> a -> a
- Int
1)
where
la :: Int
la = forall (t :: * -> *) a. Foldable t => t a -> Int
length SmallArray a
sa
collect :: Int -> ArrayStack b -> Int -> SmallArray b
collect Int
sz ArrayStack b
stk Int
i
| Int
i forall a. Ord a => a -> a -> Bool
< Int
0 = forall a.
Int
-> a
-> (forall s. SmallMutableArray s a -> ST s ())
-> SmallArray a
createSmallArray Int
sz (forall a. String -> String -> a
die String
">>=" String
"impossible") forall a b. (a -> b) -> a -> b
$ forall {m :: * -> *} {a}.
PrimMonad m =>
Int -> ArrayStack a -> SmallMutableArray (PrimState m) a -> m ()
fill Int
0 ArrayStack b
stk
| (# a
x #) <- forall a. SmallArray a -> Int -> (# a #)
indexSmallArray## SmallArray a
sa Int
i
, let sb :: SmallArray b
sb = a -> SmallArray b
f a
x
lsb :: Int
lsb = forall (t :: * -> *) a. Foldable t => t a -> Int
length SmallArray b
sb
= if Int
lsb forall a. Eq a => a -> a -> Bool
== Int
0
then Int -> ArrayStack b -> Int -> SmallArray b
collect Int
sz ArrayStack b
stk (Int
i forall a. Num a => a -> a -> a
- Int
1)
else Int -> ArrayStack b -> Int -> SmallArray b
collect (Int
sz forall a. Num a => a -> a -> a
+ Int
lsb) (forall a. SmallArray a -> ArrayStack a -> ArrayStack a
PushArray SmallArray b
sb ArrayStack b
stk) (Int
i forall a. Num a => a -> a -> a
- Int
1)
fill :: Int -> ArrayStack a -> SmallMutableArray (PrimState m) a -> m ()
fill Int
_ ArrayStack a
EmptyStack SmallMutableArray (PrimState m) a
_ = forall (m :: * -> *) a. Monad m => a -> m a
return ()
fill Int
off (PushArray SmallArray a
sb ArrayStack a
sbs) SmallMutableArray (PrimState m) a
smb =
forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a
-> Int -> SmallArray a -> Int -> Int -> m ()
copySmallArray SmallMutableArray (PrimState m) a
smb Int
off SmallArray a
sb Int
0 (forall (t :: * -> *) a. Foldable t => t a -> Int
length SmallArray a
sb)
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> Int -> ArrayStack a -> SmallMutableArray (PrimState m) a -> m ()
fill (Int
off forall a. Num a => a -> a -> a
+ forall (t :: * -> *) a. Foldable t => t a -> Int
length SmallArray a
sb) ArrayStack a
sbs SmallMutableArray (PrimState m) a
smb
#if !(MIN_VERSION_base(4,13,0))
fail = Fail.fail
#endif
instance Fail.MonadFail SmallArray where
fail :: forall a. String -> SmallArray a
fail String
_ = forall a. SmallArray a
emptySmallArray
instance MonadPlus SmallArray where
mzero :: forall a. SmallArray a
mzero = forall (f :: * -> *) a. Alternative f => f a
empty
mplus :: forall a. SmallArray a -> SmallArray a -> SmallArray a
mplus = forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
(<|>)
zipW :: String -> (a -> b -> c) -> SmallArray a -> SmallArray b -> SmallArray c
zipW :: forall a b c.
String
-> (a -> b -> c) -> SmallArray a -> SmallArray b -> SmallArray c
zipW String
nm = \a -> b -> c
f SmallArray a
sa SmallArray b
sb -> let mn :: Int
mn = forall (t :: * -> *) a. Foldable t => t a -> Int
length SmallArray a
sa forall a. Ord a => a -> a -> a
`min` forall (t :: * -> *) a. Foldable t => t a -> Int
length SmallArray b
sb in
forall a.
