Safe Haskell | Safe |
---|---|
Language | Haskell2010 |
Synopsis
- data Nat
- class KnownNat (n :: Nat)
- natVal :: KnownNat n => proxy n -> Integer
- natVal' :: KnownNat n => Proxy# n -> Integer
- data SomeNat where
- someNatVal :: Integer -> Maybe SomeNat
- sameNat :: (KnownNat a, KnownNat b) => Proxy a -> Proxy b -> Maybe (a :~: b)
- type (<=) (x :: Nat) (y :: Nat) = (x <=? y) ~ True
- type family (a :: Nat) <=? (b :: Nat) :: Bool where ...
- type family (a :: Nat) + (b :: Nat) :: Nat where ...
- type family (a :: Nat) * (b :: Nat) :: Nat where ...
- type family (a :: Nat) ^ (b :: Nat) :: Nat where ...
- type family (a :: Nat) - (b :: Nat) :: Nat where ...
- type family Min (m :: Nat) (n :: Nat) :: Nat where ...
- type family Max (m :: Nat) (n :: Nat) :: Nat where ...
- type family Lcm (m :: Nat) (n :: Nat) :: Nat where ...
- type family Gcd (m :: Nat) (n :: Nat) :: Nat where ...
- type Divides (n :: Nat) (m :: Nat) = n ~ Gcd n m
- type family Div (a :: Nat) (b :: Nat) :: Nat where ...
- type family Mod (a :: Nat) (b :: Nat) :: Nat where ...
- type family Log2 (a :: Nat) :: Nat where ...
- type family CmpNat (a :: Nat) (b :: Nat) :: Ordering where ...
- plusNat :: (KnownNat n, KnownNat m) :- KnownNat (n + m)
- timesNat :: (KnownNat n, KnownNat m) :- KnownNat (n * m)
- powNat :: (KnownNat n, KnownNat m) :- KnownNat (n ^ m)
- minNat :: (KnownNat n, KnownNat m) :- KnownNat (Min n m)
- maxNat :: (KnownNat n, KnownNat m) :- KnownNat (Max n m)
- gcdNat :: (KnownNat n, KnownNat m) :- KnownNat (Gcd n m)
- lcmNat :: (KnownNat n, KnownNat m) :- KnownNat (Lcm n m)
- divNat :: (KnownNat n, KnownNat m, 1 <= m) :- KnownNat (Div n m)
- modNat :: (KnownNat n, KnownNat m, 1 <= m) :- KnownNat (Mod n m)
- plusZero :: Dict ((n + 0) ~ n)
- timesZero :: Dict ((n * 0) ~ 0)
- timesOne :: Dict ((n * 1) ~ n)
- powZero :: Dict ((n ^ 0) ~ 1)
- powOne :: Dict ((n ^ 1) ~ n)
- maxZero :: Dict (Max n 0 ~ n)
- minZero :: Dict (Min n 0 ~ 0)
- gcdZero :: Dict (Gcd 0 a ~ a)
- gcdOne :: Dict (Gcd 1 a ~ 1)
- lcmZero :: Dict (Lcm 0 a ~ 0)
- lcmOne :: Dict (Lcm 1 a ~ a)
- plusAssociates :: Dict (((m + n) + o) ~ (m + (n + o)))
- timesAssociates :: Dict (((m * n) * o) ~ (m * (n * o)))
- minAssociates :: Dict (Min (Min m n) o ~ Min m (Min n o))
- maxAssociates :: Dict (Max (Max m n) o ~ Max m (Max n o))
- gcdAssociates :: Dict (Gcd (Gcd a b) c ~ Gcd a (Gcd b c))
- lcmAssociates :: Dict (Lcm (Lcm a b) c ~ Lcm a (Lcm b c))
- plusCommutes :: Dict ((m + n) ~ (n + m))
- timesCommutes :: Dict ((m * n) ~ (n * m))
- minCommutes :: Dict (Min m n ~ Min n m)
- maxCommutes :: Dict (Max m n ~ Max n m)
- gcdCommutes :: Dict (Gcd a b ~ Gcd b a)
- lcmCommutes :: Dict (Lcm a b ~ Lcm b a)
- plusDistributesOverTimes :: Dict ((n * (m + o)) ~ ((n * m) + (n * o)))
- timesDistributesOverPow :: Dict ((n ^ (m + o)) ~ ((n ^ m) * (n ^ o)))
- timesDistributesOverGcd :: Dict ((n * Gcd m o) ~ Gcd (n * m) (n * o))
