planet-mitchell-0.1.0: Planet Mitchell

Safe HaskellSafe
LanguageHaskell2010

Traversable

Contents

Synopsis

Traversable

class (Functor t, Foldable t) => Traversable (t :: * -> *) where #

Functors representing data structures that can be traversed from left to right.

A definition of traverse must satisfy the following laws:

naturality
t . traverse f = traverse (t . f) for every applicative transformation t
identity
traverse Identity = Identity
composition
traverse (Compose . fmap g . f) = Compose . fmap (traverse g) . traverse f

A definition of sequenceA must satisfy the following laws:

naturality
t . sequenceA = sequenceA . fmap t for every applicative transformation t
identity
sequenceA . fmap Identity = Identity
composition
sequenceA . fmap Compose = Compose . fmap sequenceA . sequenceA

where an applicative transformation is a function

t :: (Applicative f, Applicative g) => f a -> g a

preserving the Applicative operations, i.e.

and the identity functor Identity and composition of functors Compose are defined as

  newtype Identity a = Identity a

  instance Functor Identity where
    fmap f (Identity x) = Identity (f x)

  instance Applicative Identity where
    pure x = Identity x
    Identity f <*> Identity x = Identity (f x)

  newtype Compose f g a = Compose (f (g a))

  instance (Functor f, Functor g) => Functor (Compose f g) where
    fmap f (Compose x) = Compose (fmap (fmap f) x)

  instance (Applicative f, Applicative g) => Applicative (Compose f g) where
    pure x = Compose (pure (pure x))
    Compose f <*> Compose x = Compose ((<*>) <$> f <*> x)

(The naturality law is implied by parametricity.)

Instances are similar to Functor, e.g. given a data type

data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)

a suitable instance would be

instance Traversable Tree where
   traverse f Empty = pure Empty
   traverse f (Leaf x) = Leaf <$> f x
   traverse f (Node l k r) = Node <$> traverse f l <*> f k <*> traverse f r

This is suitable even for abstract types, as the laws for <*> imply a form of associativity.

The superclass instances should satisfy the following:

Minimal complete definition

traverse | sequenceA

Methods

traverse :: Applicative f => (a -> f b) -> t a -> f (t b) #

Map each element of a structure to an action, evaluate these actions from left to right, and collect the results. For a version that ignores the results see traverse_.

sequenceA :: Applicative f => t (f a) -> f (t a) #

Evaluate each action in the structure from left to right, and and collect the results. For a version that ignores the results see sequenceA_.

Instances
Traversable []

Since: base-2.1

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> [a] -> f [b] #

sequenceA :: Applicative f => [f a] -> f [a] #

mapM :: Monad m => (a -> m b) -> [a] -> m [b] #

sequence :: Monad m => [m a] -> m [a] #

Traversable Maybe

Since: base-2.1

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Maybe a -> f (Maybe b) #

sequenceA :: Applicative f => Maybe (f a) -> f (Maybe a) #

mapM :: Monad m => (a -> m b) -> Maybe a -> m (Maybe b) #

sequence :: Monad m => Maybe (m a) -> m (Maybe a) #

Traversable Par1 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Par1 a -> f (Par1 b) #

sequenceA :: Applicative f => Par1 (f a) -> f (Par1 a) #

mapM :: Monad m => (a -> m b) -> Par1 a -> m (Par1 b) #

sequence :: Monad m => Par1 (m a) -> m (Par1 a) #

Traversable IResult 
Instance details

Defined in Data.Aeson.Types.Internal

Methods

traverse :: Applicative f => (a -> f b) -> IResult a -> f (IResult b) #

sequenceA :: Applicative f => IResult (f a) -> f (IResult a) #

mapM :: Monad m => (a -> m b) -> IResult a -> m (IResult b) #

sequence :: Monad m => IResult (m a) -> m (IResult a) #

Traversable Result 
Instance details

Defined in Data.Aeson.Types.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Result a -> f (Result b) #

sequenceA :: Applicative f => Result (f a) -> f (Result a) #

mapM :: Monad m => (a -> m b) -> Result a -> m (Result b) #

sequence :: Monad m => Result (m a) -> m (Result a) #

Traversable Approximate 
Instance details

Defined in Data.Approximate.Type

Methods

traverse :: Applicative f => (a -> f b) -> Approximate a -> f (Approximate b) #

sequenceA :: Applicative f => Approximate (f a) -> f (Approximate a) #

mapM :: Monad m => (a -> m b) -> Approximate a -> m (Approximate b) #

sequence :: Monad m => Approximate (m a) -> m (Approximate a) #

Traversable Complex 
Instance details

Defined in Data.Complex

Methods

traverse :: Applicative f => (a -> f b) -> Complex a -> f (Complex b) #

sequenceA :: Applicative f => Complex (f a) -> f (Complex a) #

mapM :: Monad m => (a -> m b) -> Complex a -> m (Complex b) #

sequence :: Monad m => Complex (m a) -> m (Complex a) #

Traversable Min

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

traverse :: Applicative f => (a -> f b) -> Min a -> f (Min b) #

sequenceA :: Applicative f => Min (f a) -> f (Min a) #

mapM :: Monad m => (a -> m b) -> Min a -> m (Min b) #

sequence :: Monad m => Min (m a) -> m (Min a) #

Traversable Max

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

traverse :: Applicative f => (a -> f b) -> Max a -> f (Max b) #

sequenceA :: Applicative f => Max (f a) -> f (Max a) #

mapM :: Monad m => (a -> m b) -> Max a -> m (Max b) #

sequence :: Monad m => Max (m a) -> m (Max a) #

Traversable First

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

traverse :: Applicative f => (a -> f b) -> First a -> f (First b) #

sequenceA :: Applicative f => First (f a) -> f (First a) #

mapM :: Monad m => (a -> m b) -> First a -> m (First b) #

sequence :: Monad m => First (m a) -> m (First a) #

Traversable Last

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

traverse :: Applicative f => (a -> f b) -> Last a -> f (Last b) #

sequenceA :: Applicative f => Last (f a) -> f (Last a) #

mapM :: Monad m => (a -> m b) -> Last a -> m (Last b) #

sequence :: Monad m => Last (m a) -> m (Last a) #

Traversable Option

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

traverse :: Applicative f => (a -> f b) -> Option a -> f (Option b) #

sequenceA :: Applicative f => Option (f a) -> f (Option a) #

mapM :: Monad m => (a -> m b) -> Option a -> m (Option b) #

sequence :: Monad m => Option (m a) -> m (Option a) #

Traversable ZipList

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> ZipList a -> f (ZipList b) #

sequenceA :: Applicative f => ZipList (f a) -> f (ZipList a) #

mapM :: Monad m => (a -> m b) -> ZipList a -> m (ZipList b) #

sequence :: Monad m => ZipList (m a) -> m (ZipList a) #

Traversable Identity 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Identity a -> f (Identity b) #

sequenceA :: Applicative f => Identity (f a) -> f (Identity a) #

mapM :: Monad m => (a -> m b) -> Identity a -> m (Identity b) #

sequence :: Monad m => Identity (m a) -> m (Identity a) #

Traversable First

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> First a -> f (First b) #

sequenceA :: Applicative f => First (f a) -> f (First a) #

mapM :: Monad m => (a -> m b) -> First a -> m (First b) #

sequence :: Monad m => First (m a) -> m (First a) #

Traversable Last

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Last a -> f (Last b) #

sequenceA :: Applicative f => Last (f a) -> f (Last a) #

mapM :: Monad m => (a -> m b) -> Last a -> m (Last b) #

sequence :: Monad m => Last (m a) -> m (Last a) #

Traversable Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Dual a -> f (Dual b) #

sequenceA :: Applicative f => Dual (f a) -> f (Dual a) #

mapM :: Monad m => (a -> m b) -> Dual a -> m (Dual b) #

sequence :: Monad m => Dual (m a) -> m (Dual a) #

Traversable Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Sum a -> f (Sum b) #

sequenceA :: Applicative f => Sum (f a) -> f (Sum a) #

mapM :: Monad m => (a -> m b) -> Sum a -> m (Sum b) #

sequence :: Monad m => Sum (m a) -> m (Sum a) #

Traversable Product

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Product a -> f (Product b) #

sequenceA :: Applicative f => Product (f a) -> f (Product a) #

mapM :: Monad m => (a -> m b) -> Product a -> m (Product b) #

sequence :: Monad m => Product (m a) -> m (Product a) #

Traversable NonEmpty

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> NonEmpty a -> f (NonEmpty b) #

sequenceA :: Applicative f => NonEmpty (f a) -> f (NonEmpty a) #

mapM :: Monad m => (a -> m b) -> NonEmpty a -> m (NonEmpty b) #

sequence :: Monad m => NonEmpty (m a) -> m (NonEmpty a) #

Traversable IntMap 
Instance details

Defined in Data.IntMap.Internal

Methods

traverse :: Applicative f => (a -> f b) -> IntMap a -> f (IntMap b) #

sequenceA :: Applicative f => IntMap (f a) -> f (IntMap a) #

mapM :: Monad m => (a -> m b) -> IntMap a -> m (IntMap b) #

sequence :: Monad m => IntMap (m a) -> m (IntMap a) #

Traversable SCC

Since: containers-0.5.9

Instance details

Defined in Data.Graph

Methods

traverse :: Applicative f => (a -> f b) -> SCC a -> f (SCC b) #

sequenceA :: Applicative f => SCC (f a) -> f (SCC a) #

mapM :: Monad m => (a -> m b) -> SCC a -> m (SCC b) #

sequence :: Monad m => SCC (m a) -> m (SCC a) #

Traversable Tree 
Instance details

Defined in Data.Tree

Methods

traverse :: Applicative f => (a -> f b) -> Tree a -> f (Tree b) #

sequenceA :: Applicative f => Tree (f a) -> f (Tree a) #

mapM :: Monad m => (a -> m b) -> Tree a -> m (Tree b) #

sequence :: Monad m => Tree (m a) -> m (Tree a) #

Traversable Seq 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Seq a -> f (Seq b) #

sequenceA :: Applicative f => Seq (f a) -> f (Seq a) #

mapM :: Monad m => (a -> m b) -> Seq a -> m (Seq b) #

sequence :: Monad m => Seq (m a) -> m (Seq a) #

Traversable FingerTree 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> FingerTree a -> f (FingerTree b) #

sequenceA :: Applicative f => FingerTree (f a) -> f (FingerTree a) #

mapM :: Monad m => (a -> m b) -> FingerTree a -> m (FingerTree b) #

sequence :: Monad m => FingerTree (m a) -> m (FingerTree a) #

Traversable Digit 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Digit a -> f (Digit b) #

sequenceA :: Applicative f => Digit (f a) -> f (Digit a) #

mapM :: Monad m => (a -> m b) -> Digit a -> m (Digit b) #

sequence :: Monad m => Digit (m a) -> m (Digit a) #

Traversable Node 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Node a -> f (Node b) #

sequenceA :: Applicative f => Node (f a) -> f (Node a) #

mapM :: Monad m => (a -> m b) -> Node a -> m (Node b) #

sequence :: Monad m => Node (m a) -> m (Node a) #

Traversable Elem 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Elem a -> f (Elem b) #