Int
-> a
-> (forall s. SmallMutableArray s a -> ST s ())
-> SmallArray a
createSmallArray Int
mn (forall a. String -> String -> a
die String
nm String
"impossible") forall a b. (a -> b) -> a -> b
$ \SmallMutableArray s c
mc ->
forall a. (a -> a) -> a
fix forall a b c. (a -> b -> c) -> b -> a -> c
? Int
0 forall a b. (a -> b) -> a -> b
$ \Int -> ST s ()
go Int
i -> forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
i forall a. Ord a => a -> a -> Bool
< Int
mn) forall a b. (a -> b) -> a -> b
$ do
a
x <- forall (m :: * -> *) a. Applicative m => SmallArray a -> Int -> m a
indexSmallArrayM SmallArray a
sa Int
i
b
y <- forall (m :: * -> *) a. Applicative m => SmallArray a -> Int -> m a
indexSmallArrayM SmallArray b
sb Int
i
forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a -> Int -> a -> m ()
writeSmallArray SmallMutableArray s c
mc Int
i (a -> b -> c
f a
x b
y)
Int -> ST s ()
go (Int
i forall a. Num a => a -> a -> a
+ Int
1)
{-# INLINE zipW #-}
instance MonadZip SmallArray where
mzip :: forall a b. SmallArray a -> SmallArray b -> SmallArray (a, b)
mzip = forall a b c.
String
-> (a -> b -> c) -> SmallArray a -> SmallArray b -> SmallArray c
zipW String
"mzip" (,)
mzipWith :: forall a b c.
(a -> b -> c) -> SmallArray a -> SmallArray b -> SmallArray c
mzipWith = forall a b c.
String
-> (a -> b -> c) -> SmallArray a -> SmallArray b -> SmallArray c
zipW String
"mzipWith"
{-# INLINE mzipWith #-}
munzip :: forall a b. SmallArray (a, b) -> (SmallArray a, SmallArray b)
munzip SmallArray (a, b)
sab = forall a. (forall s. ST s a) -> a
runST forall a b. (a -> b) -> a -> b
$ do
let sz :: Int
sz = forall (t :: * -> *) a. Foldable t => t a -> Int
length SmallArray (a, b)
sab
SmallMutableArray s a
sma <- forall (m :: * -> *) a.
PrimMonad m =>
Int -> a -> m (SmallMutableArray (PrimState m) a)
newSmallArray Int
sz forall a b. (a -> b) -> a -> b
$ forall a. String -> String -> a
die String
"munzip" String
"impossible"
SmallMutableArray s b
smb <- forall (m :: * -> *) a.
PrimMonad m =>
Int -> a -> m (SmallMutableArray (PrimState m) a)
newSmallArray Int
sz forall a b. (a -> b) -> a -> b
$ forall a. String -> String -> a
die String
"munzip" String
"impossible"
forall a. (a -> a) -> a
fix forall a b c. (a -> b -> c) -> b -> a -> c
? Int
0 forall a b. (a -> b) -> a -> b
$ \Int -> ST s ()
go Int
i ->
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
i forall a. Ord a => a -> a -> Bool
< Int
sz) forall a b. (a -> b) -> a -> b
$ case forall a. SmallArray a -> Int -> a
indexSmallArray SmallArray (a, b)
sab Int
i of
(a
x, b
y) -> do forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a -> Int -> a -> m ()
writeSmallArray SmallMutableArray s a
sma Int
i a
x
forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a -> Int -> a -> m ()
writeSmallArray SmallMutableArray s b
smb Int
i b
y
Int -> ST s ()
go (Int
i forall a. Num a => a -> a -> a
+ Int
1)
(,) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a -> m (SmallArray a)
unsafeFreezeSmallArray SmallMutableArray s a
sma
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a -> m (SmallArray a)
unsafeFreezeSmallArray SmallMutableArray s b
smb
instance MonadFix SmallArray where
mfix :: forall a. (a -> SmallArray a) -> SmallArray a
mfix a -> SmallArray a
f = forall a.
