planet-mitchell-0.1.0: Planet Mitchell

Safe HaskellNone
LanguageHaskell2010

Function

Synopsis
  • ($) :: (a -> b) -> a -> b
  • ($!) :: (a -> b) -> a -> b
  • (&) :: a -> (a -> b) -> b
  • asTypeOf :: a -> a -> a
  • const :: a -> b -> a
  • fix :: (a -> a) -> a
  • flip :: (a -> b -> c) -> b -> a -> c
  • loop :: (a -> Either a b) -> a -> b
  • on :: (b -> b -> c) -> (a -> b) -> a -> a -> c
  • until :: (a -> Bool) -> (a -> a) -> a -> a
  • curry :: ((a, b) -> c) -> a -> b -> c
  • curry3 :: ((a, b, c) -> d) -> a -> b -> c -> d
  • uncurry :: (a -> b -> c) -> (a, b) -> c
  • uncurry3 :: (a -> b -> c -> d) -> (a, b, c) -> d
  • newtype Endo a = Endo {}
  • newtype Op a b = Op {}

Documentation

($) :: (a -> b) -> a -> b infixr 0 #

Application operator. This operator is redundant, since ordinary application (f x) means the same as (f $ x). However, $ has low, right-associative binding precedence, so it sometimes allows parentheses to be omitted; for example:

f $ g $ h x  =  f (g (h x))

It is also useful in higher-order situations, such as map ($ 0) xs, or zipWith ($) fs xs.

($!) :: (a -> b) -> a -> b infixr 0 #

Strict (call-by-value) application operator. It takes a function and an argument, evaluates the argument to weak head normal form (WHNF), then calls the function with that value.

(&) :: a -> (a -> b) -> b infixl 1 #

& is a reverse application operator. This provides notational convenience. Its precedence is one higher than that of the forward application operator $, which allows & to be nested in $.

>>> 5 & (+1) & show
"6"

Since: base-4.8.0.0

asTypeOf :: a -> a -> a #

asTypeOf is a type-restricted version of const. It is usually used as an infix operator, and its typing forces its first argument (which is usually overloaded) to have the same type as the second.

const :: a -> b -> a #

const x is a unary function which evaluates to x for all inputs.

>>> const 42 "hello"
42
>>> map (const 42) [0..3]
[42,42,42,42]

fix :: (a -> a) -> a #

fix f is the least fixed point of the function f, i.e. the least defined x such that f x = x.

For example, we can write the factorial function using direct recursion as

>>> let fac n = if n <= 1 then 1 else n * fac (n-1) in fac 5
120

This uses the fact that Haskell’s let introduces recursive bindings. We can rewrite this definition using fix,

>>> fix (\rec n -> if n <= 1 then 1 else n * rec (n-1)) 5
120

Instead of making a recursive call, we introduce a dummy parameter rec; when used within fix, this parameter then refers to fix' argument, hence the recursion is reintroduced.

flip :: (a -> b -> c) -> b -> a -> c #

flip f takes its (first) two arguments in the reverse order of f.

>>> flip (++) "hello" "world"
"worldhello"

loop :: (a -> Either a b) -> a -> b #

A looping operation, where the predicate returns Left as a seed for the next loop or Right to abort the loop.

loop (\x -> if x < 10 then Left $ x * 2 else Right $ show x) 1 == "16"

on :: (b -> b -> c) -> (a -> b) -> a -> a -> c infixl 0 #

until :: (a -> Bool) -> (a -> a) -> a -> a #

until p f yields the result of applying f until p holds.

curry :: ((a, b) -> c) -> a -> b -> c #

curry converts an uncurried function to a curried function.

Examples

Expand
>>> curry fst 1 2
1

curry3 :: ((a, b, c) -> d) -> a -> b -> c -> d #

Converts an uncurried function to a curried function.

uncurry :: (a -> b -> c) -> (a, b) -> c #

uncurry converts a curried function to a function on pairs.

Examples

Expand
>>> uncurry (+) (1,2)
3
>>> uncurry ($) (show, 1)
"1"
>>> map (uncurry max) [(1,2), (3,4), (6,8)]
[2,4,8]

uncurry3 :: (a -> b -> c -> d) -> (a, b, c) -> d #

Converts a curried function to a function on a triple.

newtype Endo a #

The monoid of endomorphisms under composition.

>>> let computation = Endo ("Hello, " ++) <> Endo (++ "!")
>>> appEndo computation "Haskell"
"Hello, Haskell!"