sequenceA :: Applicative f => Elem (f a) -> f (Elem a) #

mapM :: Monad m => (a -> m b) -> Elem a -> m (Elem b) #

sequence :: Monad m => Elem (m a) -> m (Elem a) #

Traversable ViewL 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> ViewL a -> f (ViewL b) #

sequenceA :: Applicative f => ViewL (f a) -> f (ViewL a) #

mapM :: Monad m => (a -> m b) -> ViewL a -> m (ViewL b) #

sequence :: Monad m => ViewL (m a) -> m (ViewL a) #

Traversable ViewR 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> ViewR a -> f (ViewR b) #

sequenceA :: Applicative f => ViewR (f a) -> f (ViewR a) #

mapM :: Monad m => (a -> m b) -> ViewR a -> m (ViewR b) #

sequence :: Monad m => ViewR (m a) -> m (ViewR a) #

Traversable ModuleName 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> ModuleName a -> f (ModuleName b) #

sequenceA :: Applicative f => ModuleName (f a) -> f (ModuleName a) #

mapM :: Monad m => (a -> m b) -> ModuleName a -> m (ModuleName b) #

sequence :: Monad m => ModuleName (m a) -> m (ModuleName a) #

Traversable SpecialCon 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> SpecialCon a -> f (SpecialCon b) #

sequenceA :: Applicative f => SpecialCon (f a) -> f (SpecialCon a) #

mapM :: Monad m => (a -> m b) -> SpecialCon a -> m (SpecialCon b) #

sequence :: Monad m => SpecialCon (m a) -> m (SpecialCon a) #

Traversable QName 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> QName a -> f (QName b) #

sequenceA :: Applicative f => QName (f a) -> f (QName a) #

mapM :: Monad m => (a -> m b) -> QName a -> m (QName b) #

sequence :: Monad m => QName (m a) -> m (QName a) #

Traversable Name 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> Name a -> f (Name b) #

sequenceA :: Applicative f => Name (f a) -> f (Name a) #

mapM :: Monad m => (a -> m b) -> Name a -> m (Name b) #

sequence :: Monad m => Name (m a) -> m (Name a) #

Traversable IPName 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> IPName a -> f (IPName b) #

sequenceA :: Applicative f => IPName (f a) -> f (IPName a) #

mapM :: Monad m => (a -> m b) -> IPName a -> m (IPName b) #

sequence :: Monad m => IPName (m a) -> m (IPName a) #

Traversable QOp 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> QOp a -> f (QOp b) #

sequenceA :: Applicative f => QOp (f a) -> f (QOp a) #

mapM :: Monad m => (a -> m b) -> QOp a -> m (QOp b) #

sequence :: Monad m => QOp (m a) -> m (QOp a) #

Traversable Op 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> Op a -> f (Op b) #

sequenceA :: Applicative f => Op (f a) -> f (Op a) #

mapM :: Monad m => (a -> m b) -> Op a -> m (Op b) #

sequence :: Monad m => Op (m a) -> m (Op a) #

Traversable CName 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> CName a -> f (CName b) #

sequenceA :: Applicative f => CName (f a) -> f (CName a) #

mapM :: Monad m => (a -> m b) -> CName a -> m (CName b) #

sequence :: Monad m => CName (m a) -> m (CName a) #

Traversable Module 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> Module a -> f (Module b) #

sequenceA :: Applicative f => Module (f a) -> f (Module a) #

mapM :: Monad m => (a -> m b) -> Module a -> m (Module b) #

sequence :: Monad m => Module (m a) -> m (Module a) #

Traversable ModuleHead 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> ModuleHead a -> f (ModuleHead b) #

sequenceA :: Applicative f => ModuleHead (f a) -> f (ModuleHead a) #

mapM :: Monad m => (a -> m b) -> ModuleHead a -> m (ModuleHead b) #

sequence :: Monad m => ModuleHead (m a) -> m (ModuleHead a) #

Traversable ExportSpecList 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> ExportSpecList a -> f (ExportSpecList b) #

sequenceA :: Applicative f => ExportSpecList (f a) -> f (ExportSpecList a) #

mapM :: Monad m => (a -> m b) -> ExportSpecList a -> m (ExportSpecList b) #

sequence :: Monad m => ExportSpecList (m a) -> m (ExportSpecList a) #

Traversable ExportSpec 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> ExportSpec a -> f (ExportSpec b) #

sequenceA :: Applicative f => ExportSpec (f a) -> f (ExportSpec a) #

mapM :: Monad m => (a -> m b) -> ExportSpec a -> m (ExportSpec b) #

sequence :: Monad m => ExportSpec (m a) -> m (ExportSpec a) #

Traversable EWildcard 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> EWildcard a -> f (EWildcard b) #

sequenceA :: Applicative f => EWildcard (f a) -> f (EWildcard a) #

mapM :: Monad m => (a -> m b) -> EWildcard a -> m (EWildcard b) #

sequence :: Monad m => EWildcard (m a) -> m (EWildcard a) #

Traversable Namespace 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> Namespace a -> f (Namespace b) #

sequenceA :: Applicative f => Namespace (f a) -> f (Namespace a) #

mapM :: Monad m => (a -> m b) -> Namespace a -> m (Namespace b) #

sequence :: Monad m => Namespace (m a) -> m (Namespace a) #

Traversable ImportDecl 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> ImportDecl a -> f (ImportDecl b) #

sequenceA :: Applicative f => ImportDecl (f a) -> f (ImportDecl a) #

mapM :: Monad m => (a -> m b) -> ImportDecl a -> m (ImportDecl b) #

sequence :: Monad m => ImportDecl (m a) -> m (ImportDecl a) #

Traversable ImportSpecList 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> ImportSpecList a -> f (ImportSpecList b) #

sequenceA :: Applicative f => ImportSpecList (f a) -> f (ImportSpecList a) #

mapM :: Monad m => (a -> m b) -> ImportSpecList a -> m (ImportSpecList b) #

sequence :: Monad m => ImportSpecList (m a) -> m (ImportSpecList a) #

Traversable ImportSpec 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> ImportSpec a -> f (ImportSpec b) #

sequenceA :: Applicative f => ImportSpec (f a) -> f (ImportSpec a) #

mapM :: Monad m => (a -> m b) -> ImportSpec a -> m (ImportSpec b) #

sequence :: Monad m => ImportSpec (m a) -> m (ImportSpec a) #

Traversable Assoc 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> Assoc a -> f (Assoc b) #

sequenceA :: Applicative f => Assoc (f a) -> f (Assoc a) #

mapM :: Monad m => (a -> m b) -> Assoc a -> m (Assoc b) #

sequence :: Monad m => Assoc (m a) -> m (Assoc a) #

Traversable Decl 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> Decl a -> f (Decl b) #

sequenceA :: Applicative f => Decl (f a) -> f (Decl a) #

mapM :: Monad m => (a -> m b) -> Decl a -> m (Decl b) #

sequence :: Monad m => Decl (m a) -> m (Decl a) #

Traversable PatternSynDirection 
Instance details

Defined in Language.Haskell.Exts.Syntax

Traversable TypeEqn 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> TypeEqn a -> f (TypeEqn b) #

sequenceA :: Applicative f => TypeEqn (f a) -> f (TypeEqn a) #

mapM :: Monad m => (a -> m b) -> TypeEqn a -> m (TypeEqn b) #

sequence :: Monad m => TypeEqn (m a) -> m (TypeEqn a) #

Traversable Annotation 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> Annotation a -> f (Annotation b) #

sequenceA :: Applicative f => Annotation (f a) -> f (Annotation a) #

mapM :: Monad m => (a -> m b) -> Annotation a -> m (Annotation b) #

sequence :: Monad m => Annotation (m a) -> m (Annotation a) #

Traversable BooleanFormula 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> BooleanFormula a -> f (BooleanFormula b) #

sequenceA :: Applicative f => BooleanFormula (f a) -> f (BooleanFormula a) #

mapM :: Monad m => (a -> m b) -> BooleanFormula a -> m (BooleanFormula b) #

sequence :: Monad m => BooleanFormula (m a) -> m (BooleanFormula a) #

Traversable Role 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> Role a -> f (Role b) #

sequenceA :: Applicative f => Role (f a) -> f (Role a) #

mapM :: Monad m => (a -> m b) -> Role a -> m (Role b) #

sequence :: Monad m => Role (m a) -> m (Role a) #

Traversable DataOrNew 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> DataOrNew a -> f (DataOrNew b) #

sequenceA :: Applicative f => DataOrNew (f a) -> f (DataOrNew a) #

mapM :: Monad m => (a -> m b) -> DataOrNew a -> m (DataOrNew b) #

sequence :: Monad m => DataOrNew (m a) -> m (DataOrNew a) #

Traversable InjectivityInfo 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> InjectivityInfo a -> f (InjectivityInfo b) #

sequenceA :: Applicative f => InjectivityInfo (f a) -> f (InjectivityInfo a) #

mapM :: Monad m => (a -> m b) -> InjectivityInfo a -> m (InjectivityInfo b) #

sequence :: Monad m => InjectivityInfo (m a) -> m (InjectivityInfo a) #

Traversable ResultSig 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> ResultSig a -> f (ResultSig b) #

sequenceA :: Applicative f => ResultSig (f a) -> f (ResultSig a) #

mapM :: Monad m => (a -> m b) -> ResultSig a -> m (ResultSig b) #

sequence :: Monad m => ResultSig (m a) -> m (ResultSig a) #

Traversable DeclHead 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> DeclHead a -> f (DeclHead b) #

sequenceA :: Applicative f => DeclHead (f a) -> f (DeclHead a) #

mapM :: Monad m => (a -> m b) -> DeclHead a -> m (DeclHead b) #

sequence :: Monad m => DeclHead (m a) -> m (DeclHead a) #

Traversable InstRule 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> InstRule a -> f (InstRule b) #

sequenceA :: Applicative f => InstRule (f a) -> f (InstRule a) #

mapM :: Monad m => (a -> m b) -> InstRule a -> m (InstRule b) #

sequence :: Monad m => InstRule (m a) -> m (InstRule a) #

Traversable InstHead 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> InstHead a -> f (InstHead b) #

sequenceA :: Applicative f => InstHead (f a) -> f (InstHead a) #

mapM :: Monad m => (a -> m b) -> InstHead a -> m (InstHead b) #

sequence :: Monad m => InstHead (m a) -> m (InstHead a) #

Traversable Deriving 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> Deriving a -> f (Deriving b) #

sequenceA :: Applicative f => Deriving (f a) -> f (Deriving a) #

mapM :: Monad m => (a -> m b) -> Deriving a -> m (Deriving b) #

sequence :: Monad m => Deriving (m a) -> m (Deriving a) #

Traversable DerivStrategy 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> DerivStrategy a -> f (DerivStrategy b) #

sequenceA :: Applicative f => DerivStrategy (f a) -> f (DerivStrategy a) #

mapM :: Monad m => (a -> m b) -> DerivStrategy a -> m (DerivStrategy b) #

sequence :: Monad m => DerivStrategy (m a) -> m (DerivStrategy a) #

Traversable Binds 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> Binds a -> f (Binds b) #