Int
-> a
-> (forall s. SmallMutableArray s a -> ST s ())
-> SmallArray a
createSmallArray (forall a. SmallArray a -> Int
sizeofSmallArray (a -> SmallArray a
f forall a. a
err))
(forall a. String -> String -> a
die String
"mfix" String
"impossible") forall a b. (a -> b) -> a -> b
$ forall a. (a -> a) -> a
fix forall a b c. (a -> b -> c) -> b -> a -> c
? Int
0 forall a b. (a -> b) -> a -> b
$
\Int -> SmallMutableArray s a -> ST s ()
r !Int
i !SmallMutableArray s a
mary -> forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
i forall a. Ord a => a -> a -> Bool
< Int
sz) forall a b. (a -> b) -> a -> b
$ do
forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a -> Int -> a -> m ()
writeSmallArray SmallMutableArray s a
mary Int
i (forall a. (a -> a) -> a
fix (\a
xi -> a -> SmallArray a
f a
xi forall a. SmallArray a -> Int -> a
`indexSmallArray` Int
i))
Int -> SmallMutableArray s a -> ST s ()
r (Int
i forall a. Num a => a -> a -> a
+ Int
1) SmallMutableArray s a
mary
where
sz :: Int
sz = forall a. SmallArray a -> Int
sizeofSmallArray (a -> SmallArray a
f forall a. a
err)
err :: a
err = forall a. HasCallStack => String -> a
error String
"mfix for Data.Primitive.SmallArray applied to strict function."
instance Semigroup (SmallArray a) where
<> :: SmallArray a -> SmallArray a -> SmallArray a
(<>) = forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
(<|>)
sconcat :: NonEmpty (SmallArray a) -> SmallArray a
sconcat = forall a. Monoid a => [a] -> a
mconcat forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (t :: * -> *) a. Foldable t => t a -> [a]
toList
stimes :: forall b. Integral b => b -> SmallArray a -> SmallArray a
stimes b
n SmallArray a
arr = case forall a. Ord a => a -> a -> Ordering
compare b
n b
0 of
Ordering
LT -> forall a. String -> String -> a
die String
"stimes" String
"negative multiplier"
Ordering
EQ -> forall (f :: * -> *) a. Alternative f => f a
empty
Ordering
GT -> forall a.
Int
-> a
-> (forall s. SmallMutableArray s a -> ST s ())
-> SmallArray a
createSmallArray (Int
n' forall a. Num a => a -> a -> a
* forall a. SmallArray a -> Int
sizeofSmallArray SmallArray a
arr) (forall a. String -> String -> a
die String
"stimes" String
"impossible") forall a b. (a -> b) -> a -> b
$ \SmallMutableArray s a
sma ->
let go :: Int -> ST s ()
go Int
i = forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
i forall a. Ord a => a -> a -> Bool
< Int
n') forall a b. (a -> b) -> a -> b
$ do
forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a
-> Int -> SmallArray a -> Int -> Int -> m ()
copySmallArray SmallMutableArray s a
sma (Int
i forall a. Num a => a -> a -> a
* forall a. SmallArray a -> Int
sizeofSmallArray SmallArray a
arr) SmallArray a
arr Int
0 (forall a. SmallArray a -> Int
sizeofSmallArray SmallArray a
arr)
Int -> ST s ()
go (Int
i forall a. Num a => a -> a -> a
+ Int
1)
in Int -> ST s ()
go Int
0
where n' :: Int
n' = forall a b. (Integral a, Num b) => a -> b
fromIntegral b
n :: Int
instance Monoid (SmallArray a) where
mempty :: SmallArray a
mempty = forall (f :: * -> *) a. Alternative f => f a
empty
#if !(MIN_VERSION_base(4,11,0))
mappend = (<>)
#endif
mconcat :: [SmallArray a] -> SmallArray a
mconcat [SmallArray a]
l = forall a.
