{-# LANGUAGE AllowAmbiguousTypes #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MonoLocalBinds #-} {-# LANGUAGE UndecidableInstances #-} {-# OPTIONS_GHC -fno-warn-orphans #-} {-# OPTIONS_HADDOCK not-home #-} module Polysemy.Internal ( Sem (..) , Member , MemberWithError , Members , send , sendUsing , embed , run , runM , raise , raiseUnder , raiseUnder2 , raiseUnder3 , subsume , subsumeUsing , Embed (..) , usingSem , liftSem , hoistSem , InterpreterFor , (.@) , (.@@) ) where import Control.Applicative import Control.Monad import Control.Monad.Fail import Control.Monad.Fix import Control.Monad.IO.Class import Data.Functor.Identity import Data.Kind import Polysemy.Embed.Type import Polysemy.Fail.Type import Polysemy.Internal.Fixpoint import Polysemy.Internal.NonDet import Polysemy.Internal.PluginLookup import Polysemy.Internal.Union -- $setup -- >>> import Data.Function -- >>> import Polysemy.State -- >>> import Polysemy.Error ------------------------------------------------------------------------------ -- | The 'Sem' monad handles computations of arbitrary extensible effects. -- A value of type @Sem r@ describes a program with the capabilities of -- @r@. For best results, @r@ should always be kept polymorphic, but you can -- add capabilities via the 'Member' constraint. -- -- The value of the 'Sem' monad is that it allows you to write programs -- against a set of effects without a predefined meaning, and provide that -- meaning later. For example, unlike with mtl, you can decide to interpret an -- 'Polysemy.Error.Error' effect traditionally as an 'Either', or instead -- as (a significantly faster) 'IO' 'Control.Exception.Exception'. These -- interpretations (and others that you might add) may be used interchangeably -- without needing to write any newtypes or 'Monad' instances. The only -- change needed to swap interpretations is to change a call from -- 'Polysemy.Error.runError' to 'Polysemy.Error.errorToIOFinal'. -- -- The effect stack @r@ can contain arbitrary other monads inside of it. These -- monads are lifted into effects via the 'Embed' effect. Monadic values can be -- lifted into a 'Sem' via 'embed'. -- -- Higher-order actions of another monad can be lifted into higher-order actions -- of 'Sem' via the 'Polysemy.Final' effect, which is more powerful -- than 'Embed', but also less flexible to interpret. -- -- A 'Sem' can be interpreted as a pure value (via 'run') or as any -- traditional 'Monad' (via 'runM' or 'Polysemy.runFinal'). -- Each effect @E@ comes equipped with some interpreters of the form: -- -- @ -- runE :: 'Sem' (E ': r) a -> 'Sem' r a -- @ -- -- which is responsible for removing the effect @E@ from the effect stack. It -- is the order in which you call the interpreters that determines the -- monomorphic representation of the @r@ parameter. -- -- Order of interpreters can be important - it determines behaviour of effects -- that manipulate state or change control flow. For example, when -- interpreting this action: -- -- >>> :{ -- example :: Members '[State String, Error String] r => Sem r String -- example = do -- put "start" -- let throwing, catching :: Members '[State String, Error String] r => Sem r String -- throwing = do -- modify (++"-throw") -- throw "error" -- get -- catching = do -- modify (++"-catch") -- get -- catch @String throwing (\ _ -> catching) -- :} -- -- when handling 'Polysemy.Error.Error' first, state is preserved after error -- occurs: -- -- >>> :{ -- example -- & runError -- & fmap (either id id) -- & evalState "" -- & runM -- & (print =<<) -- :} -- "start-throw-catch" -- -- while handling 'Polysemy.State.State' first discards state in such cases: -- -- >>> :{ -- example -- & evalState "" -- & runError -- & fmap (either id id) -- & runM -- & (print =<<) -- :} -- "start-catch" -- -- A good rule of thumb is to handle effects which should have \"global\" -- behaviour over other effects later in the chain. -- -- After all of your effects are handled, you'll be left with either -- a @'Sem' '[] a@, a @'Sem' '[ 'Embed' m ] a@, or a @'Sem' '[ 'Polysemy.Final' m ] a@ -- value, which can