{-# LANGUAGE CPP #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE InstanceSigs #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE RoleAnnotations #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeInType #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeInType #-}
{-# OPTIONS_HADDOCK hide #-}
module Data.Parameterized.Context.Unsafe
( module Data.Parameterized.Ctx
, KnownContext(..)
, Size
, sizeInt
, zeroSize
, incSize
, decSize
, extSize
, addSize
, SizeView(..)
, viewSize
, sizeToNatRepr
, Diff
, noDiff
, addDiff
, extendRight
, appendDiff
, DiffView(..)
, viewDiff
, KnownDiff(..)
, IsAppend(..)
, diffIsAppend
, Index
, indexVal
, baseIndex
, skipIndex
, lastIndex
, nextIndex
, leftIndex
, rightIndex
, extendIndex
, extendIndex'
, extendIndexAppendLeft
, forIndex
, forIndexRange
, intIndex
, IndexView(..)
, viewIndex
, IndexRange
, allRange
, indexOfRange
, dropHeadRange
, dropTailRange
, Assignment
, size
, Data.Parameterized.Context.Unsafe.replicate
, generate
, generateM
, empty
, extend
, adjust
, update
, adjustM
, AssignView(..)
, viewAssign
, (!)
, (!^)
, Data.Parameterized.Context.Unsafe.zipWith
, zipWithM
, (<++>)
, traverseWithIndex
) where
import qualified Control.Category as Cat
import Control.DeepSeq
import Control.Exception
import qualified Control.Lens as Lens
import Control.Monad.Identity (Identity(..))
import Data.Bits
import Data.Coerce
import Data.Hashable
import Data.List (intercalate)
import Data.Proxy
import Unsafe.Coerce
import Data.Kind(Type)
import Data.Parameterized.Axiom
import Data.Parameterized.Classes
import Data.Parameterized.Ctx
import Data.Parameterized.Ctx.Proofs
import Data.Parameterized.NatRepr
import Data.Parameterized.NatRepr.Internal (NatRepr(NatRepr))
import Data.Parameterized.Some
import Data.Parameterized.TraversableFC
import Data.Parameterized.TraversableFC.WithIndex
newtype Size (ctx :: Ctx k) = Size Int
type role Size nominal
sizeInt :: Size ctx -> Int
sizeInt :: forall {k} (ctx :: Ctx k). Size ctx -> Int
sizeInt (Size Int
n) = Int
n
zeroSize :: Size 'EmptyCtx
zeroSize :: forall {k}. Size 'EmptyCtx
zeroSize = forall k (ctx :: Ctx k). Int -> Size ctx
Size Int
0
incSize :: Size ctx -> Size (ctx '::> tp)
incSize :: forall {k} (ctx :: Ctx k) (tp :: k). Size ctx -> Size (ctx '::> tp)
incSize (Size Int
n) = forall k (ctx :: Ctx k). Int -> Size ctx
Size (Int
nforall a. Num a => a -> a -> a
+Int
1)
decSize :: Size (ctx '::> tp) -> Size ctx
decSize :: forall {k} (ctx :: Ctx k) (tp :: k). Size (ctx '::> tp) -> Size ctx
decSize (Size Int
n) = forall a. (?callStack::CallStack) => Bool -> a -> a
assert (Int
n forall a. Ord a => a -> a -> Bool
> Int
0) (forall k (ctx :: Ctx k). Int -> Size ctx
Size (Int
nforall a. Num a => a -> a -> a
-Int
1))
data SizeView (ctx :: Ctx k) where
ZeroSize :: SizeView 'EmptyCtx
IncSize :: !(Size ctx) -> SizeView (ctx '::> tp)
viewSize :: Size ctx -> SizeView ctx
viewSize :: forall {k} (ctx :: Ctx k). Size ctx -> SizeView ctx
viewSize (Size Int
0) = forall a b. a -> b
unsafeCoerce forall {k}. SizeView 'EmptyCtx
ZeroSize
viewSize (Size Int
n) = forall a. (?callStack::CallStack) => Bool -> a -> a
assert (Int
n forall a. Ord a => a -> a -> Bool
> Int
0) (forall a b. a -> b
unsafeCoerce (forall {k} (ctx :: Ctx k) (tp :: k).