sequenceA :: Applicative f => Binds (f a) -> f (Binds a) #

mapM :: Monad m => (a -> m b) -> Binds a -> m (Binds b) #

sequence :: Monad m => Binds (m a) -> m (Binds a) #

Traversable IPBind 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> IPBind a -> f (IPBind b) #

sequenceA :: Applicative f => IPBind (f a) -> f (IPBind a) #

mapM :: Monad m => (a -> m b) -> IPBind a -> m (IPBind b) #

sequence :: Monad m => IPBind (m a) -> m (IPBind a) #

Traversable Match 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> Match a -> f (Match b) #

sequenceA :: Applicative f => Match (f a) -> f (Match a) #

mapM :: Monad m => (a -> m b) -> Match a -> m (Match b) #

sequence :: Monad m => Match (m a) -> m (Match a) #

Traversable QualConDecl 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> QualConDecl a -> f (QualConDecl b) #

sequenceA :: Applicative f => QualConDecl (f a) -> f (QualConDecl a) #

mapM :: Monad m => (a -> m b) -> QualConDecl a -> m (QualConDecl b) #

sequence :: Monad m => QualConDecl (m a) -> m (QualConDecl a) #

Traversable ConDecl 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> ConDecl a -> f (ConDecl b) #

sequenceA :: Applicative f => ConDecl (f a) -> f (ConDecl a) #

mapM :: Monad m => (a -> m b) -> ConDecl a -> m (ConDecl b) #

sequence :: Monad m => ConDecl (m a) -> m (ConDecl a) #

Traversable FieldDecl 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> FieldDecl a -> f (FieldDecl b) #

sequenceA :: Applicative f => FieldDecl (f a) -> f (FieldDecl a) #

mapM :: Monad m => (a -> m b) -> FieldDecl a -> m (FieldDecl b) #

sequence :: Monad m => FieldDecl (m a) -> m (FieldDecl a) #

Traversable GadtDecl 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> GadtDecl a -> f (GadtDecl b) #

sequenceA :: Applicative f => GadtDecl (f a) -> f (GadtDecl a) #

mapM :: Monad m => (a -> m b) -> GadtDecl a -> m (GadtDecl b) #

sequence :: Monad m => GadtDecl (m a) -> m (GadtDecl a) #

Traversable ClassDecl 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> ClassDecl a -> f (ClassDecl b) #

sequenceA :: Applicative f => ClassDecl (f a) -> f (ClassDecl a) #

mapM :: Monad m => (a -> m b) -> ClassDecl a -> m (ClassDecl b) #

sequence :: Monad m => ClassDecl (m a) -> m (ClassDecl a) #

Traversable InstDecl 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> InstDecl a -> f (InstDecl b) #

sequenceA :: Applicative f => InstDecl (f a) -> f (InstDecl a) #

mapM :: Monad m => (a -> m b) -> InstDecl a -> m (InstDecl b) #

sequence :: Monad m => InstDecl (m a) -> m (InstDecl a) #

Traversable BangType 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> BangType a -> f (BangType b) #

sequenceA :: Applicative f => BangType (f a) -> f (BangType a) #

mapM :: Monad m => (a -> m b) -> BangType a -> m (BangType b) #

sequence :: Monad m => BangType (m a) -> m (BangType a) #

Traversable Unpackedness 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> Unpackedness a -> f (Unpackedness b) #

sequenceA :: Applicative f => Unpackedness (f a) -> f (Unpackedness a) #

mapM :: Monad m => (a -> m b) -> Unpackedness a -> m (Unpackedness b) #

sequence :: Monad m => Unpackedness (m a) -> m (Unpackedness a) #

Traversable Rhs 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> Rhs a -> f (Rhs b) #

sequenceA :: Applicative f => Rhs (f a) -> f (Rhs a) #

mapM :: Monad m => (a -> m b) -> Rhs a -> m (Rhs b) #

sequence :: Monad m => Rhs (m a) -> m (Rhs a) #

Traversable GuardedRhs 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> GuardedRhs a -> f (GuardedRhs b) #

sequenceA :: Applicative f => GuardedRhs (f a) -> f (GuardedRhs a) #

mapM :: Monad m => (a -> m b) -> GuardedRhs a -> m (GuardedRhs b) #

sequence :: Monad m => GuardedRhs (m a) -> m (GuardedRhs a) #

Traversable Type 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> Type a -> f (Type b) #

sequenceA :: Applicative f => Type (f a) -> f (Type a) #

mapM :: Monad m => (a -> m b) -> Type a -> m (Type b) #

sequence :: Monad m => Type (m a) -> m (Type a) #

Traversable MaybePromotedName 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> MaybePromotedName a -> f (MaybePromotedName b) #

sequenceA :: Applicative f => MaybePromotedName (f a) -> f (MaybePromotedName a) #

mapM :: Monad m => (a -> m b) -> MaybePromotedName a -> m (MaybePromotedName b) #

sequence :: Monad m => MaybePromotedName (m a) -> m (MaybePromotedName a) #

Traversable Promoted 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> Promoted a -> f (Promoted b) #

sequenceA :: Applicative f => Promoted (f a) -> f (Promoted a) #

mapM :: Monad m => (a -> m b) -> Promoted a -> m (Promoted b) #

sequence :: Monad m => Promoted (m a) -> m (Promoted a) #

Traversable TyVarBind 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> TyVarBind a -> f (TyVarBind b) #

sequenceA :: Applicative f => TyVarBind (f a) -> f (TyVarBind a) #

mapM :: Monad m => (a -> m b) -> TyVarBind a -> m (TyVarBind b) #

sequence :: Monad m => TyVarBind (m a) -> m (TyVarBind a) #

Traversable Kind 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> Kind a -> f (Kind b) #

sequenceA :: Applicative f => Kind (f a) -> f (Kind a) #

mapM :: Monad m => (a -> m b) -> Kind a -> m (Kind b) #

sequence :: Monad m => Kind (m a) -> m (Kind a) #

Traversable FunDep 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> FunDep a -> f (FunDep b) #

sequenceA :: Applicative f => FunDep (f a) -> f (FunDep a) #

mapM :: Monad m => (a -> m b) -> FunDep a -> m (FunDep b) #

sequence :: Monad m => FunDep (m a) -> m (FunDep a) #

Traversable Context 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> Context a -> f (Context b) #

sequenceA :: Applicative f => Context (f a) -> f (Context a) #

mapM :: Monad m => (a -> m b) -> Context a -> m (Context b) #

sequence :: Monad m => Context (m a) -> m (Context a) #

Traversable Asst 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> Asst a -> f (Asst b) #

sequenceA :: Applicative f => Asst (f a) -> f (Asst a) #

mapM :: Monad m => (a -> m b) -> Asst a -> m (Asst b) #

sequence :: Monad m => Asst (m a) -> m (Asst a) #

Traversable Literal 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> Literal a -> f (Literal b) #

sequenceA :: Applicative f => Literal (f a) -> f (Literal a) #

mapM :: Monad m => (a -> m b) -> Literal a -> m (Literal b) #

sequence :: Monad m => Literal (m a) -> m (Literal a) #

Traversable Sign 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> Sign a -> f (Sign b) #

sequenceA :: Applicative f => Sign (f a) -> f (Sign a) #

mapM :: Monad m => (a -> m b) -> Sign a -> m (Sign b) #

sequence :: Monad m => Sign (m a) -> m (Sign a) #

Traversable Exp 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> Exp a -> f (Exp b) #

sequenceA :: Applicative f => Exp (f a) -> f (Exp a) #

mapM :: Monad m => (a -> m b) -> Exp a -> m (Exp b) #

sequence :: Monad m => Exp (m a) -> m (Exp a) #

Traversable XName 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> XName a -> f (XName b) #

sequenceA :: Applicative f => XName (f a) -> f (XName a) #

mapM :: Monad m => (a -> m b) -> XName a -> m (XName b) #

sequence :: Monad m => XName (m a) -> m (XName a) #

Traversable XAttr 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> XAttr a -> f (XAttr b) #

sequenceA :: Applicative f => XAttr (f a) -> f (XAttr a) #

mapM :: Monad m => (a -> m b) -> XAttr a -> m (XAttr b) #

sequence :: Monad m => XAttr (m a) -> m (XAttr a) #

Traversable Bracket 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> Bracket a -> f (Bracket b) #

sequenceA :: Applicative f => Bracket (f a) -> f (Bracket a) #

mapM :: Monad m => (a -> m b) -> Bracket a -> m (Bracket b) #

sequence :: Monad m => Bracket (m a) -> m (Bracket a) #

Traversable Splice 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> Splice a -> f (Splice b) #

sequenceA :: Applicative f => Splice (f a) -> f (Splice a) #

mapM :: Monad m => (a -> m b) -> Splice a -> m (Splice b) #

sequence :: Monad m => Splice (m a) -> m (Splice a) #

Traversable Safety 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> Safety a -> f (Safety b) #

sequenceA :: Applicative f => Safety (f a) -> f (Safety a) #

mapM :: Monad m => (a -> m b) -> Safety a -> m (Safety b) #

sequence :: Monad m => Safety (m a) -> m (Safety a) #

Traversable CallConv 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> CallConv a -> f (CallConv b) #

sequenceA :: Applicative f => CallConv (f a) -> f (CallConv a) #

mapM :: Monad m => (a -> m b) -> CallConv a -> m (CallConv b) #

sequence :: Monad m => CallConv (m a) -> m (CallConv a) #

Traversable ModulePragma 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> ModulePragma a -> f (ModulePragma b) #

sequenceA :: Applicative f => ModulePragma (f a) -> f (ModulePragma a) #

mapM :: Monad m => (a -> m b) -> ModulePragma a -> m (ModulePragma b) #

sequence :: Monad m => ModulePragma (m a) -> m (ModulePragma a) #

Traversable Overlap 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> Overlap a -> f (Overlap b) #

sequenceA :: Applicative f => Overlap (f a) -> f (Overlap a) #

mapM :: Monad m => (a -> m b) -> Overlap a -> m (Overlap b) #

sequence :: Monad m => Overlap (m a) -> m (Overlap a) #

Traversable Activation 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> Activation a -> f (Activation b) #

sequenceA :: Applicative f => Activation (f a) -> f (Activation a) #

mapM :: Monad m => (a -> m b) -> Activation a -> m (Activation b) #

sequence :: Monad m => Activation (m a) -> m (Activation a) #

Traversable Rule 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> Rule a -> f (Rule b) #

sequenceA :: Applicative f => Rule (f a) -> f (Rule a) #

mapM :: Monad m => (a -> m b) -> Rule a -> m (Rule b) #

sequence :: Monad m => Rule (m a) -> m (Rule a) #

Traversable RuleVar 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> RuleVar a -> f (RuleVar b) #

sequenceA :: Applicative f => RuleVar (f a) -> f (RuleVar a) #

mapM :: Monad m => (a -> m b) -> RuleVar a -> m (RuleVar b) #

sequence :: Monad m => RuleVar (m a) -> m (RuleVar a) #

Traversable WarningText 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> WarningText a -> f (WarningText b) #