Constructors

Endo 

Fields

Instances
Pointed Endo 
Instance details

Defined in Data.Pointed

Methods

point :: a -> Endo a #

Generic (Endo a) 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep (Endo a) :: * -> * #

Methods

from :: Endo a -> Rep (Endo a) x #

to :: Rep (Endo a) x -> Endo a #

Semigroup (Endo a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Endo a -> Endo a -> Endo a #

sconcat :: NonEmpty (Endo a) -> Endo a #

stimes :: Integral b => b -> Endo a -> Endo a #

Monoid (Endo a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Endo a #

mappend :: Endo a -> Endo a -> Endo a #

mconcat :: [Endo a] -> Endo a #

Wrapped (Endo a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Endo a) :: * #

Methods

_Wrapped' :: Iso' (Endo a) (Unwrapped (Endo a)) #

Lower (Endo a) 
Instance details

Defined in Data.Semilattice.Lower

Methods

lowerBound :: Endo a #

t ~ Endo b => Rewrapped (Endo a) t 
Instance details

Defined in Control.Lens.Wrapped

type Rep (Endo a) 
Instance details

Defined in Data.Semigroup.Internal

type Rep (Endo a) = D1 (MetaData "Endo" "Data.Semigroup.Internal" "base" True) (C1 (MetaCons "Endo" PrefixI True) (S1 (MetaSel (Just "appEndo") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (a -> a))))
type Unwrapped (Endo a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Endo a) = a -> a

newtype Op a b #

Dual function arrows.

Constructors

Op 

Fields

Instances
Contravariant (Op a) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a0 -> b) -> Op a b -> Op a a0 #

(>$) :: b -> Op a b -> Op a a0 #

Monoid r => Divisible (Op r) 
Instance details

Defined in Data.Functor.Contravariant.Divisible

Methods

divide :: (a -> (b, c)) -> Op r b -> Op r c -> Op r a #

conquer :: Op r a #

Monoid r => Decidable (Op r) 
Instance details

Defined in Data.Functor.Contravariant.Divisible

Methods

lose :: (a -> Void) -> Op r a #

choose :: (a -> Either b c) -> Op r b -> Op r c -> Op r a #

Category Op 
Instance details

Defined in Data.Functor.Contravariant

Methods

id :: Op a a #

(.) :: Op b c -> Op a b -> Op a c #

Semigroupoid Op 
Instance details

Defined in Data.Semigroupoid

Methods

o :: Op j k1 -> Op i j -> Op i k1 #

Floating a => Floating (Op a b) 
Instance details

Defined in Data.Functor.Contravariant

Methods

pi :: Op a b #

exp :: Op a b -> Op a b #

log :: Op a b -> Op a b #

sqrt :: Op a b -> Op a b #

(**) :: Op a b -> Op a b -> Op a b #

logBase :: Op a b -> Op a b -> Op a b #

sin :: Op a b -> Op a b #

cos :: Op a b -> Op a b #

tan :: Op a b -> Op a b #

asin :: Op a b -> Op a b #

acos :: Op a b -> Op a b #

atan :: Op a b -> Op a b #

sinh :: Op a b -> Op a b #

cosh :: Op a b -> Op a b #

tanh :: Op a b -> Op a b #

asinh :: Op a b -> Op a b #

acosh :: Op a b -> Op a b #

atanh :: Op a b -> Op a b #

log1p :: Op a b -> Op a b #

expm1 :: Op a b -> Op a b #

log1pexp :: Op a b -> Op a b #

log1mexp :: Op a b -> Op a b #

Fractional a => Fractional (Op a b) 
Instance details

Defined in Data.Functor.Contravariant

Methods

(/) :: Op a b -> Op a b -> Op a b #

recip :: Op a b -> Op a b #

fromRational :: Rational -> Op a b #

Num a => Num (Op a b) 
Instance details

Defined in Data.Functor.Contravariant

Methods

(+) :: Op a b -> Op a b -> Op a b #

(-) :: Op a b -> Op a b -> Op a b #

(*) :: Op a b -> Op a b -> Op a b #

negate :: Op a b -> Op a b #

abs :: Op a b -> Op a b #

signum :: Op a b -> Op a b #

fromInteger :: Integer -> Op a b #

Semigroup a => Semigroup (Op a b) 
Instance details

Defined in Data.Functor.Contravariant

Methods

(<>) :: Op a b -> Op a b -> Op a b #

sconcat :: NonEmpty (Op a b) -> Op a b #

stimes :: Integral b0 => b0 -> Op a b -> Op a b #

Monoid a => Monoid (Op a b) 
Instance details

Defined in Data.Functor.Contravariant

Methods

mempty :: Op a b #

mappend :: Op a b -> Op a b -> Op a b #

mconcat :: [Op a b] -> Op a b #

Wrapped (Op a b) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Op a b) :: * #

Methods

_Wrapped' :: Iso' (Op a b) (Unwrapped (Op a b)) #

t ~ Op a' b' => Rewrapped (Op a b) t 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Op a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Op a b) = b -> a