{-# OPTIONS_HADDOCK not-home #-}
module Polysemy.Internal.Strategy where
import Polysemy.Internal
import Polysemy.Internal.Combinators
import Polysemy.Internal.Tactics (Inspector(..))
data Strategy m f n z a where
GetInitialState :: Strategy m f n z (f ())
HoistInterpretation :: (a -> n b) -> Strategy m f n z (f a -> m (f b))
GetInspector :: Strategy m f n z (Inspector f)
type Strategic m n a = forall f. Functor f => Sem (WithStrategy m f n) (m (f a))
type WithStrategy m f n = '[Strategy m f n]
runStrategy :: Functor f
=> Sem '[Strategy m f n] a
-> f ()
-> (forall x. f (n x) -> m (f x))
-> (forall x. f x -> Maybe x)
-> a
runStrategy :: Sem '[Strategy m f n] a
-> f ()
-> (forall x. f (n x) -> m (f x))
-> (forall x. f x -> Maybe x)
-> a
runStrategy Sem '[Strategy m f n] a
sem = \f ()
s forall x. f (n x) -> m (f x)
wv forall x. f x -> Maybe x
ins -> Sem '[] a -> a
forall a. Sem '[] a -> a
run (Sem '[] a -> a) -> Sem '[] a -> a
forall a b. (a -> b) -> a -> b
$ (forall (rInitial :: EffectRow) x.
Strategy m f n (Sem rInitial) x -> Sem '[] x)
-> Sem '[Strategy m f n] a -> Sem '[] a
forall (e :: (* -> *) -> * -> *) (r :: EffectRow) a.
FirstOrder e "interpret" =>
(forall (rInitial :: EffectRow) x. e (Sem rInitial) x -> Sem r x)
-> Sem (e : r) a -> Sem r a
interpret
(\case
Strategy m f n (Sem rInitial) x
GetInitialState -> f () -> Sem '[] (f ())
forall (f :: * -> *) a. Applicative f => a -> f a
pure f ()
s
HoistInterpretation f -> (f a -> m (f b)) -> Sem '[] (f a -> m (f b))
forall (f :: * -> *) a. Applicative f => a -> f a
pure ((f a -> m (f b)) -> Sem '[] (f a -> m (f b)))
-> (f a -> m (f b)) -> Sem '[] (f a -> m (f b))
forall a b. (a -> b) -> a -> b
$ \f a
fa -> f (n b) -> m (f b)
forall x. f (n x) -> m (f x)
wv (a -> n b
f (a -> n b) -> f a -> f (n b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f a
fa)
Strategy m f n (Sem rInitial) x
GetInspector -> Inspector f -> Sem '[] (Inspector f)
forall (f :: * -> *) a. Applicative f => a -> f a
pure ((forall x. f x -> Maybe x) -> Inspector f
forall (f :: * -> *). (forall x. f x -> Maybe x) -> Inspector f
Inspector forall x. f x -> Maybe x
ins)
) Sem '[Strategy m f n] a
sem
{-# INLINE runStrategy #-}
getInspectorS :: forall m f n. Sem (WithStrategy m f n) (Inspector f)
getInspectorS :: Sem (WithStrategy m f n) (Inspector f)
getInspectorS = Strategy m f n (Sem (WithStrategy m f n)) (Inspector f)
-> Sem (WithStrategy m f n) (Inspector f)
forall (e :: (* -> *) -> * -> *) (r :: EffectRow) a.
Member e r =>
e (Sem r) a -> Sem r a
send (forall k (m :: * -> *) (f :: * -> *) (n :: * -> *) (z :: k).
Strategy m f n z (Inspector f)
forall (z :: * -> *). Strategy m f n z (Inspector f)
GetInspector @m @f @n)
{-# INLINE getInspectorS #-}
getInitialStateS :: forall m f n. Sem (WithStrategy m f n) (f ())
getInitialStateS :: Sem (WithStrategy m f n) (f ())
getInitialStateS = Strategy m f n (Sem (WithStrategy m f n)) (f ())
-> Sem (WithStrategy m f n) (f ())
forall (e :: (* -> *) -> * -> *) (r :: EffectRow) a.