sequenceA :: Applicative f => WarningText (f a) -> f (WarningText a) #

mapM :: Monad m => (a -> m b) -> WarningText a -> m (WarningText b) #

sequence :: Monad m => WarningText (m a) -> m (WarningText a) #

Traversable Pat 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> Pat a -> f (Pat b) #

sequenceA :: Applicative f => Pat (f a) -> f (Pat a) #

mapM :: Monad m => (a -> m b) -> Pat a -> m (Pat b) #

sequence :: Monad m => Pat (m a) -> m (Pat a) #

Traversable PXAttr 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> PXAttr a -> f (PXAttr b) #

sequenceA :: Applicative f => PXAttr (f a) -> f (PXAttr a) #

mapM :: Monad m => (a -> m b) -> PXAttr a -> m (PXAttr b) #

sequence :: Monad m => PXAttr (m a) -> m (PXAttr a) #

Traversable RPatOp 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> RPatOp a -> f (RPatOp b) #

sequenceA :: Applicative f => RPatOp (f a) -> f (RPatOp a) #

mapM :: Monad m => (a -> m b) -> RPatOp a -> m (RPatOp b) #

sequence :: Monad m => RPatOp (m a) -> m (RPatOp a) #

Traversable RPat 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> RPat a -> f (RPat b) #

sequenceA :: Applicative f => RPat (f a) -> f (RPat a) #

mapM :: Monad m => (a -> m b) -> RPat a -> m (RPat b) #

sequence :: Monad m => RPat (m a) -> m (RPat a) #

Traversable PatField 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> PatField a -> f (PatField b) #

sequenceA :: Applicative f => PatField (f a) -> f (PatField a) #

mapM :: Monad m => (a -> m b) -> PatField a -> m (PatField b) #

sequence :: Monad m => PatField (m a) -> m (PatField a) #

Traversable Stmt 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> Stmt a -> f (Stmt b) #

sequenceA :: Applicative f => Stmt (f a) -> f (Stmt a) #

mapM :: Monad m => (a -> m b) -> Stmt a -> m (Stmt b) #

sequence :: Monad m => Stmt (m a) -> m (Stmt a) #

Traversable QualStmt 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> QualStmt a -> f (QualStmt b) #

sequenceA :: Applicative f => QualStmt (f a) -> f (QualStmt a) #

mapM :: Monad m => (a -> m b) -> QualStmt a -> m (QualStmt b) #

sequence :: Monad m => QualStmt (m a) -> m (QualStmt a) #

Traversable FieldUpdate 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> FieldUpdate a -> f (FieldUpdate b) #

sequenceA :: Applicative f => FieldUpdate (f a) -> f (FieldUpdate a) #

mapM :: Monad m => (a -> m b) -> FieldUpdate a -> m (FieldUpdate b) #

sequence :: Monad m => FieldUpdate (m a) -> m (FieldUpdate a) #

Traversable Alt 
Instance details

Defined in Language.Haskell.Exts.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> Alt a -> f (Alt b) #

sequenceA :: Applicative f => Alt (f a) -> f (Alt a) #

mapM :: Monad m => (a -> m b) -> Alt a -> m (Alt b) #

sequence :: Monad m => Alt (m a) -> m (Alt a) #

Traversable Vector 
Instance details

Defined in Data.Vector

Methods

traverse :: Applicative f => (a -> f b) -> Vector a -> f (Vector b) #

sequenceA :: Applicative f => Vector (f a) -> f (Vector a) #

mapM :: Monad m => (a -> m b) -> Vector a -> m (Vector b) #

sequence :: Monad m => Vector (m a) -> m (Vector a) #

Traversable Log 
Instance details

Defined in Numeric.Log

Methods

traverse :: Applicative f => (a -> f b) -> Log a -> f (Log b) #

sequenceA :: Applicative f => Log (f a) -> f (Log a) #

mapM :: Monad m => (a -> m b) -> Log a -> m (Log b) #

sequence :: Monad m => Log (m a) -> m (Log a) #

Traversable SimpleDocStream

Transform a document based on its annotations, possibly leveraging Applicative effects.

Instance details

Defined in Data.Text.Prettyprint.Doc.Internal

Methods

traverse :: Applicative f => (a -> f b) -> SimpleDocStream a -> f (SimpleDocStream b) #

sequenceA :: Applicative f => SimpleDocStream (f a) -> f (SimpleDocStream a) #

mapM :: Monad m => (a -> m b) -> SimpleDocStream a -> m (SimpleDocStream b) #

sequence :: Monad m => SimpleDocStream (m a) -> m (SimpleDocStream a) #

Traversable SmallArray 
Instance details

Defined in Data.Primitive.SmallArray

Methods

traverse :: Applicative f => (a -> f b) -> SmallArray a -> f (SmallArray b) #

sequenceA :: Applicative f => SmallArray (f a) -> f (SmallArray a) #

mapM :: Monad m => (a -> m b) -> SmallArray a -> m (SmallArray b) #

sequence :: Monad m => SmallArray (m a) -> m (SmallArray a) #

Traversable Array 
Instance details

Defined in Data.Primitive.Array

Methods

traverse :: Applicative f => (a -> f b) -> Array a -> f (Array b) #

sequenceA :: Applicative f => Array (f a) -> f (Array a) #

mapM :: Monad m => (a -> m b) -> Array a -> m (Array b) #

sequence :: Monad m => Array (m a) -> m (Array a) #

Traversable Bound 
Instance details

Defined in Data.Semilattice.Bound

Methods

traverse :: Applicative f => (a -> f b) -> Bound a -> f (Bound b) #

sequenceA :: Applicative f => Bound (f a) -> f (Bound a) #

mapM :: Monad m => (a -> m b) -> Bound a -> m (Bound b) #

sequence :: Monad m => Bound (m a) -> m (Bound a) #

Traversable Order 
Instance details

Defined in Data.Semilattice.Order

Methods

traverse :: Applicative f => (a -> f b) -> Order a -> f (Order b) #

sequenceA :: Applicative f => Order (f a) -> f (Order a) #

mapM :: Monad m => (a -> m b) -> Order a -> m (Order b) #

sequence :: Monad m => Order (m a) -> m (Order a) #

Traversable Meeting 
Instance details

Defined in Data.Semilattice.Meet

Methods

traverse :: Applicative f => (a -> f b) -> Meeting a -> f (Meeting b) #

sequenceA :: Applicative f => Meeting (f a) -> f (Meeting a) #

mapM :: Monad m => (a -> m b) -> Meeting a -> m (Meeting b) #

sequence :: Monad m => Meeting (m a) -> m (Meeting a) #

Traversable GreaterThan 
Instance details

Defined in Data.Semilattice.Meet

Methods

traverse :: Applicative f => (a -> f b) -> GreaterThan a -> f (GreaterThan b) #

sequenceA :: Applicative f => GreaterThan (f a) -> f (GreaterThan a) #

mapM :: Monad m => (a -> m b) -> GreaterThan a -> m (GreaterThan b) #

sequence :: Monad m => GreaterThan (m a) -> m (GreaterThan a) #

Traversable Joining 
Instance details

Defined in Data.Semilattice.Join

Methods

traverse :: Applicative f => (a -> f b) -> Joining a -> f (Joining b) #

sequenceA :: Applicative f => Joining (f a) -> f (Joining a) #

mapM :: Monad m => (a -> m b) -> Joining a -> m (Joining b) #

sequence :: Monad m => Joining (m a) -> m (Joining a) #

Traversable LessThan 
Instance details

Defined in Data.Semilattice.Join

Methods

traverse :: Applicative f => (a -> f b) -> LessThan a -> f (LessThan b) #

sequenceA :: Applicative f => LessThan (f a) -> f (LessThan a) #

mapM :: Monad m => (a -> m b) -> LessThan a -> m (LessThan b) #

sequence :: Monad m => LessThan (m a) -> m (LessThan a) #

Traversable P 
Instance details

Defined in Data.HashMap.Strict.InsOrd

Methods

traverse :: Applicative f => (a -> f b) -> P a -> f (P b) #

sequenceA :: Applicative f => P (f a) -> f (P a) #

mapM :: Monad m => (a -> m b) -> P a -> m (P b) #

sequence :: Monad m => P (m a) -> m (P a) #

Traversable (Either a)

Since: base-4.7.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a0 -> f b) -> Either a a0 -> f (Either a b) #

sequenceA :: Applicative f => Either a (f a0) -> f (Either a a0) #

mapM :: Monad m => (a0 -> m b) -> Either a a0 -> m (Either a b) #

sequence :: Monad m => Either a (m a0) -> m (Either a a0) #

Traversable (V1 :: * -> *) 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> V1 a -> f (V1 b) #

sequenceA :: Applicative f => V1 (f a) -> f (V1 a) #

mapM :: Monad m => (a -> m b) -> V1 a -> m (V1 b) #

sequence :: Monad m => V1 (m a) -> m (V1 a) #

Traversable (U1 :: * -> *)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> U1 a -> f (U1 b) #

sequenceA :: Applicative f => U1 (f a) -> f (U1 a) #

mapM :: Monad m => (a -> m b) -> U1 a -> m (U1 b) #

sequence :: Monad m => U1 (m a) -> m (U1 a) #

Traversable ((,) a)

Since: base-4.7.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a0 -> f b) -> (a, a0) -> f (a, b) #

sequenceA :: Applicative f => (a, f a0) -> f (a, a0) #

mapM :: Monad m => (a0 -> m b) -> (a, a0) -> m (a, b) #

sequence :: Monad m => (a, m a0) -> m (a, a0) #

Traversable (HashMap k) 
Instance details

Defined in Data.HashMap.Base

Methods

traverse :: Applicative f => (a -> f b) -> HashMap k a -> f (HashMap k b) #

sequenceA :: Applicative f => HashMap k (f a) -> f (HashMap k a) #

mapM :: Monad m => (a -> m b) -> HashMap k a -> m (HashMap k b) #

sequence :: Monad m => HashMap k (m a) -> m (HashMap k a) #

Traversable (Map k) 
Instance details

Defined in Data.Map.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Map k a -> f (Map k b) #

sequenceA :: Applicative f => Map k (f a) -> f (Map k a) #

mapM :: Monad m => (a -> m b) -> Map k a -> m (Map k b) #

sequence :: Monad m => Map k (m a) -> m (Map k a) #

Ix i => Traversable (Array i)

Since: base-2.1

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Array i a -> f (Array i b) #

sequenceA :: Applicative f => Array i (f a) -> f (Array i a) #

mapM :: Monad m => (a -> m b) -> Array i a -> m (Array i b) #

sequence :: Monad m => Array i (m a) -> m (Array i a) #

Traversable (Arg a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

traverse :: Applicative f => (a0 -> f b) -> Arg a a0 -> f (Arg a b) #

sequenceA :: Applicative f => Arg a (f a0) -> f (Arg a a0) #

mapM :: Monad m => (a0 -> m b) -> Arg a a0 -> m (Arg a b) #

sequence :: Monad m => Arg a (m a0) -> m (Arg a a0) #

Traversable (Proxy :: * -> *)