Size ctx -> SizeView (ctx '::> tp)
IncSize (forall k (ctx :: Ctx k). Int -> Size ctx
Size (Int
nforall a. Num a => a -> a -> a
-Int
1))))
sizeToNatRepr :: Size items -> NatRepr (CtxSize items)
sizeToNatRepr :: forall {k} (items :: Ctx k). Size items -> NatRepr (CtxSize items)
sizeToNatRepr (Size Int
n) = forall (n :: Natural). Natural -> NatRepr n
NatRepr (forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
n)
instance Show (Size ctx) where
show :: Size ctx -> String
show (Size Int
i) = forall a. Show a => a -> String
show Int
i
instance ShowF Size
class KnownContext (ctx :: Ctx k) where
knownSize :: Size ctx
instance KnownContext 'EmptyCtx where
knownSize :: Size 'EmptyCtx
knownSize = forall {k}. Size 'EmptyCtx
zeroSize
instance KnownContext ctx => KnownContext (ctx '::> tp) where
knownSize :: Size (ctx '::> tp)
knownSize = forall {k} (ctx :: Ctx k) (tp :: k). Size ctx -> Size (ctx '::> tp)
incSize forall k (ctx :: Ctx k). KnownContext ctx => Size ctx
knownSize
newtype Diff (l :: Ctx k) (r :: Ctx k)
= Diff { forall k (l :: Ctx k) (r :: Ctx k). Diff l r -> Int
_contextExtSize :: Int }
type role Diff nominal nominal
noDiff :: Diff l l
noDiff :: forall {k} (l :: Ctx k). Diff l l
noDiff = forall k (l :: Ctx k) (r :: Ctx k). Int -> Diff l r
Diff Int
0
{-# INLINE noDiff #-}
addDiff :: Diff a b -> Diff b c -> Diff a c
addDiff :: forall {k} (a :: Ctx k) (b :: Ctx k) (c :: Ctx k).
Diff a b -> Diff b c -> Diff a c
addDiff (Diff Int
x) (Diff Int
y) = forall k (l :: Ctx k) (r :: Ctx k). Int -> Diff l r
Diff (Int
x forall a. Num a => a -> a -> a
+ Int
y)
{-# INLINE addDiff #-}
extendRight :: Diff l r -> Diff l (r '::> tp)
extendRight :: forall {k} (l :: Ctx k) (r :: Ctx k) (tp :: k).
Diff l r -> Diff l (r '::> tp)
extendRight (Diff Int
i) = forall k (l :: Ctx k) (r :: Ctx k). Int -> Diff l r
Diff (Int
iforall a. Num a => a -> a -> a
+Int
1)
appendDiff :: Size r -> Diff l (l <+> r)
appendDiff :: forall {k} (r :: Ctx k) (l :: Ctx k). Size r -> Diff l (l <+> r)
appendDiff (Size Int
r) = forall k (l :: Ctx k) (r :: Ctx k). Int -> Diff l r
Diff Int
r
instance Cat.Category Diff where
id :: forall (a :: Ctx k). Diff a a
id = forall {k} (l :: Ctx k). Diff l l
noDiff
Diff b c
j . :: forall (b :: Ctx k) (c :: Ctx k) (a :: Ctx k).
Diff b c -> Diff a b -> Diff a c
. Diff a b
i = forall {k} (a :: Ctx k) (b :: Ctx k) (c :: Ctx k).
Diff a b -> Diff b c -> Diff a c
addDiff Diff a b
i Diff b c
j
extSize :: Size l -> Diff l r -> Size r
extSize :: forall {k} (l :: Ctx k) (r :: Ctx k). Size l -> Diff l r -> Size r
extSize (Size Int
i) (Diff Int
j) = forall k (ctx :: Ctx k). Int -> Size ctx
Size (Int
iforall a. Num a => a -> a -> a
+Int
j)
addSize :: Size x -> Size y -> Size (x <+> y)
addSize :: forall {k} (x :: Ctx k) (y :: Ctx k).