- timesDistributesOverLcm :: Dict ((n * Lcm m o) ~ Lcm (n * m) (n * o))
- minDistributesOverPlus :: Dict ((n + Min m o) ~ Min (n + m) (n + o))
- minDistributesOverTimes :: Dict ((n * Min m o) ~ Min (n * m) (n * o))
- minDistributesOverPow1 :: Dict ((Min n m ^ o) ~ Min (n ^ o) (m ^ o))
- minDistributesOverPow2 :: Dict ((n ^ Min m o) ~ Min (n ^ m) (n ^ o))
- minDistributesOverMax :: Dict (Max n (Min m o) ~ Min (Max n m) (Max n o))
- maxDistributesOverPlus :: Dict ((n + Max m o) ~ Max (n + m) (n + o))
- maxDistributesOverTimes :: Dict ((n * Max m o) ~ Max (n * m) (n * o))
- maxDistributesOverPow1 :: Dict ((Max n m ^ o) ~ Max (n ^ o) (m ^ o))
- maxDistributesOverPow2 :: Dict ((n ^ Max m o) ~ Max (n ^ m) (n ^ o))
- maxDistributesOverMin :: Dict (Min n (Max m o) ~ Max (Min n m) (Min n o))
- gcdDistributesOverLcm :: Dict (Gcd (Lcm a b) c ~ Lcm (Gcd a c) (Gcd b c))
- lcmDistributesOverGcd :: Dict (Lcm (Gcd a b) c ~ Gcd (Lcm a c) (Lcm b c))
- minIsIdempotent :: Dict (Min n n ~ n)
- maxIsIdempotent :: Dict (Max n n ~ n)
- lcmIsIdempotent :: Dict (Lcm n n ~ n)
- gcdIsIdempotent :: Dict (Gcd n n ~ n)
- plusIsCancellative :: ((n + m) ~ (n + o)) :- (m ~ o)
- timesIsCancellative :: (1 <= n, (n * m) ~ (n * o)) :- (m ~ o)
- dividesPlus :: (Divides a b, Divides a c) :- Divides a (b + c)
- dividesTimes :: (Divides a b, Divides a c) :- Divides a (b * c)
- dividesMin :: (Divides a b, Divides a c) :- Divides a (Min b c)
- dividesMax :: (Divides a b, Divides a c) :- Divides a (Max b c)
- dividesPow :: (1 <= n, Divides a b) :- Divides a (b ^ n)
- dividesGcd :: (Divides a b, Divides a c) :- Divides a (Gcd b c)
- dividesLcm :: (Divides a c, Divides b c) :- Divides (Lcm a b) c
- plusMonotone1 :: (a <= b) :- ((a + c) <= (b + c))
- plusMonotone2 :: (b <= c) :- ((a + b) <= (a + c))
- timesMonotone1 :: (a <= b) :- ((a * c) <= (b * c))
- timesMonotone2 :: (b <= c) :- ((a * b) <= (a * c))
- powMonotone1 :: (a <= b) :- ((a ^ c) <= (b ^ c))
- powMonotone2 :: (b <= c) :- ((a ^ b) <= (a ^ c))
- minMonotone1 :: (a <= b) :- (Min a c <= Min b c)
- minMonotone2 :: (b <= c) :- (Min a b <= Min a c)
- maxMonotone1 :: (a <= b) :- (Max a c <= Max b c)
- maxMonotone2 :: (b <= c) :- (Max a b <= Max a c)
- divMonotone1 :: (a <= b) :- (Div a c <= Div b c)
- divMonotone2 :: (b <= c) :- (Div a c <= Div a b)
- euclideanNat :: (1 <= c) :- (a ~ ((c * Div a c) + Mod a c))
- plusMod :: (1 <= c) :- (Mod (a + b) c ~ Mod (Mod a c + Mod b c) c)
- timesMod :: (1 <= c) :- (Mod (a * b) c ~ Mod (Mod a c * Mod b c) c)
- modBound :: (1 <= n) :- (Mod m n <= n)
- dividesDef :: Divides a b :- ((a * Div b a) ~ a)
- timesDiv :: Dict ((a * Div b a) <= a)
- eqLe :: (a ~ b) :- (a <= b)
- leEq :: (a <= b, b <= a) :- (a ~ b)
- leId :: Dict (a <= a)
- leTrans :: (b <= c, a <= b) :- (a <= c)
- zeroLe :: Dict (0 <= a)
Nat
(Kind) This is the kind of type-level natural numbers.