Since: base-4.7.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Proxy a -> f (Proxy b) #

sequenceA :: Applicative f => Proxy (f a) -> f (Proxy a) #

mapM :: Monad m => (a -> m b) -> Proxy a -> m (Proxy b) #

sequence :: Monad m => Proxy (m a) -> m (Proxy a) #

Traversable f => Traversable (MaybeT f) 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

traverse :: Applicative f0 => (a -> f0 b) -> MaybeT f a -> f0 (MaybeT f b) #

sequenceA :: Applicative f0 => MaybeT f (f0 a) -> f0 (MaybeT f a) #

mapM :: Monad m => (a -> m b) -> MaybeT f a -> m (MaybeT f b) #

sequence :: Monad m => MaybeT f (m a) -> m (MaybeT f a) #

Traversable f => Traversable (Cofree f) 
Instance details

Defined in Control.Comonad.Cofree

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Cofree f a -> f0 (Cofree f b) #

sequenceA :: Applicative f0 => Cofree f (f0 a) -> f0 (Cofree f a) #

mapM :: Monad m => (a -> m b) -> Cofree f a -> m (Cofree f b) #

sequence :: Monad m => Cofree f (m a) -> m (Cofree f a) #

Traversable f => Traversable (Free f) 
Instance details

Defined in Control.Monad.Free

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Free f a -> f0 (Free f b) #

sequenceA :: Applicative f0 => Free f (f0 a) -> f0 (Free f a) #

mapM :: Monad m => (a -> m b) -> Free f a -> m (Free f b) #

sequence :: Monad m => Free f (m a) -> m (Free f a) #

Traversable (Entry p) 
Instance details

Defined in Data.Heap

Methods

traverse :: Applicative f => (a -> f b) -> Entry p a -> f (Entry p b) #

sequenceA :: Applicative f => Entry p (f a) -> f (Entry p a) #

mapM :: Monad m => (a -> m b) -> Entry p a -> m (Entry p b) #

sequence :: Monad m => Entry p (m a) -> m (Entry p a) #

Traversable (InsOrdHashMap k) 
Instance details

Defined in Data.HashMap.Strict.InsOrd

Methods

traverse :: Applicative f => (a -> f b) -> InsOrdHashMap k a -> f (InsOrdHashMap k b) #

sequenceA :: Applicative f => InsOrdHashMap k (f a) -> f (InsOrdHashMap k a) #

mapM :: Monad m => (a -> m b) -> InsOrdHashMap k a -> m (InsOrdHashMap k b) #

sequence :: Monad m => InsOrdHashMap k (m a) -> m (InsOrdHashMap k a) #

Traversable f => Traversable (Yoneda f) 
Instance details

Defined in Data.Functor.Yoneda

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Yoneda f a -> f0 (Yoneda f b) #

sequenceA :: Applicative f0 => Yoneda f (f0 a) -> f0 (Yoneda f a) #

mapM :: Monad m => (a -> m b) -> Yoneda f a -> m (Yoneda f b) #

sequence :: Monad m => Yoneda f (m a) -> m (Yoneda f a) #

(Monad m, Traversable m) => Traversable (ListT m) 
Instance details

Defined in List.Transformer

Methods

traverse :: Applicative f => (a -> f b) -> ListT m a -> f (ListT m b) #

sequenceA :: Applicative f => ListT m (f a) -> f (ListT m a) #

mapM :: Monad m0 => (a -> m0 b) -> ListT m a -> m0 (ListT m b) #

sequence :: Monad m0 => ListT m (m0 a) -> m0 (ListT m a) #

(Monad m, Traversable m) => Traversable (Step m) 
Instance details

Defined in List.Transformer

Methods

traverse :: Applicative f => (a -> f b) -> Step m a -> f (Step m b) #

sequenceA :: Applicative f => Step m (f a) -> f (Step m a) #

mapM :: Monad m0 => (a -> m0 b) -> Step m a -> m0 (Step m b) #

sequence :: Monad m0 => Step m (m0 a) -> m0 (Step m a) #

Traversable (LogicT Identity) 
Instance details

Defined in Control.Monad.Logic

Methods

traverse :: Applicative f => (a -> f b) -> LogicT Identity a -> f (LogicT Identity b) #

sequenceA :: Applicative f => LogicT Identity (f a) -> f (LogicT Identity a) #

mapM :: Monad m => (a -> m b) -> LogicT Identity a -> m (LogicT Identity b) #

sequence :: Monad m => LogicT Identity (m a) -> m (LogicT Identity a) #

Traversable (IntPSQ p) 
Instance details

Defined in Data.IntPSQ.Internal

Methods

traverse :: Applicative f => (a -> f b) -> IntPSQ p a -> f (IntPSQ p b) #

sequenceA :: Applicative f => IntPSQ p (f a) -> f (IntPSQ p a) #

mapM :: Monad m => (a -> m b) -> IntPSQ p a -> m (IntPSQ p b) #

sequence :: Monad m => IntPSQ p (m a) -> m (IntPSQ p a) #

Traversable f => Traversable (Rec1 f) 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Rec1 f a -> f0 (Rec1 f b) #

sequenceA :: Applicative f0 => Rec1 f (f0 a) -> f0 (Rec1 f a) #

mapM :: Monad m => (a -> m b) -> Rec1 f a -> m (Rec1 f b) #

sequence :: Monad m => Rec1 f (m a) -> m (Rec1 f a) #

Traversable (URec Char :: * -> *) 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec Char a -> f (URec Char b) #

sequenceA :: Applicative f => URec Char (f a) -> f (URec Char a) #

mapM :: Monad m => (a -> m b) -> URec Char a -> m (URec Char b) #

sequence :: Monad m => URec Char (m a) -> m (URec Char a) #

Traversable (URec Double :: * -> *) 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec Double a -> f (URec Double b) #

sequenceA :: Applicative f => URec Double (f a) -> f (URec Double a) #

mapM :: Monad m => (a -> m b) -> URec Double a -> m (URec Double b) #

sequence :: Monad m => URec Double (m a) -> m (URec Double a) #

Traversable (URec Float :: * -> *) 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec Float a -> f (URec Float b) #

sequenceA :: Applicative f => URec Float (f a) -> f (URec Float a) #

mapM :: Monad m => (a -> m b) -> URec Float a -> m (URec Float b) #

sequence :: Monad m => URec Float (m a) -> m (URec Float a) #

Traversable (URec Int :: * -> *) 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec Int a -> f (URec Int b) #

sequenceA :: Applicative f => URec Int (f a) -> f (URec Int a) #

mapM :: Monad m => (a -> m b) -> URec Int a -> m (URec Int b) #

sequence :: Monad m => URec Int (m a) -> m (URec Int a) #

Traversable (URec Word :: * -> *) 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec Word a -> f (URec Word b) #

sequenceA :: Applicative f => URec Word (f a) -> f (URec Word a) #

mapM :: Monad m => (a -> m b) -> URec Word a -> m (URec Word b) #

sequence :: Monad m => URec Word (m a) -> m (URec Word a) #

Traversable (URec (Ptr ()) :: * -> *) 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec (Ptr ()) a -> f (URec (Ptr ()) b) #

sequenceA :: Applicative f => URec (Ptr ()) (f a) -> f (URec (Ptr ()) a) #

mapM :: Monad m => (a -> m b) -> URec (Ptr ()) a -> m (URec (Ptr ()) b) #

sequence :: Monad m => URec (Ptr ()) (m a) -> m (URec (Ptr ()) a) #

Traversable (Const m :: * -> *)

Since: base-4.7.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Const m a -> f (Const m b) #

sequenceA :: Applicative f => Const m (f a) -> f (Const m a) #

mapM :: Monad m0 => (a -> m0 b) -> Const m a -> m0 (Const m b) #

sequence :: Monad m0 => Const m (m0 a) -> m0 (Const m a) #

Bitraversable p => Traversable (Join p) 
Instance details

Defined in Data.Bifunctor.Join

Methods

traverse :: Applicative f => (a -> f b) -> Join p a -> f (Join p b) #

sequenceA :: Applicative f => Join p (f a) -> f (Join p a) #

mapM :: Monad m => (a -> m b) -> Join p a -> m (Join p b) #

sequence :: Monad m => Join p (m a) -> m (Join p a) #

Bitraversable p => Traversable (Fix p) 
Instance details

Defined in Data.Bifunctor.Fix

Methods

traverse :: Applicative f => (a -> f b) -> Fix p a -> f (Fix p b) #

sequenceA :: Applicative f => Fix p (f a) -> f (Fix p a) #

mapM :: Monad m => (a -> m b) -> Fix p a -> m (Fix p b) #

sequence :: Monad m => Fix p (m a) -> m (Fix p a) #

Traversable f => Traversable (IdentityT f) 
Instance details

Defined in Control.Monad.Trans.Identity

Methods

traverse :: Applicative f0 => (a -> f0 b) -> IdentityT f a -> f0 (IdentityT f b) #

sequenceA :: Applicative f0 => IdentityT f (f0 a) -> f0 (IdentityT f a) #

mapM :: Monad m => (a -> m b) -> IdentityT f a -> m (IdentityT f b) #

sequence :: Monad m => IdentityT f (m a) -> m (IdentityT f a) #

Traversable f => Traversable (ExceptT e f) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

traverse :: Applicative f0 => (a -> f0 b) -> ExceptT e f a -> f0 (ExceptT e f b) #

sequenceA :: Applicative f0 => ExceptT e f (f0 a) -> f0 (ExceptT e f a) #

mapM :: Monad m => (a -> m b) -> ExceptT e f a -> m (ExceptT e f b) #

sequence :: Monad m => ExceptT e f (m a) -> m (ExceptT e f a) #

Traversable f => Traversable (FreeF f a) 
Instance details

Defined in Control.Monad.Trans.Free

Methods

traverse :: Applicative f0 => (a0 -> f0 b) -> FreeF f a a0 -> f0 (FreeF f a b) #

sequenceA :: Applicative f0 => FreeF f a (f0 a0) -> f0 (FreeF f a a0) #

mapM :: Monad m => (a0 -> m b) -> FreeF f a a0 -> m (FreeF f a b) #

sequence :: Monad m => FreeF f a (m a0) -> m (FreeF f a a0) #

(Monad m, Traversable m, Traversable f) => Traversable (FreeT f m) 
Instance details

Defined in Control.Monad.Trans.Free

Methods

traverse :: Applicative f0 => (a -> f0 b) -> FreeT f m a -> f0 (FreeT f m b) #

sequenceA :: Applicative f0 => FreeT f m (f0 a) -> f0 (FreeT f m a) #

mapM :: Monad m0 => (a -> m0 b) -> FreeT f m a -> m0 (FreeT f m b) #

sequence :: Monad m0 => FreeT f m (m0 a) -> m0 (FreeT f m a) #

Traversable f => Traversable (CofreeF f a) 
Instance details

Defined in Control.Comonad.Trans.Cofree

Methods

traverse :: Applicative f0 => (a0 -> f0 b) -> CofreeF f a a0 -> f0 (CofreeF f a b) #

sequenceA :: Applicative f0 => CofreeF f a (f0 a0) -> f0 (CofreeF f a a0) #

mapM :: Monad m => (a0 -> m b) -> CofreeF f a a0 -> m (CofreeF f a b) #

sequence :: Monad m => CofreeF f a (m a0) -> m (CofreeF f a a0) #

(Traversable f, Traversable w) => Traversable (CofreeT f w) 
Instance details

Defined in Control.Comonad.Trans.Cofree

Methods

traverse :: Applicative f0 => (a -> f0 b) -> CofreeT f w a -> f0 (CofreeT f w b) #

sequenceA :: Applicative f0 => CofreeT f w (f0 a) -> f0 (CofreeT f w a) #

mapM :: Monad m => (a -> m b) -> CofreeT f w a -> m (CofreeT f w b) #

sequence :: Monad m => CofreeT f w (m a) -> m (CofreeT f w a) #

Traversable f => Traversable (ErrorT e f) 
Instance details

Defined in Control.Monad.Trans.Error

Methods

traverse :: Applicative f0 => (a -> f0 b) -> ErrorT e f a -> f0 (ErrorT e f b) #

sequenceA :: Applicative f0 => ErrorT e f (f0 a) -> f0 (ErrorT e f a) #

mapM :: Monad m => (a -> m b) -> ErrorT e f a -> m (ErrorT e f b) #

sequence :: Monad m => ErrorT e f (m a) -> m (ErrorT e f a) #

Traversable f => Traversable (Backwards f)

Derived instance.