be consumed respectively by 'run', 'runM', and -- 'Polysemy.runFinal'. -- -- ==== Examples -- -- As an example of keeping @r@ polymorphic, we can consider the type -- -- @ -- 'Member' ('Polysemy.State.State' String) r => 'Sem' r () -- @ -- -- to be a program with access to -- -- @ -- 'Polysemy.State.get' :: 'Sem' r String -- 'Polysemy.State.put' :: String -> 'Sem' r () -- @ -- -- methods. -- -- By also adding a -- -- @ -- 'Member' ('Polysemy.Error' Bool) r -- @ -- -- constraint on @r@, we gain access to the -- -- @ -- 'Polysemy.Error.throw' :: Bool -> 'Sem' r a -- 'Polysemy.Error.catch' :: 'Sem' r a -> (Bool -> 'Sem' r a) -> 'Sem' r a -- @ -- -- functions as well. -- -- In this sense, a @'Member' ('Polysemy.State.State' s) r@ constraint is -- analogous to mtl's @'Control.Monad.State.Class.MonadState' s m@ and should -- be thought of as such. However, /unlike/ mtl, a 'Sem' monad may have -- an arbitrary number of the same effect. -- -- For example, we can write a 'Sem' program which can output either -- 'Int's or 'Bool's: -- -- @ -- foo :: ( 'Member' ('Polysemy.Output.Output' Int) r -- , 'Member' ('Polysemy.Output.Output' Bool) r -- ) -- => 'Sem' r () -- foo = do -- 'Polysemy.Output.output' @Int 5 -- 'Polysemy.Output.output' True -- @ -- -- Notice that we must use @-XTypeApplications@ to specify that we'd like to -- use the ('Polysemy.Output.Output' 'Int') effect. -- -- @since 0.1.2.0 newtype Sem r a = Sem { runSem :: ∀ m . Monad m => (∀ x. Union r (Sem r) x -> m x) -> m a } ------------------------------------------------------------------------------ -- | Due to a quirk of the GHC plugin interface, it's only easy to find -- transitive dependencies if they define an orphan instance. This orphan -- instance allows us to find "Polysemy.Internal" in the polysemy-plugin. instance PluginLookup Plugin ------------------------------------------------------------------------------ -- | Makes constraints of functions that use multiple effects shorter by -- translating single list of effects into multiple 'Member' constraints: -- -- @ -- foo :: 'Members' \'[ 'Polysemy.Output.Output' Int -- , 'Polysemy.Output.Output' Bool -- , 'Polysemy.State' String -- ] r -- => 'Sem' r () -- @ -- -- translates into: -- -- @ -- foo :: ( 'Member' ('Polysemy.Output.Output' Int) r -- , 'Member' ('Polysemy.Output.Output' Bool) r -- , 'Member' ('Polysemy.State' String) r -- ) -- => 'Sem' r () -- @ -- -- @since 0.1.2.0 type family Members es r :: Constraint where Members '[] r = () Members (e ': es) r = (Member e r, Members es r) ------------------------------------------------------------------------------ -- | Like 'runSem' but flipped for better ergonomics sometimes. usingSem :: Monad m => (∀ x. Union r (Sem r) x -> m x) -> Sem r a -> m a usingSem k m = runSem m k {-# INLINE usingSem #-} instance Functor (Sem f) where fmap f (Sem m) = Sem $ \k -> fmap f $ m k {-# INLINE fmap #-} instance Applicative (Sem f) where pure a = Sem $ const $ pure a {-# INLINE pure #-} Sem f <*> Sem a = Sem $ \k -> f k <*> a k {-# INLINE (<*>) #-} instance Monad (Sem f) where return = pure {-# INLINE return #-} Sem ma >>= f = Sem $ \k -> do z <- ma k runSem (f z) k {-# INLINE (>>=) #-} instance (Member NonDet r) => Alternative (Sem r) where empty = send Empty {-# INLINE empty #-} a <|> b = send (Choose a b) {-# INLINE (<|>) #-} -- | @since 0.2.1.0 instance (Member NonDet r) => MonadPlus (Sem r) where mzero = empty mplus = (<|>) -- | @since 1.1.0.0 instance (Member Fail r) => MonadFail (Sem r) where fail = send . Fail {-# INLINE fail #-} ------------------------------------------------------------------------------ -- | This instance will only lift 'IO' actions. If you want to lift into some -- other 'MonadIO' type, use this instance, and handle it via the -- 'Polysemy.IO.embedToMonadIO' interpretation. instance (Member (Embed IO) r) => MonadIO (Sem r) where liftIO = embed {-# INLINE liftIO #-} instance Member Fixpoint r => MonadFix (Sem r) where mfix f = send $ Fixpoint f {-# INLINE mfix #-} liftSem :: Union r (Sem r) a -> Sem r a liftSem u = Sem $ \k -> k u {-# INLINE liftSem #-} hoistSem :: (∀ x. Union r (Sem r) x -> Union r' (Sem r') x) -> Sem r a -> Sem r' a hoistSem nat (Sem m) = Sem $ \k -> m $ \u -> k $ nat u {-# INLINE hoistSem #-} ------------------------------------------------------------------------------ -- | Introduce an effect into 'Sem'. Analogous to -- 'Control.Monad.Class.Trans.lift' in the mtl ecosystem raise :: ∀ e r a. Sem r a -> Sem (e ': r) a raise = hoistSem $ hoist raise . weaken {-# INLINE raise #-} ------------------------------------------------------------------------------ -- | Like 'raise', but introduces a new effect underneath the head of the -- list. -- -- 'raiseUnder' can be used in order to turn transformative interpreters -- into reinterpreters. This is especially useful if you're writing an interpreter -- which introduces an intermediary effect, and then want to use an existing -- interpreter on that effect. -- -- For example, given: -- -- @ -- fooToBar :: 'Member' Bar r => 'Sem' (Foo ': r) a -> 'Sem' r a -- runBar :: 'Sem' (Bar ': r) a -> 'Sem' r a -- @ -- -- You can write: -- -- @ -- runFoo :: 'Sem' (Foo ': r) a -> 'Sem' r a -- runFoo = -- runBar -- Consume Bar -- . fooToBar -- Interpret Foo in terms of the new Bar -- . 'raiseUnder' -- Introduces Bar under Foo -- @ -- -- @since 1.2.0.0 raiseUnder :: ∀ e2 e1 r a. Sem (e1 ': r) a -> Sem (e1 ': e2 ': r) a raiseUnder = hoistSem $ hoist raiseUnder . weakenUnder where weakenUnder :: ∀ m x. Union (e1 ': r) m x -> Union (e1 ': e2 ': r) m x weakenUnder (Union Here a) = Union Here a weakenUnder (Union (There n) a) = Union (There (There n)) a {-# INLINE weakenUnder #-} {-# INLINE raiseUnder #-} ------------------------------------------------------------------------------ -- | Like 'raise', but introduces two new effects underneath the head of the -- list. -- -- @since 1.2.0.0 raiseUnder2 :: ∀ e2 e3 e1 r a. Sem (e1 ': r) a -> Sem (e1 ': e2 ': e3 ': r) a raiseUnder2 = hoistSem $ hoist raiseUnder2 . weakenUnder2 where weakenUnder2 :: ∀ m x. Union (e1 ': r) m x -> Union (e1 ': e2 ': e3 ': r) m x weakenUnder2 (Union Here a) = Union Here a weakenUnder2 (Union (There n) a) = Union (There (There (There n))) a {-# INLINE weakenUnder2 #-} {-# INLINE raiseUnder2 #-} ------------------------------------------------------------------------------ -- | Like 'raise', but introduces three new effects underneath the head of the -- list. -- -- @since 1.2.0.0 raiseUnder3 :: ∀ e2 e3 e4 e1 r a. Sem (e1 ': r) a -> Sem (e1 ': e2 ': e3 ': e4 ': r) a raiseUnder3 = hoistSem $ hoist raiseUnder3 . weakenUnder3 where weakenUnder3 :: ∀ m x. Union (e1 ': r) m x -> Union (e1 ': e2 ': e3 ': e4 ': r) m x weakenUnder3 (Union Here a) = Union Here a weakenUnder3 (Union (There n) a) = Union (There (There (There (There n)))) a {-# INLINE weakenUnder3 #-} {-# INLINE raiseUnder3 #-} ------------------------------------------------------------------------------ -- | Interprets an effect in terms of another identical effect. -- -- This is useful for defining interpreters that use 'Polysemy.reinterpretH' -- without immediately consuming the newly introduced effect. -- Using such an interpreter recursively may result in duplicate effects, -- which may then be eliminated using 'subsume'. -- -- @since 1.2.0.0 subsume :: Member e r => Sem (e ': r) a -> Sem r a subsume = subsumeUsing membership {-# INLINE subsume #-} ------------------------------------------------------------------------------ -- | Interprets an effect in terms of another identical effect, given an -- explicit proof that the effect exists in @r@. -- -- This is useful in conjunction with 'Polysemy.Membership.tryMembership' -- in order to conditionally make use of effects. For example: -- -- @ -- tryListen :: 'Polysemy.Membership.KnownRow' r => 'Sem' r a -> Maybe ('Sem' r ([Int], a)) -- tryListen m = case 'Polysemy.Membership.tryMembership' @('Polysemy.Writer.Writer' [Int]) of -- Just pr -> Just $ 'subsumeUsing' pr ('Polysemy.Writer.listen' ('raise' m)) -- _ -> Nothing -- @ -- -- @since 1.3.0.0 subsumeUsing :: forall e r a. ElemOf e r -> Sem (e ': r) a -> Sem r a subsumeUsing pr = let go :: forall x. Sem (e ': r) x -> Sem r x go = hoistSem $ \u -> hoist go $ case decomp u of Right w -> Union pr w Left g -> g {-# INLINE go #-} in go {-# INLINE subsumeUsing #-} ------------------------------------------------------------------------------ -- | Embed an effect into a 'Sem'. This is used primarily via -- 'Polysemy.makeSem' to implement smart constructors. send :: Member e r => e (Sem r) a -> Sem r a send = liftSem . inj {-# INLINE[3] send #-} ------------------------------------------------------------------------------ -- | Embed an effect into a 'Sem', given an explicit proof -- that the effect exists in @r@. -- -- This is useful in conjunction with 'Polysemy.Membership.tryMembership', -- in order to conditionally make use of effects. sendUsing :: ElemOf e r -> e (Sem r) a -> Sem r a sendUsing pr = liftSem . injUsing pr {-# INLINE[3] sendUsing #-} ------------------------------------------------------------------------------ -- | Embed a monadic action @m@ in 'Sem'. -- -- @since 1.0.0.0 embed :: Member (Embed m) r => m a -> Sem r a embed = send . Embed {-# INLINE embed #-} ------------------------------------------------------------------------------ -- | Run a 'Sem' containing no effects as a pure value. run :: Sem '[] a -> a run (Sem m) = runIdentity $ m absurdU {-# INLINE run #-} ------------------------------------------------------------------------------ -- | Lower a 'Sem' containing only a single lifted 'Monad' into that -- monad. runM :: Monad m => Sem '[Embed m] a -> m a runM (Sem m) = m $ \z -> case extract z of Weaving e s _ f _ -> do a <- unEmbed e pure $ f $ a <$ s {-# INLINE runM #-} ------------------------------------------------------------------------------ -- | Type synonym for interpreters that consume an effect without changing the -- return value. Offered for user convenience. -- -- @r@ Is kept polymorphic so it's possible to place constraints upon it: -- -- @ -- teletypeToIO :: 'Member' (Embed IO) r -- => 'InterpreterFor' Teletype r -- @ type InterpreterFor e r = forall a. Sem (e ': r) a -> Sem r a ------------------------------------------------------------------------------ -- | Some interpreters need to be able to lower down to the base monad (often -- 'IO') in order to function properly --- some good examples of this are -- 'Polysemy.Error.lowerError' and 'Polysemy.Resource.lowerResource'. -- -- However, these interpreters don't compose particularly nicely; for example, -- to run 'Polysemy.Resource.lowerResource', you must write: -- -- @ -- runM . lowerError runM -- @ -- -- Notice that 'runM' is duplicated in two places here. The situation gets -- exponentially worse the more intepreters you have that need to run in this -- pattern. -- -- Instead, '.@' performs the composition we'd like. The above can be written as -- -- @ -- (runM .@ lowerError) -- @ -- -- The parentheses here are important; without them you'll run into operator -- precedence errors. -- -- __Warning:__ This combinator will __duplicate work__ that is intended to be -- just for initialization. This can result in rather surprising behavior. For -- a version of '.@' that won't duplicate work, see the @.\@!@ operator in -- <http://hackage.haskell.org/package/polysemy-zoo/docs/Polysemy-IdempotentLowering.html polysemy-zoo>. -- -- Interpreters using 'Polysemy.Final' may be composed normally, and -- avoid the work duplication issue. For that reason, you're encouraged to use -- @-'Polysemy.Final'@ interpreters instead of @lower-@ interpreters whenever -- possible. (.@) :: Monad m => (∀ x. Sem r x -> m x) -- ^ The lowering function, likely 'runM'. -> (∀ y. (∀ x. Sem r x -> m x) -> Sem (e ': r) y -> Sem r y) -> Sem (e ': r) z -> m z f .@ g = f . g f infixl 8 .@ ------------------------------------------------------------------------------ -- | Like '.@', but for interpreters which change the resulting type --- eg. -- 'Polysemy.Error.lowerError'. (.@@) :: Monad m => (∀ x. Sem r x -> m x) -- ^ The lowering function, likely 'runM'. -> (∀ y. (∀ x. Sem r x -> m x) -> Sem (e ': r) y -> Sem r (f y)) -> Sem (e ': r) z -> m (f z) f .@@ g = f . g f infixl 8 .@@