Int
-> a
-> (forall s. SmallMutableArray s a -> ST s ())
-> SmallArray a
createSmallArray Int
n (forall a. String -> String -> a
die String
"mconcat" String
"impossible") forall a b. (a -> b) -> a -> b
$ \SmallMutableArray s a
ma ->
let go :: Int -> [SmallArray a] -> ST s ()
go !Int
_ [ ] = forall (m :: * -> *) a. Monad m => a -> m a
return ()
go Int
off (SmallArray a
a:[SmallArray a]
as) =
forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a
-> Int -> SmallArray a -> Int -> Int -> m ()
copySmallArray SmallMutableArray s a
ma Int
off SmallArray a
a Int
0 (forall a. SmallArray a -> Int
sizeofSmallArray SmallArray a
a) forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Int -> [SmallArray a] -> ST s ()
go (Int
off forall a. Num a => a -> a -> a
+ forall a. SmallArray a -> Int
sizeofSmallArray SmallArray a
a) [SmallArray a]
as
in Int -> [SmallArray a] -> ST s ()
go Int
0 [SmallArray a]
l
where n :: Int
n = forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall (t :: * -> *) a. Foldable t => t a -> Int
length [SmallArray a]
l)
instance IsList (SmallArray a) where
type Item (SmallArray a) = a
fromListN :: Int -> [Item (SmallArray a)] -> SmallArray a
fromListN = forall a. Int -> [a] -> SmallArray a
smallArrayFromListN
fromList :: [Item (SmallArray a)] -> SmallArray a
fromList = forall a. [a] -> SmallArray a
smallArrayFromList
toList :: SmallArray a -> [Item (SmallArray a)]
toList = forall (t :: * -> *) a. Foldable t => t a -> [a]
Foldable.toList
smallArrayLiftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> SmallArray a -> ShowS
smallArrayLiftShowsPrec :: forall a.
(Int -> a -> ShowS)
-> ([a] -> ShowS) -> Int -> SmallArray a -> ShowS
smallArrayLiftShowsPrec Int -> a -> ShowS
elemShowsPrec [a] -> ShowS
elemListShowsPrec Int
_ SmallArray a
sa =
forall a.
(Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> [a] -> ShowS
listLiftShowsPrec Int -> a -> ShowS
elemShowsPrec [a] -> ShowS
elemListShowsPrec Int
11 (forall (t :: * -> *) a. Foldable t => t a -> [a]
toList SmallArray a
sa)
listLiftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> [a] -> ShowS
listLiftShowsPrec :: forall a.
(Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> [a] -> ShowS
listLiftShowsPrec Int -> a -> ShowS
_ [a] -> ShowS
sl Int
_ = [a] -> ShowS
sl
instance Show a => Show (SmallArray a) where
showsPrec :: Int -> SmallArray a -> ShowS
showsPrec Int
p SmallArray a
sa = forall a.
(Int -> a -> ShowS)
-> ([a] -> ShowS) -> Int -> SmallArray a -> ShowS
smallArrayLiftShowsPrec forall a. Show a => Int -> a -> ShowS
showsPrec forall a. Show a => [a] -> ShowS
showList Int
p SmallArray a
sa
instance Show1 SmallArray where
liftShowsPrec :: forall a.
(Int -> a -> ShowS)
-> ([a] -> ShowS) -> Int -> SmallArray a -> ShowS
liftShowsPrec = forall a.
(Int -> a -> ShowS)
-> ([a] -> ShowS) -> Int -> SmallArray a -> ShowS
smallArrayLiftShowsPrec
smallArrayLiftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (SmallArray a)
smallArrayLiftReadPrec :: forall a. ReadPrec a -> ReadPrec [a] -> ReadPrec (SmallArray a)
smallArrayLiftReadPrec ReadPrec a
_ ReadPrec [a]
read_list =
( forall a. ReadP a -> ReadPrec a
RdPrc.lift ReadP ()
skipSpaces forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall l. IsList l => [Item l] -> l
fromList ReadPrec [a]
read_list )
forall a. ReadPrec a -> ReadPrec a -> ReadPrec a
RdPrc.+++
( forall a. ReadPrec a -> ReadPrec a
parens forall a b. (a -> b) -> a -> b
$ forall a. Int -> ReadPrec a -> ReadPrec a
prec Int
app_prec forall a b. (a -> b) -> a -> b
$ do
forall a. ReadP a -> ReadPrec a
RdPrc.lift ReadP ()
skipSpaces
Tag
tag <- forall a. ReadP a -> ReadPrec a
RdPrc.lift ReadP Tag
lexTag
case Tag
tag of
Tag
FromListTag -> forall l. IsList l => [Item l] -> l
fromList forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ReadPrec [a]
read_list
Tag
FromListNTag -> forall (m :: * -> *) a1 a2 r.