Member e r =>
e (Sem r) a -> Sem r a
send (forall k (m :: * -> *) (f :: * -> *) (n :: * -> *) (z :: k).
Strategy m f n z (f ())
forall (z :: * -> *). Strategy m f n z (f ())
GetInitialState @m @f @n)
{-# INLINE getInitialStateS #-}
pureS :: Applicative m => a -> Strategic m n a
pureS :: a -> Strategic m n a
pureS a
a = f a -> m (f a)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (f a -> m (f a)) -> (f () -> f a) -> f () -> m (f a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a
a a -> f () -> f a
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$) (f () -> m (f a))
-> Sem (WithStrategy m f n) (f ())
-> Sem (WithStrategy m f n) (m (f a))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Sem (WithStrategy m f n) (f ())
forall (m :: * -> *) (f :: * -> *) (n :: * -> *).
Sem (WithStrategy m f n) (f ())
getInitialStateS
{-# INLINE pureS #-}
liftS :: Functor m => m a -> Strategic m n a
liftS :: m a -> Strategic m n a
liftS m a
m = do
f ()
s <- Sem (WithStrategy m f n) (f ())
forall (m :: * -> *) (f :: * -> *) (n :: * -> *).
Sem (WithStrategy m f n) (f ())
getInitialStateS
m (f a) -> Sem (WithStrategy m f n) (m (f a))
forall (f :: * -> *) a. Applicative f => a -> f a
pure (m (f a) -> Sem (WithStrategy m f n) (m (f a)))
-> m (f a) -> Sem (WithStrategy m f n) (m (f a))
forall a b. (a -> b) -> a -> b
$ (a -> f () -> f a
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ f ()
s) (a -> f a) -> m a -> m (f a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m a
m
{-# INLINE liftS #-}
runS :: n a -> Sem (WithStrategy m f n) (m (f a))
runS :: n a -> Sem (WithStrategy m f n) (m (f a))
runS n a
na = (() -> n a) -> Sem (WithStrategy m f n) (f () -> m (f a))
forall a (n :: * -> *) b (m :: * -> *) (f :: * -> *).
(a -> n b) -> Sem (WithStrategy m f n) (f a -> m (f b))
bindS (n a -> () -> n a
forall a b. a -> b -> a
const n a
na) Sem (WithStrategy m f n) (f () -> m (f a))
-> Sem (WithStrategy m f n) (f ())
-> Sem (WithStrategy m f n) (m (f a))
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Sem (WithStrategy m f n) (f ())
forall (m :: * -> *) (f :: * -> *) (n :: * -> *).
Sem (WithStrategy m f n) (f ())
getInitialStateS
{-# INLINE runS #-}
bindS :: (a -> n b) -> Sem (WithStrategy m f n) (f a -> m (f b))
bindS :: (a -> n b) -> Sem (WithStrategy m f n) (f a -> m (f b))
bindS = Strategy m f n (Sem (WithStrategy m f n)) (f a -> m (f b))
-> Sem (WithStrategy m f n) (f a -> m (f b))
forall (e :: (* -> *) -> * -> *) (r :: EffectRow) a.
Member e r =>
e (Sem r) a -> Sem r a
send (Strategy m f n (Sem (WithStrategy m f n)) (f a -> m (f b))
-> Sem (WithStrategy m f n) (f a -> m (f b)))
-> ((a -> n b)
-> Strategy m f n (Sem (WithStrategy m f n)) (f a -> m (f b)))
-> (a -> n b)
-> Sem (WithStrategy m f n) (f a -> m (f b))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> n b)
-> Strategy m f n (Sem (WithStrategy m f n)) (f a -> m (f b))
forall k a (n :: * -> *) b (m :: * -> *) (f :: * -> *) (z :: k).
(a -> n b) -> Strategy m f n z (f a -> m (f b))
HoistInterpretation
{-# INLINE bindS #-}