planet-mitchell-0.0.0: Planet Mitchell

Safe HaskellSafe
LanguageHaskell2010

Numeric.RealFrac

Contents

Synopsis

RealFrac

class (Real a, Fractional a) => RealFrac a where #

Extracting components of fractions.

Minimal complete definition

properFraction

Methods

properFraction :: Integral b => a -> (b, a) #

The function properFraction takes a real fractional number x and returns a pair (n,f) such that x = n+f, and:

  • n is an integral number with the same sign as x; and
  • f is a fraction with the same type and sign as x, and with absolute value less than 1.

The default definitions of the ceiling, floor, truncate and round functions are in terms of properFraction.

truncate :: Integral b => a -> b #

truncate x returns the integer nearest x between zero and x

round :: Integral b => a -> b #

round x returns the nearest integer to x; the even integer if x is equidistant between two integers

ceiling :: Integral b => a -> b #

ceiling x returns the least integer not less than x

floor :: Integral b => a -> b #

floor x returns the greatest integer not greater than x

Instances
RealFrac Scientific

WARNING: the methods of the RealFrac instance need to compute the magnitude 10^e. If applied to a huge exponent this could take a long time. Even worse, when the destination type is unbounded (i.e. Integer) it could fill up all space and crash your program!

Instance details

Defined in Data.Scientific

RealFrac CFloat 
Instance details

Defined in Foreign.C.Types

Methods

properFraction :: Integral b => CFloat -> (b, CFloat) #

truncate :: Integral b => CFloat -> b #

round :: Integral b => CFloat -> b #

ceiling :: Integral b => CFloat -> b #

floor :: Integral b => CFloat -> b #

RealFrac CDouble 
Instance details

Defined in Foreign.C.Types

Methods

properFraction :: Integral b => CDouble -> (b, CDouble) #

truncate :: Integral b => CDouble -> b #

round :: Integral b => CDouble -> b #

ceiling :: Integral b => CDouble -> b #

floor :: Integral b => CDouble -> b #

RealFrac Half 
Instance details

Defined in Numeric.Half

Methods

properFraction :: Integral b => Half -> (b, Half) #

truncate :: Integral b => Half -> b #

round :: Integral b => Half -> b #

ceiling :: Integral b => Half -> b #

floor :: Integral b => Half -> b #

RealFrac NominalDiffTime 
Instance details

Defined in Data.Time.Clock.Internal.NominalDiffTime

RealFrac DiffTime 
Instance details

Defined in Data.Time.Clock.Internal.DiffTime

Methods

properFraction :: Integral b => DiffTime -> (b, DiffTime) #

truncate :: Integral b => DiffTime -> b #

round :: Integral b => DiffTime -> b #

ceiling :: Integral b => DiffTime -> b #

floor :: Integral b => DiffTime -> b #

() :=> (RealFrac Double) 
Instance details

Defined in Data.Constraint

Methods

ins :: () :- RealFrac Double #

() :=> (RealFrac Float) 
Instance details

Defined in Data.Constraint

Methods

ins :: () :- RealFrac Float #

Integral a => RealFrac (Ratio a)

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

properFraction :: Integral b => Ratio a -> (b, Ratio a) #

truncate :: Integral b => Ratio a -> b #

round :: Integral b => Ratio a -> b #

ceiling :: Integral b => Ratio a -> b #

floor :: Integral b => Ratio a -> b #

HasResolution a => RealFrac (Fixed a)

Since: base-2.1

Instance details

Defined in Data.Fixed

Methods

properFraction :: Integral b => Fixed a -> (b, Fixed a) #

truncate :: Integral b => Fixed a -> b #

round :: Integral b => Fixed a -> b #

ceiling :: Integral b => Fixed a -> b #

floor :: Integral b => Fixed a -> b #

RealFrac a => RealFrac (Identity a) 
Instance details

Defined in Data.Functor.Identity

Methods

properFraction :: Integral b => Identity a -> (b, Identity a) #

truncate :: Integral b => Identity a -> b #

round :: Integral b => Identity a -> b #

ceiling :: Integral b => Identity a -> b #

floor :: Integral b => Identity a -> b #

(Precise a, RealFloat a) => RealFrac (Log a) 
Instance details

Defined in Numeric.Log

Methods

properFraction :: Integral b => Log a -> (b, Log a) #

truncate :: Integral b => Log a -> b #

round :: Integral b => Log a -> b #

ceiling :: Integral b => Log a -> b #

floor :: Integral b => Log a -> b #

(Integral a) :=> (RealFrac (Ratio a)) 
Instance details

Defined in Data.Constraint

Methods

ins :: Integral a :- RealFrac (Ratio a) #

(RealFrac a) :=> (RealFrac (Identity a)) 
Instance details

Defined in Data.Constraint

Methods

ins :: RealFrac a :- RealFrac (Identity a) #

(RealFrac a) :=> (RealFrac (Const a b)) 
Instance details

Defined in Data.Constraint

Methods

ins :: RealFrac a :- RealFrac (Const a b) #

Class (Real a, Fractional a) (RealFrac a) 
Instance details

Defined in Data.Constraint

Methods

cls :: RealFrac a :- (Real a, Fractional a) #

Class (RealFrac a, Floating a) (RealFloat a) 
Instance details

Defined in Data.Constraint

Methods

cls :: RealFloat a :- (RealFrac a, Floating a) #

RealFrac a => RealFrac (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

properFraction :: Integral b0 => Const a b -> (b0, Const a b) #

truncate :: Integral b0 => Const a b -> b0 #

round :: Integral b0 => Const a b -> b0 #

ceiling :: Integral b0 => Const a b -> b0 #

floor :: Integral b0 => Const a b -> b0 #

RealFrac a => RealFrac (Tagged s a) 
Instance details

Defined in Data.Tagged

Methods

properFraction :: Integral b => Tagged s a -> (b, Tagged s a) #

truncate :: Integral b => Tagged s a -> b #

round :: Integral b => Tagged s a -> b #

ceiling :: Integral b => Tagged s a -> b #

floor :: Integral b => Tagged s a -> b #

Read

readFloat :: RealFrac a => ReadS a #

Reads an unsigned RealFrac value, expressed in decimal scientific notation.