Size x -> Size y -> Size (x <+> y)
addSize (Size Int
x) (Size Int
y) = forall k (ctx :: Ctx k). Int -> Size ctx
Size (Int
x forall a. Num a => a -> a -> a
+ Int
y)
data IsAppend l r where
IsAppend :: Size app -> IsAppend l (l <+> app)
diffIsAppend :: Diff l r -> IsAppend l r
diffIsAppend :: forall {k} (l :: Ctx k) (r :: Ctx k). Diff l r -> IsAppend l r
diffIsAppend (Diff Int
i) = forall a b. a -> b
unsafeCoerce forall a b. (a -> b) -> a -> b
$ forall {k} (ctx :: Ctx k) (l :: Ctx k).
Size ctx -> IsAppend l (l <+> ctx)
IsAppend (forall k (ctx :: Ctx k). Int -> Size ctx
Size Int
i)
data DiffView a b where
NoDiff :: DiffView a a
ExtendRightDiff :: Diff a b -> DiffView a (b ::> r)
viewDiff :: Diff a b -> DiffView a b
viewDiff :: forall {k} (a :: Ctx k) (b :: Ctx k). Diff a b -> DiffView a b
viewDiff (Diff Int
i)
| Int
i forall a. Eq a => a -> a -> Bool
== Int
0 = forall a b. a -> b
unsafeCoerce forall {k} (a :: Ctx k). DiffView a a
NoDiff
| Bool
otherwise = forall a. (?callStack::CallStack) => Bool -> a -> a
assert (Int
i forall a. Ord a => a -> a -> Bool
> Int
0) forall a b. (a -> b) -> a -> b
$ forall a b. a -> b
unsafeCoerce forall a b. (a -> b) -> a -> b
$ forall {k} (a :: Ctx k) (ctx :: Ctx k) (tp :: k).
Diff a ctx -> DiffView a (ctx ::> tp)
ExtendRightDiff (forall k (l :: Ctx k) (r :: Ctx k). Int -> Diff l r
Diff (Int
iforall a. Num a => a -> a -> a
-Int
1))
class KnownDiff (l :: Ctx k) (r :: Ctx k) where
knownDiff :: Diff l r
instance KnownDiff l l where
knownDiff :: Diff l l
knownDiff = forall {k} (l :: Ctx k). Diff l l
noDiff
instance {-# INCOHERENT #-} KnownDiff l r => KnownDiff l (r '::> tp) where
knownDiff :: Diff l (r '::> tp)
knownDiff = forall {k} (l :: Ctx k) (r :: Ctx k) (tp :: k).
Diff l r -> Diff l (r '::> tp)
extendRight forall k (l :: Ctx k) (r :: Ctx k). KnownDiff l r => Diff l r
knownDiff
newtype Index (ctx :: Ctx k) (tp :: k) = Index { forall k (ctx :: Ctx k) (tp :: k). Index ctx tp -> Int
indexVal :: Int }
type role Index nominal nominal
instance Eq (Index ctx tp) where
Index Int
i == :: Index ctx tp -> Index ctx tp -> Bool
== Index Int
j = Int
i forall a. Eq a => a -> a -> Bool
== Int
j
instance TestEquality (Index ctx) where
testEquality :: forall (a :: k) (b :: k).
Index ctx a -> Index ctx b -> Maybe (a :~: b)
testEquality (Index Int
i) (Index Int
j)
| Int
i forall a. Eq a => a -> a -> Bool
== Int
j = forall a. a -> Maybe a
Just forall {k} (a :: k) (b :: k). a :~: b
unsafeAxiom
| Bool
otherwise = forall a. Maybe a
Nothing
instance Ord (Index ctx tp) where
Index Int
i compare :: Index ctx tp -> Index ctx tp -> Ordering
`compare` Index Int
j = forall a. Ord a => a -> a -> Ordering
compare Int
i Int
j
instance OrdF (Index ctx) where
compareF :: forall (x :: k) (y :: k).
Index ctx x -> Index ctx y -> OrderingF x y
compareF (Index Int
i) (Index Int
j)
| Int
i forall a. Ord a => a -> a -> Bool
< Int
j = forall {k} (x :: k) (y :: k). OrderingF x y
LTF
| Int
i forall a. Eq a => a -> a -> Bool
== Int
j = forall a b. a -> b
unsafeCoerce forall {k} (x :: k). OrderingF x x
EQF
| Bool
otherwise = forall {k} (x :: k) (y :: k). OrderingF x y
GTF
baseIndex :: Index ('EmptyCtx '::> tp) tp
baseIndex :: forall {k} (tp :: k). Index ('EmptyCtx '::> tp) tp
baseIndex = forall k (ctx :: Ctx k) (tp :: k). Int -> Index ctx tp
Index Int
0
skipIndex :: Index ctx x -> Index (ctx '::> y) x
skipIndex :: forall {k} (ctx :: Ctx k) (x :: k) (y :: k).