Instance details

Defined in Control.Applicative.Backwards

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Backwards f a -> f0 (Backwards f b) #

sequenceA :: Applicative f0 => Backwards f (f0 a) -> f0 (Backwards f a) #

mapM :: Monad m => (a -> m b) -> Backwards f a -> m (Backwards f b) #

sequence :: Monad m => Backwards f (m a) -> m (Backwards f a) #

Traversable (Forget r a) 
Instance details

Defined in Data.Profunctor.Types

Methods

traverse :: Applicative f => (a0 -> f b) -> Forget r a a0 -> f (Forget r a b) #

sequenceA :: Applicative f => Forget r a (f a0) -> f (Forget r a a0) #

mapM :: Monad m => (a0 -> m b) -> Forget r a a0 -> m (Forget r a b) #

sequence :: Monad m => Forget r a (m a0) -> m (Forget r a a0) #

Traversable (Bucket k p) 
Instance details

Defined in Data.HashPSQ.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Bucket k p a -> f (Bucket k p b) #

sequenceA :: Applicative f => Bucket k p (f a) -> f (Bucket k p a) #

mapM :: Monad m => (a -> m b) -> Bucket k p a -> m (Bucket k p b) #

sequence :: Monad m => Bucket k p (m a) -> m (Bucket k p a) #

Traversable (LTree k p) 
Instance details

Defined in Data.OrdPSQ.Internal

Methods

traverse :: Applicative f => (a -> f b) -> LTree k p a -> f (LTree k p b) #

sequenceA :: Applicative f => LTree k p (f a) -> f (LTree k p a) #

mapM :: Monad m => (a -> m b) -> LTree k p a -> m (LTree k p b) #

sequence :: Monad m => LTree k p (m a) -> m (LTree k p a) #

Traversable (Elem k p) 
Instance details

Defined in Data.OrdPSQ.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Elem k p a -> f (Elem k p b) #

sequenceA :: Applicative f => Elem k p (f a) -> f (Elem k p a) #

mapM :: Monad m => (a -> m b) -> Elem k p a -> m (Elem k p b) #

sequence :: Monad m => Elem k p (m a) -> m (Elem k p a) #

Traversable (HashPSQ k p) 
Instance details

Defined in Data.HashPSQ.Internal

Methods

traverse :: Applicative f => (a -> f b) -> HashPSQ k p a -> f (HashPSQ k p b) #

sequenceA :: Applicative f => HashPSQ k p (f a) -> f (HashPSQ k p a) #

mapM :: Monad m => (a -> m b) -> HashPSQ k p a -> m (HashPSQ k p b) #

sequence :: Monad m => HashPSQ k p (m a) -> m (HashPSQ k p a) #

Traversable (OrdPSQ k p) 
Instance details

Defined in Data.OrdPSQ.Internal

Methods

traverse :: Applicative f => (a -> f b) -> OrdPSQ k p a -> f (OrdPSQ k p b) #

sequenceA :: Applicative f => OrdPSQ k p (f a) -> f (OrdPSQ k p a) #

mapM :: Monad m => (a -> m b) -> OrdPSQ k p a -> m (OrdPSQ k p b) #

sequence :: Monad m => OrdPSQ k p (m a) -> m (OrdPSQ k p a) #

Traversable (Tagged s) 
Instance details

Defined in Data.Tagged

Methods

traverse :: Applicative f => (a -> f b) -> Tagged s a -> f (Tagged s b) #

sequenceA :: Applicative f => Tagged s (f a) -> f (Tagged s a) #

mapM :: Monad m => (a -> m b) -> Tagged s a -> m (Tagged s b) #

sequence :: Monad m => Tagged s (m a) -> m (Tagged s a) #

Traversable (K1 i c :: * -> *) 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> K1 i c a -> f (K1 i c b) #

sequenceA :: Applicative f => K1 i c (f a) -> f (K1 i c a) #

mapM :: Monad m => (a -> m b) -> K1 i c a -> m (K1 i c b) #

sequence :: Monad m => K1 i c (m a) -> m (K1 i c a) #

(Traversable f, Traversable g) => Traversable (f :+: g) 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (f :+: g) a -> f0 ((f :+: g) b) #

sequenceA :: Applicative f0 => (f :+: g) (f0 a) -> f0 ((f :+: g) a) #

mapM :: Monad m => (a -> m b) -> (f :+: g) a -> m ((f :+: g) b) #

sequence :: Monad m => (f :+: g) (m a) -> m ((f :+: g) a) #

(Traversable f, Traversable g) => Traversable (f :*: g) 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (f :*: g) a -> f0 ((f :*: g) b) #

sequenceA :: Applicative f0 => (f :*: g) (f0 a) -> f0 ((f :*: g) a) #

mapM :: Monad m => (a -> m b) -> (f :*: g) a -> m ((f :*: g) b) #

sequence :: Monad m => (f :*: g) (m a) -> m ((f :*: g) a) #

(Traversable f, Traversable g) => Traversable (Product f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Product f g a -> f0 (Product f g b) #

sequenceA :: Applicative f0 => Product f g (f0 a) -> f0 (Product f g a) #

mapM :: Monad m => (a -> m b) -> Product f g a -> m (Product f g b) #

sequence :: Monad m => Product f g (m a) -> m (Product f g a) #

(Traversable f, Traversable g) => Traversable (Sum f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Sum

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Sum f g a -> f0 (Sum f g b) #

sequenceA :: Applicative f0 => Sum f g (f0 a) -> f0 (Sum f g a) #

mapM :: Monad m => (a -> m b) -> Sum f g a -> m (Sum f g b) #

sequence :: Monad m => Sum f g (m a) -> m (Sum f g a) #

Traversable (Magma i t b) 
Instance details

Defined in Control.Lens.Internal.Magma

Methods

traverse :: Applicative f => (a -> f b0) -> Magma i t b a -> f (Magma i t b b0) #

sequenceA :: Applicative f => Magma i t b (f a) -> f (Magma i t b a) #

mapM :: Monad m => (a -> m b0) -> Magma i t b a -> m (Magma i t b b0) #

sequence :: Monad m => Magma i t b (m a) -> m (Magma i t b a) #

Traversable f => Traversable (M1 i c f) 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> M1 i c f a -> f0 (M1 i c f b) #

sequenceA :: Applicative f0 => M1 i c f (f0 a) -> f0 (M1 i c f a) #

mapM :: Monad m => (a -> m b) -> M1 i c f a -> m (M1 i c f b) #

sequence :: Monad m => M1 i c f (m a) -> m (M1 i c f a) #

(Traversable f, Traversable g) => Traversable (f :.: g) 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (f :.: g) a -> f0 ((f :.: g) b) #

sequenceA :: Applicative f0 => (f :.: g) (f0 a) -> f0 ((f :.: g) a) #

mapM :: Monad m => (a -> m b) -> (f :.: g) a -> m ((f :.: g) b) #

sequence :: Monad m => (f :.: g) (m a) -> m ((f :.: g) a) #

(Traversable f, Traversable g) => Traversable (Compose f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Compose f g a -> f0 (Compose f g b) #

sequenceA :: Applicative f0 => Compose f g (f0 a) -> f0 (Compose f g a) #

mapM :: Monad m => (a -> m b) -> Compose f g a -> m (Compose f g b) #

sequence :: Monad m => Compose f g (m a) -> m (Compose f g a) #

Bitraversable p => Traversable (WrappedBifunctor p a) 
Instance details

Defined in Data.Bifunctor.Wrapped

Methods

traverse :: Applicative f => (a0 -> f b) -> WrappedBifunctor p a a0 -> f (WrappedBifunctor p a b) #

sequenceA :: Applicative f => WrappedBifunctor p a (f a0) -> f (WrappedBifunctor p a a0) #

mapM :: Monad m => (a0 -> m b) -> WrappedBifunctor p a a0 -> m (WrappedBifunctor p a b) #

sequence :: Monad m => WrappedBifunctor p a (m a0) -> m (WrappedBifunctor p a a0) #

Traversable g => Traversable (Joker g a) 
Instance details

Defined in Data.Bifunctor.Joker

Methods

traverse :: Applicative f => (a0 -> f b) -> Joker g a a0 -> f (Joker g a b) #

sequenceA :: Applicative f => Joker g a (f a0) -> f (Joker g a a0) #

mapM :: Monad m => (a0 -> m b) -> Joker g a a0 -> m (Joker g a b) #

sequence :: Monad m => Joker g a (m a0) -> m (Joker g a a0) #

Bitraversable p => Traversable (Flip p a) 
Instance details

Defined in Data.Bifunctor.Flip

Methods

traverse :: Applicative f => (a0 -> f b) -> Flip p a a0 -> f (Flip p a b) #

sequenceA :: Applicative f => Flip p a (f a0) -> f (Flip p a a0) #

mapM :: Monad m => (a0 -> m b) -> Flip p a a0 -> m (Flip p a b) #

sequence :: Monad m => Flip p a (m a0) -> m (Flip p a a0) #

Traversable (Clown f a :: * -> *) 
Instance details

Defined in Data.Bifunctor.Clown

Methods

traverse :: Applicative f0 => (a0 -> f0 b) -> Clown f a a0 -> f0 (Clown f a b) #

sequenceA :: Applicative f0 => Clown f a (f0 a0) -> f0 (Clown f a a0) #

mapM :: Monad m => (a0 -> m b) -> Clown f a a0 -> m (Clown f a b) #

sequence :: Monad m => Clown f a (m a0) -> m (Clown f a a0) #

(Traversable f, Bitraversable p) => Traversable (Tannen f p a) 
Instance details

Defined in Data.Bifunctor.Tannen

Methods

traverse :: Applicative f0 => (a0 -> f0 b) -> Tannen f p a a0 -> f0 (Tannen f p a b) #

sequenceA :: Applicative f0 => Tannen f p a (f0 a0) -> f0 (Tannen f p a a0) #

mapM :: Monad m => (a0 -> m b) -> Tannen f p a a0 -> m (Tannen f p a b) #

sequence :: Monad m => Tannen f p a (m a0) -> m (Tannen f p a a0) #

(Bitraversable p, Traversable g) => Traversable (Biff p f g a) 
Instance details

Defined in Data.Bifunctor.Biff

Methods

traverse :: Applicative f0 => (a0 -> f0 b) -> Biff p f g a a0 -> f0 (Biff p f g a b) #

sequenceA :: Applicative f0 => Biff p f g a (f0 a0) -> f0 (Biff p f g a a0) #

mapM :: Monad m => (a0 -> m b) -> Biff p f g a a0 -> m (Biff p f g a b) #

sequence :: Monad m => Biff p f g a (m a0) -> m (Biff p f g a a0) #

for :: (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b) #

for is traverse with its arguments flipped. For a version that ignores the results see for_.