Monad m =>
(a1 -> a2 -> r) -> m a1 -> m a2 -> m r
liftM2 forall l. IsList l => Int -> [Item l] -> l
fromListN forall a. Read a => ReadPrec a
readPrec ReadPrec [a]
read_list
)
where
app_prec :: Int
app_prec = Int
10
instance Read a => Read (SmallArray a) where
readPrec :: ReadPrec (SmallArray a)
readPrec = forall a. ReadPrec a -> ReadPrec [a] -> ReadPrec (SmallArray a)
smallArrayLiftReadPrec forall a. Read a => ReadPrec a
readPrec forall a. Read a => ReadPrec [a]
readListPrec
instance Read1 SmallArray where
#if MIN_VERSION_base(4,10,0)
liftReadPrec :: forall a. ReadPrec a -> ReadPrec [a] -> ReadPrec (SmallArray a)
liftReadPrec = forall a. ReadPrec a -> ReadPrec [a] -> ReadPrec (SmallArray a)
smallArrayLiftReadPrec
#else
liftReadsPrec rp rl = RdPrc.readPrec_to_S $
smallArrayLiftReadPrec (RdPrc.readS_to_Prec rp) (RdPrc.readS_to_Prec (const rl))
#endif
smallArrayDataType :: DataType
smallArrayDataType :: DataType
smallArrayDataType =
String -> [Constr] -> DataType
mkDataType String
"Data.Primitive.SmallArray.SmallArray" [Constr
fromListConstr]
fromListConstr :: Constr
fromListConstr :: Constr
fromListConstr = DataType -> String -> [String] -> Fixity -> Constr
mkConstr DataType
smallArrayDataType String
"fromList" [] Fixity
Prefix
instance Data a => Data (SmallArray a) where
toConstr :: SmallArray a -> Constr
toConstr SmallArray a
_ = Constr
fromListConstr
dataTypeOf :: SmallArray a -> DataType
dataTypeOf SmallArray a
_ = DataType
smallArrayDataType
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (SmallArray a)
gunfold forall b r. Data b => c (b -> r) -> c r
k forall r. r -> c r
z Constr
c = case Constr -> Int
constrIndex Constr
c of
Int
1 -> forall b r. Data b => c (b -> r) -> c r
k (forall r. r -> c r
z forall l. IsList l => [Item l] -> l
fromList)
Int
_ -> forall a. String -> String -> a
die String
"gunfold" String
"SmallArray"
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> SmallArray a -> c (SmallArray a)
gfoldl forall d b. Data d => c (d -> b) -> d -> c b
f forall g. g -> c g
z SmallArray a
m = forall g. g -> c g
z forall l. IsList l => [Item l] -> l
fromList forall d b. Data d => c (d -> b) -> d -> c b
`f` forall (t :: * -> *) a. Foldable t => t a -> [a]
toList SmallArray a
m
instance (Typeable s, Typeable a) => Data (SmallMutableArray s a) where
toConstr :: SmallMutableArray s a -> Constr
toConstr SmallMutableArray s a
_ = forall a. String -> String -> a
die String
"toConstr" String
"SmallMutableArray"
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (SmallMutableArray s a)
gunfold forall b r. Data b => c (b -> r) -> c r
_ forall r. r -> c r
_ = forall a. String -> String -> a
die String
"gunfold" String
"SmallMutableArray"
dataTypeOf :: SmallMutableArray s a -> DataType
dataTypeOf SmallMutableArray s a
_ = String -> DataType
mkNoRepType String
"Data.Primitive.SmallArray.SmallMutableArray"
smallArrayFromListN :: Int -> [a] -> SmallArray a
smallArrayFromListN :: forall a. Int -> [a] -> SmallArray a
smallArrayFromListN Int
n [a]
l =
forall a.