This class gives the integer associated with a type-level natural. There are instances of the class for every concrete literal: 0, 1, 2, etc.
Since: base-4.7.0.0
natSing
This type represents unknown type-level natural numbers.
Since: base-4.10.0.0
someNatVal :: Integer -> Maybe SomeNat #
Convert an integer into an unknown type-level natural.
Since: base-4.7.0.0
sameNat :: (KnownNat a, KnownNat b) => Proxy a -> Proxy b -> Maybe (a :~: b) #
We either get evidence that this function was instantiated with the
same type-level numbers, or Nothing
.
Since: base-4.7.0.0
type (<=) (x :: Nat) (y :: Nat) = (x <=? y) ~ True infix 4 #
Comparison of type-level naturals, as a constraint.
Since: base-4.7.0.0
type family (a :: Nat) <=? (b :: Nat) :: Bool where ... infix 4 #
Comparison of type-level naturals, as a function.
NOTE: The functionality for this function should be subsumed
by CmpNat
, so this might go away in the future.
Please let us know, if you encounter discrepancies between the two.
type family (a :: Nat) + (b :: Nat) :: Nat where ... infixl 6 #
Addition of type-level naturals.
Since: base-4.7.0.0
type family (a :: Nat) * (b :: Nat) :: Nat where ... infixl 7 #
Multiplication of type-level naturals.
Since: base-4.7.0.0
type family (a :: Nat) ^ (b :: Nat) :: Nat where ... infixr 8 #
Exponentiation of type-level naturals.
Since: base-4.7.0.0
type family (a :: Nat) - (b :: Nat) :: Nat where ... infixl 6 #
Subtraction of type-level naturals.
Since: base-4.7.0.0
type family Div (a :: Nat) (b :: Nat) :: Nat where ... infixl 7 #
Division (round down) of natural numbers.
Div x 0
is undefined (i.e., it cannot be reduced).
Since: base-4.11.0.0
type family Mod (a :: Nat) (b :: Nat) :: Nat where ... infixl 7 #
Modulus of natural numbers.
Mod x 0
is undefined (i.e., it cannot be reduced).
Since: base-4.11.0.0
type family Log2 (a :: Nat) :: Nat where ... #
Log base 2 (round down) of natural numbers.
Log 0
is undefined (i.e., it cannot be reduced).
Since: base-4.11.0.0
type family CmpNat (a :: Nat) (b :: Nat) :: Ordering where ... #
Comparison of type-level naturals, as a function.
Since: base-4.7.0.0
Constraints
plusCommutes :: Dict ((m + n) ~ (n + m)) #
timesCommutes :: Dict ((m * n) ~ (n * m)) #
minCommutes :: Dict (Min m n ~ Min n m) #
maxCommutes :: Dict (Max m n ~ Max n m) #
gcdCommutes :: Dict (Gcd a b ~ Gcd b a) #
lcmCommutes :: Dict (Lcm a b ~ Lcm b a) #
minIsIdempotent :: Dict (Min n n ~ n) #
maxIsIdempotent :: Dict (Max n n ~ n) #
lcmIsIdempotent :: Dict (Lcm n n ~ n) #
gcdIsIdempotent :: Dict (Gcd n n ~ n) #
plusIsCancellative :: ((n + m) ~ (n + o)) :- (m ~ o) #