mapAccumL :: Traversable t => (a -> b -> (a, c)) -> a -> t b -> (a, t c) #

The mapAccumL function behaves like a combination of fmap and foldl; it applies a function to each element of a structure, passing an accumulating parameter from left to right, and returning a final value of this accumulator together with the new structure.

mapAccumR :: Traversable t => (a -> b -> (a, c)) -> a -> t b -> (a, t c) #

The mapAccumR function behaves like a combination of fmap and foldr; it applies a function to each element of a structure, passing an accumulating parameter from right to left, and returning a final value of this accumulator together with the new structure.

traverseBy :: Traversable t => (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (a -> f b) -> t a -> f (t b) #

Traverse a container using its Traversable instance using explicitly provided Applicative operations. This is like traverse where the Applicative instance can be manually specified.

sequenceBy :: Traversable t => (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> t (f a) -> f (t a) #

Sequence a container using its Traversable instance using explicitly provided Applicative operations. This is like sequence where the Applicative instance can be manually specified.

Traversable1

class (Foldable1 t, Traversable t) => Traversable1 (t :: * -> *) where #

Minimal complete definition

traverse1 | sequence1

Methods

traverse1 :: Apply f => (a -> f b) -> t a -> f (t b) #

sequence1 :: Apply f => t (f b) -> f (t b) #

Instances
Traversable1 Par1 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> Par1 a -> f (Par1 b) #

sequence1 :: Apply f => Par1 (f b) -> f (Par1 b) #

Traversable1 Complex 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> Complex a -> f (Complex b) #

sequence1 :: Apply f => Complex (f b) -> f (Complex b) #

Traversable1 Min 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> Min a -> f (Min b) #

sequence1 :: Apply f => Min (f b) -> f (Min b) #

Traversable1 Max 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> Max a -> f (Max b) #

sequence1 :: Apply f => Max (f b) -> f (Max b) #

Traversable1 First 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> First a -> f (First b) #

sequence1 :: Apply f => First (f b) -> f (First b) #

Traversable1 Last 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> Last a -> f (Last b) #

sequence1 :: Apply f => Last (f b) -> f (Last b) #

Traversable1 Identity 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> Identity a -> f (Identity b) #

sequence1 :: Apply f => Identity (f b) -> f (Identity b) #

Traversable1 Dual 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> Dual a -> f (Dual b) #

sequence1 :: Apply f => Dual (f b) -> f (Dual b) #

Traversable1 Sum 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> Sum a -> f (Sum b) #

sequence1 :: Apply f => Sum (f b) -> f (Sum b) #

Traversable1 Product 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> Product a -> f (Product b) #

sequence1 :: Apply f => Product (f b) -> f (Product b) #

Traversable1 NonEmpty 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> NonEmpty a -> f (NonEmpty b) #

sequence1 :: Apply f => NonEmpty (f b) -> f (NonEmpty b) #

Traversable1 Tree 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> Tree a -> f (Tree b) #

sequence1 :: Apply f => Tree (f b) -> f (Tree b) #

Traversable1 Log 
Instance details

Defined in Numeric.Log

Methods

traverse1 :: Apply f => (a -> f b) -> Log a -> f (Log b) #

sequence1 :: Apply f => Log (f b) -> f (Log b) #

Traversable1 (V1 :: * -> *) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> V1 a -> f (V1 b) #

sequence1 :: Apply f => V1 (f b) -> f (V1 b) #

Traversable1 ((,) a) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a0 -> f b) -> (a, a0) -> f (a, b) #

sequence1 :: Apply f => (a, f b) -> f (a, b) #

Traversable1 f => Traversable1 (Cofree f) 
Instance details

Defined in Control.Comonad.Cofree

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> Cofree f a -> f0 (Cofree f b) #

sequence1 :: Apply f0 => Cofree f (f0 b) -> f0 (Cofree f b) #

Traversable1 f => Traversable1 (Free f) 
Instance details

Defined in Control.Monad.Free

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> Free f a -> f0 (Free f b) #

sequence1 :: Apply f0 => Free f (f0 b) -> f0 (Free f b) #

Traversable1 f => Traversable1 (Yoneda f) 
Instance details

Defined in Data.Functor.Yoneda

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> Yoneda f a -> f0 (Yoneda f b) #

sequence1 :: Apply f0 => Yoneda f (f0 b) -> f0 (Yoneda f b) #

Traversable1 f => Traversable1 (Lift f) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> Lift f a -> f0 (Lift f b) #

sequence1 :: Apply f0 => Lift f (f0 b) -> f0 (Lift f b) #

Traversable1 f => Traversable1 (Rec1 f) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> Rec1 f a -> f0 (Rec1 f b) #

sequence1 :: Apply f0 => Rec1 f (f0 b) -> f0 (Rec1 f b) #

Traversable1 f => Traversable1 (Alt f) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> Alt f a -> f0 (Alt f b) #

sequence1 :: Apply f0 => Alt f (f0 b) -> f0 (Alt f b) #

Bitraversable1 p => Traversable1 (Join p) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> Join p a -> f (Join p b) #

sequence1 :: Apply f => Join p (f b) -> f (Join p b) #

Traversable1 f => Traversable1 (IdentityT f) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> IdentityT f a -> f0 (IdentityT f b) #

sequence1 :: Apply f0 => IdentityT f (f0 b) -> f0 (IdentityT f b) #

Traversable1 f => Traversable1 (Backwards f) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> Backwards f a -> f0 (Backwards f b) #

sequence1 :: Apply f0 => Backwards f (f0 b) -> f0 (Backwards f b) #

Traversable1 (Tagged a) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a0 -> f b) -> Tagged a a0 -> f (Tagged a b) #

sequence1 :: Apply f => Tagged a (f b) -> f (Tagged a b) #

Traversable1 f => Traversable1 (Reverse f) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> Reverse f a -> f0 (Reverse f b) #

sequence1 :: Apply f0 => Reverse f (f0 b) -> f0 (Reverse f b) #

(Traversable1 f, Traversable1 g) => Traversable1 (f :+: g) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> (f :+: g) a -> f0 ((f :+: g) b) #

sequence1 :: Apply f0 => (f :+: g) (f0 b) -> f0 ((f :+: g) b) #

(Traversable1 f, Traversable1 g) => Traversable1 (f :*: g) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> (f :*: g) a -> f0 ((f :*: g) b) #

sequence1 :: Apply f0 => (f :*: g) (f0 b) -> f0 ((f :*: g) b) #

(Traversable1 f, Traversable1 g) => Traversable1 (Product f g) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> Product f g a -> f0 (Product f g b) #

sequence1 :: Apply f0 => Product f g (f0 b) -> f0 (Product f g b) #

(Traversable1 f, Traversable1 g) => Traversable1 (Sum f g) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> Sum f g a -> f0 (Sum f g b) #

sequence1 :: Apply f0 => Sum f g (f0 b) -> f0 (Sum f g b) #

Traversable1 f => Traversable1 (M1 i c f) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> M1 i c f a -> f0 (M1 i c f b) #

sequence1 :: Apply f0 => M1 i c f (f0 b) -> f0 (M1 i c f b) #

(Traversable1 f, Traversable1 g) => Traversable1 (f :.: g) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> (f :.: g) a -> f0 ((f :.: g) b) #

sequence1 :: Apply f0 => (f :.: g) (f0 b) -> f0 ((f :.: g) b) #

(Traversable1 f, Traversable1 g) => Traversable1 (Compose f g) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> Compose f g a -> f0 (Compose f g b) #

sequence1 :: Apply f0 => Compose f g (f0 b) -> f0 (Compose f g b) #

Traversable1 g => Traversable1 (Joker g a) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a0 -> f b) -> Joker g a a0 -> f (Joker g a b) #

sequence1 :: Apply f => Joker g a (f b) -> f (Joker g a b) #

Bitraversable

class (Bifunctor t, Bifoldable t) => Bitraversable (t :: * -> * -> *) where #

Bitraversable identifies bifunctorial data structures whose elements can be traversed in order, performing Applicative or Monad actions at each element, and collecting a result structure with the same shape.

As opposed to Traversable data structures, which have one variety of element on which an action can be performed, Bitraversable data structures have two such varieties of elements.

A definition of bitraverse must satisfy the following laws:

naturality
bitraverse (t . f) (t . g) ≡ t . bitraverse f g for every applicative transformation t
identity
bitraverse Identity IdentityIdentity
composition
Compose . fmap (bitraverse g1 g2) . bitraverse f1 f2 ≡ traverse (Compose . fmap g1 . f1) (Compose . fmap g2 . f2)

where an applicative transformation is a function

t :: (Applicative f, Applicative g) => f a -> g a

preserving the Applicative operations:

t (pure x) = pure x
t (f <*> x) = t f <*> t x

and the identity functor Identity and composition functors Compose are defined as

newtype Identity a = Identity { runIdentity :: a }

instance Functor Identity where
  fmap f (Identity x) = Identity (f x)

instance Applicative Identity where
  pure = Identity
  Identity f <*> Identity x = Identity (f x)

newtype Compose f g a = Compose (f (g a))

instance (Functor f, Functor g) => Functor (Compose f g) where
  fmap f (Compose x) = Compose (fmap (fmap f) x)

instance (Applicative f, Applicative g) => Applicative (Compose f g) where
  pure = Compose . pure . pure
  Compose f <*> Compose x = Compose ((<*>) <$> f <*> x)

Some simple examples are Either and '(,)':

instance Bitraversable Either where
  bitraverse f _ (Left x) = Left <$> f x
  bitraverse _ g (Right y) = Right <$> g y

instance Bitraversable (,) where
  bitraverse f g (x, y) = (,) <$> f x <*> g y

Bitraversable relates to its superclasses in the following ways:

bimap f g ≡ runIdentity . bitraverse (Identity . f) (Identity . g)
bifoldMap f g = getConst . bitraverse (Const . f) (Const . g)

These are available as bimapDefault and bifoldMapDefault respectively.