Int
-> a
-> (forall s. SmallMutableArray s a -> ST s ())
-> SmallArray a
createSmallArray Int
n
(forall a. String -> String -> a
die String
"smallArrayFromListN" String
"uninitialized element") forall a b. (a -> b) -> a -> b
$ \SmallMutableArray s a
sma ->
let go :: Int -> [a] -> ST s ()
go !Int
ix [] = if Int
ix forall a. Eq a => a -> a -> Bool
== Int
n
then forall (m :: * -> *) a. Monad m => a -> m a
return ()
else forall a. String -> String -> a
die String
"smallArrayFromListN" String
"list length less than specified size"
go !Int
ix (a
x : [a]
xs) = if Int
ix forall a. Ord a => a -> a -> Bool
< Int
n
then do
forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a -> Int -> a -> m ()
writeSmallArray SmallMutableArray s a
sma Int
ix a
x
Int -> [a] -> ST s ()
go (Int
ix forall a. Num a => a -> a -> a
+ Int
1) [a]
xs
else forall a. String -> String -> a
die String
"smallArrayFromListN" String
"list length greater than specified size"
in Int -> [a] -> ST s ()
go Int
0 [a]
l
smallArrayFromList :: [a] -> SmallArray a
smallArrayFromList :: forall a. [a] -> SmallArray a
smallArrayFromList [a]
l = forall a. Int -> [a] -> SmallArray a
smallArrayFromListN (forall (t :: * -> *) a. Foldable t => t a -> Int
length [a]
l) [a]
l
#if MIN_VERSION_base(4,14,0)
shrinkSmallMutableArray :: PrimMonad m
=> SmallMutableArray (PrimState m) a
-> Int
-> m ()
{-# inline shrinkSmallMutableArray #-}
shrinkSmallMutableArray :: forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a -> Int -> m ()
shrinkSmallMutableArray (SmallMutableArray SmallMutableArray# (PrimState m) a
x) (I# Int#
n) = forall (m :: * -> *) a.
PrimMonad m =>
(State# (PrimState m) -> (# State# (PrimState m), a #)) -> m a
primitive
(\State# (PrimState m)
s0 -> case forall d a. SmallMutableArray# d a -> Int# -> State# d -> State# d
GHC.Exts.shrinkSmallMutableArray# SmallMutableArray# (PrimState m) a
x Int#
n State# (PrimState m)
s0 of
State# (PrimState m)
s1 -> (# State# (PrimState m)
s1, () #)
)
resizeSmallMutableArray :: PrimMonad m
=> SmallMutableArray (PrimState m) a
-> Int
-> a
-> m (SmallMutableArray (PrimState m) a)
resizeSmallMutableArray :: forall (m :: * -> *) a.
PrimMonad m =>
SmallMutableArray (PrimState m) a
-> Int -> a -> m (SmallMutableArray (PrimState m) a)
resizeSmallMutableArray (SmallMutableArray SmallMutableArray# (PrimState m) a
arr) (I# Int#
n) a
x = forall (m :: * -> *) a.
PrimMonad m =>
(State# (PrimState m) -> (# State# (PrimState m), a #)) -> m a
primitive
(\State# (PrimState m)
s0 -> case forall s a.
SmallMutableArray# s a
-> Int# -> a -> State# s -> (# State# s, SmallMutableArray# s a #)
GHC.Exts.resizeSmallMutableArray# SmallMutableArray# (PrimState m) a
arr Int#
n a
x State# (PrimState m)
s0 of
(# State# (PrimState m)
s1, SmallMutableArray# (PrimState m) a
arr' #) -> (# State# (PrimState m)
s1, forall s a. SmallMutableArray# s a -> SmallMutableArray s a
SmallMutableArray SmallMutableArray# (PrimState m) a
arr' #)
)
{-# INLINE resizeSmallMutableArray #-}
#endif