Since: base-4.10.0.0

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> t a b -> f (t c d) #

Evaluates the relevant functions at each element in the structure, running the action, and builds a new structure with the same shape, using the results produced from sequencing the actions.

bitraverse f g ≡ bisequenceA . bimap f g

For a version that ignores the results, see bitraverse_.

Since: base-4.10.0.0

Instances
Bitraversable Either

Since: base-4.10.0.0

Instance details

Defined in Data.Bitraversable

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Either a b -> f (Either c d) #

Bitraversable (,)

Since: base-4.10.0.0

Instance details

Defined in Data.Bitraversable

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> (a, b) -> f (c, d) #

Bitraversable Arg

Since: base-4.10.0.0

Instance details

Defined in Data.Semigroup

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Arg a b -> f (Arg c d) #

Bitraversable ((,,) x)

Since: base-4.10.0.0

Instance details

Defined in Data.Bitraversable

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> (x, a, b) -> f (x, c, d) #

Bitraversable (Const :: * -> * -> *)

Since: base-4.10.0.0

Instance details

Defined in Data.Bitraversable

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Const a b -> f (Const c d) #

Traversable f => Bitraversable (FreeF f) 
Instance details

Defined in Control.Monad.Trans.Free

Methods

bitraverse :: Applicative f0 => (a -> f0 c) -> (b -> f0 d) -> FreeF f a b -> f0 (FreeF f c d) #

Traversable f => Bitraversable (CofreeF f) 
Instance details

Defined in Control.Comonad.Trans.Cofree

Methods

bitraverse :: Applicative f0 => (a -> f0 c) -> (b -> f0 d) -> CofreeF f a b -> f0 (CofreeF f c d) #

Bitraversable (Tagged :: * -> * -> *) 
Instance details

Defined in Data.Tagged

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Tagged a b -> f (Tagged c d) #

Bitraversable (K1 i :: * -> * -> *)

Since: base-4.10.0.0

Instance details

Defined in Data.Bitraversable

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> K1 i a b -> f (K1 i c d) #

Bitraversable ((,,,) x y)

Since: base-4.10.0.0

Instance details

Defined in Data.Bitraversable

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> (x, y, a, b) -> f (x, y, c, d) #

Bitraversable ((,,,,) x y z)

Since: base-4.10.0.0

Instance details

Defined in Data.Bitraversable

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> (x, y, z, a, b) -> f (x, y, z, c, d) #

Bitraversable p => Bitraversable (WrappedBifunctor p) 
Instance details

Defined in Data.Bifunctor.Wrapped

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> WrappedBifunctor p a b -> f (WrappedBifunctor p c d) #

Traversable g => Bitraversable (Joker g :: * -> * -> *) 
Instance details

Defined in Data.Bifunctor.Joker

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Joker g a b -> f (Joker g c d) #

Bitraversable p => Bitraversable (Flip p) 
Instance details

Defined in Data.Bifunctor.Flip

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Flip p a b -> f (Flip p c d) #

Traversable f => Bitraversable (Clown f :: * -> * -> *) 
Instance details

Defined in Data.Bifunctor.Clown

Methods

bitraverse :: Applicative f0 => (a -> f0 c) -> (b -> f0 d) -> Clown f a b -> f0 (Clown f c d) #

Bitraversable ((,,,,,) x y z w)

Since: base-4.10.0.0

Instance details

Defined in Data.Bitraversable

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> (x, y, z, w, a, b) -> f (x, y, z, w, c, d) #

(Bitraversable p, Bitraversable q) => Bitraversable (Sum p q) 
Instance details

Defined in Data.Bifunctor.Sum

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Sum p q a b -> f (Sum p q c d) #

(Bitraversable f, Bitraversable g) => Bitraversable (Product f g) 
Instance details

Defined in Data.Bifunctor.Product

Methods

bitraverse :: Applicative f0 => (a -> f0 c) -> (b -> f0 d) -> Product f g a b -> f0 (Product f g c d) #

Bitraversable ((,,,,,,) x y z w v)

Since: base-4.10.0.0

Instance details

Defined in Data.Bitraversable

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> (x, y, z, w, v, a, b) -> f (x, y, z, w, v, c, d) #

(Traversable f, Bitraversable p) => Bitraversable (Tannen f p) 
Instance details

Defined in Data.Bifunctor.Tannen

Methods

bitraverse :: Applicative f0 => (a -> f0 c) -> (b -> f0 d) -> Tannen f p a b -> f0 (Tannen f p c d) #

(Bitraversable p, Traversable f, Traversable g) => Bitraversable (Biff p f g) 
Instance details

Defined in Data.Bifunctor.Biff

Methods

bitraverse :: Applicative f0 => (a -> f0 c) -> (b -> f0 d) -> Biff p f g a b -> f0 (Biff p f g c d) #

bisequence :: (Bitraversable t, Applicative f) => t (f a) (f b) -> f (t a b) #

Sequences all the actions in a structure, building a new structure with the same shape using the results of the actions. For a version that ignores the results, see bisequence_.

bisequencebitraverse id id

Since: base-4.10.0.0

bifor :: (Bitraversable t, Applicative f) => t a b -> (a -> f c) -> (b -> f d) -> f (t c d) #

bifor is bitraverse with the structure as the first argument. For a version that ignores the results, see bifor_.

Since: base-4.10.0.0

bimapAccumL :: Bitraversable t => (a -> b -> (a, c)) -> (a -> d -> (a, e)) -> a -> t b d -> (a, t c e) #

The bimapAccumL function behaves like a combination of bimap and bifoldl; it traverses a structure from left to right, threading a state of type a and using the given actions to compute new elements for the structure.

Since: base-4.10.0.0

bimapAccumR :: Bitraversable t => (a -> b -> (a, c)) -> (a -> d -> (a, e)) -> a -> t b d -> (a, t c e) #

The bimapAccumR function behaves like a combination of bimap and bifoldl; it traverses a structure from right to left, threading a state of type a and using the given actions to compute new elements for the structure.

Since: base-4.10.0.0

Bitraversable1

class (Bifoldable1 t, Bitraversable t) => Bitraversable1 (t :: * -> * -> *) where #

Minimal complete definition

bitraverse1 | bisequence1

Methods

bitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> t a c -> f (t b d) #

bisequence1 :: Apply f => t (f a) (f b) -> f (t a b) #

Instances
Bitraversable1 Either 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

bitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> Either a c -> f (Either b d) #

bisequence1 :: Apply f => Either (f a) (f b) -> f (Either a b) #

Bitraversable1 (,) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

bitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> (a, c) -> f (b, d) #

bisequence1 :: Apply f => (f a, f b) -> f (a, b) #

Bitraversable1 Arg 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

bitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> Arg a c -> f (Arg b d) #

bisequence1 :: Apply f => Arg (f a) (f b) -> f (Arg a b) #

Bitraversable1 ((,,) x) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

bitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> (x, a, c) -> f (x, b, d) #

bisequence1 :: Apply f => (x, f a, f b) -> f (x, a, b) #

Bitraversable1 (Const :: * -> * -> *) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

bitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> Const a c -> f (Const b d) #

bisequence1 :: Apply f => Const (f a) (f b) -> f (Const a b) #

Bitraversable1 (Tagged :: * -> * -> *) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

bitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> Tagged a c -> f (Tagged b d) #

bisequence1 :: Apply f => Tagged (f a) (f b) -> f (Tagged a b) #

Bitraversable1 ((,,,) x y) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

bitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> (x, y, a, c) -> f (x, y, b, d) #

bisequence1 :: Apply f => (x, y, f a, f b) -> f (x, y, a, b) #

Bitraversable1 ((,,,,) x y z) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

bitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> (x, y, z, a, c) -> f (x, y, z, b, d) #

bisequence1 :: Apply f => (x, y, z, f a, f b) -> f (x, y, z, a, b) #

Bitraversable1 p => Bitraversable1 (WrappedBifunctor p) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

bitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> WrappedBifunctor p a c -> f (WrappedBifunctor p b d) #

bisequence1 :: Apply f => WrappedBifunctor p (f a) (f b) -> f (WrappedBifunctor p a b) #

Traversable1 g => Bitraversable1 (Joker g :: * -> * -> *) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

bitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> Joker g a c -> f (Joker g b d) #

bisequence1 :: Apply f => Joker g (f a) (f b) -> f (Joker g a b) #

Bitraversable1 p => Bitraversable1 (Flip p) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

bitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> Flip p a c -> f (Flip p b d) #

bisequence1 :: Apply f => Flip p (f a) (f b) -> f (Flip p a b) #

Traversable1 f => Bitraversable1 (Clown f :: * -> * -> *) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

bitraverse1 :: Apply f0 => (a -> f0 b) -> (c -> f0 d) -> Clown f a c -> f0 (Clown f b d) #

bisequence1 :: Apply f0 => Clown f (f0 a) (f0 b) -> f0 (Clown f a b) #

(Bitraversable1 f, Bitraversable1 g) => Bitraversable1 (Product f g) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

bitraverse1 :: Apply f0 => (a -> f0 b) -> (c -> f0 d) -> Product f g a c -> f0 (Product f g b d) #

bisequence1 :: Apply f0 => Product f g (f0 a) (f0 b) -> f0 (Product f g a b) #

(Traversable1 f, Bitraversable1 p) => Bitraversable1 (Tannen f p) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

bitraverse1 :: Apply f0 => (a -> f0 b) -> (c -> f0 d) -> Tannen f p a c -> f0 (Tannen f p b d) #

bisequence1 :: Apply f0 => Tannen f p (f0 a) (f0 b) -> f0 (Tannen f p a b) #

(Bitraversable1 p, Traversable1 f, Traversable1 g) => Bitraversable1 (Biff p f g) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

bitraverse1 :: Apply f0 => (a -> f0 b) -> (c -> f0 d) -> Biff p f g a c -> f0 (Biff p f g b d) #

bisequence1 :: Apply f0 => Biff p f g (f0 a) (f0 b) -> f0 (Biff p f g a b) #

Default implementations

fmapDefault :: Traversable t => (a -> b) -> t a -> t b #

This function may be used as a value for fmap in a Functor instance, provided that traverse is defined. (Using fmapDefault with a Traversable instance defined only by sequenceA will result in infinite recursion.)

fmapDefault f ≡ runIdentity . traverse (Identity . f)

foldMapDefault :: (Traversable t, Monoid m) => (a -> m) -> t a -> m #

This function may be used as a value for foldMap in a Foldable instance.

foldMapDefault f ≡ getConst . traverse (Const . f)

bimapDefault :: Bitraversable t => (a -> b) -> (c -> d) -> t a c -> t b d #

A default definition of bimap in terms of the Bitraversable operations.

bimapDefault f g ≡
     runIdentity . bitraverse (Identity . f) (Identity . g)

Since: base-4.10.0.0

bifoldMapDefault :: (Bitraversable t, Monoid m) => (a -> m) -> (b -> m) -> t a b -> m #

A default definition of bifoldMap in terms of the Bitraversable operations.

bifoldMapDefault f g ≡
    getConst . bitraverse (Const . f) (Const . g)

Since: base-4.10.0.0

bifoldMap1Default :: (Bitraversable1 t, Semigroup m) => (a -> m) -> (b -> m) -> t a b -> m #