Index ctx x -> Index (ctx '::> y) x
skipIndex (Index Int
i) = forall k (ctx :: Ctx k) (tp :: k). Int -> Index ctx tp
Index Int
i
nextIndex :: Size ctx -> Index (ctx ::> tp) tp
nextIndex :: forall {k} (ctx :: Ctx k) (tp :: k).
Size ctx -> Index (ctx ::> tp) tp
nextIndex Size ctx
n = forall k (ctx :: Ctx k) (tp :: k). Int -> Index ctx tp
Index (forall {k} (ctx :: Ctx k). Size ctx -> Int
sizeInt Size ctx
n)
lastIndex :: Size (ctx ::> tp) -> Index (ctx ::> tp) tp
lastIndex :: forall {k} (ctx :: Ctx k) (tp :: k).
Size (ctx ::> tp) -> Index (ctx ::> tp) tp
lastIndex Size (ctx ::> tp)
n = forall k (ctx :: Ctx k) (tp :: k). Int -> Index ctx tp
Index (forall {k} (ctx :: Ctx k). Size ctx -> Int
sizeInt Size (ctx ::> tp)
n forall a. Num a => a -> a -> a
- Int
1)
leftIndex :: Size r -> Index l tp -> Index (l <+> r) tp
leftIndex :: forall {k} (r :: Ctx k) (l :: Ctx k) (tp :: k).
Size r -> Index l tp -> Index (l <+> r) tp
leftIndex Size r
_ (Index Int
il) = forall k (ctx :: Ctx k) (tp :: k). Int -> Index ctx tp
Index Int
il
rightIndex :: Size l -> Size r -> Index r tp -> Index (l <+> r) tp
rightIndex :: forall {k} (l :: Ctx k) (r :: Ctx k) (tp :: k).
Size l -> Size r -> Index r tp -> Index (l <+> r) tp
rightIndex (Size Int
sl) Size r
_ (Index Int
ir) = forall k (ctx :: Ctx k) (tp :: k). Int -> Index ctx tp
Index (Int
sl forall a. Num a => a -> a -> a
+ Int
ir)
{-# INLINE extendIndex #-}
extendIndex :: KnownDiff l r => Index l tp -> Index r tp
extendIndex :: forall {k} (l :: Ctx k) (r :: Ctx k) (tp :: k).
KnownDiff l r =>
Index l tp -> Index r tp
extendIndex = forall {k} (l :: Ctx k) (r :: Ctx k) (tp :: k).
Diff l r -> Index l tp -> Index r tp
extendIndex' forall k (l :: Ctx k) (r :: Ctx k). KnownDiff l r => Diff l r
knownDiff
{-# INLINE extendIndex' #-}
extendIndex' :: Diff l r -> Index l tp -> Index r tp
extendIndex' :: forall {k} (l :: Ctx k) (r :: Ctx k) (tp :: k).
Diff l r -> Index l tp -> Index r tp
extendIndex' Diff l r
_ = forall a b. a -> b
unsafeCoerce
{-# INLINE extendIndexAppendLeft #-}
extendIndexAppendLeft :: Size l -> Size r -> Index r tp -> Index (l <+> r) tp
extendIndexAppendLeft :: forall {k} (l :: Ctx k) (r :: Ctx k) (tp :: k).
Size l -> Size r -> Index r tp -> Index (l <+> r) tp
extendIndexAppendLeft (Size Int
l) Size r
_ (Index Int
idx) = forall k (ctx :: Ctx k) (tp :: k). Int -> Index ctx tp
Index (Int
idx forall a. Num a => a -> a -> a
+ Int
l)
forIndex :: forall ctx r
. Size ctx
-> (forall tp . r -> Index ctx tp -> r)
-> r
-> r
forIndex :: forall {k} (ctx :: Ctx k) r.
Size ctx -> (forall (tp :: k). r -> Index ctx tp -> r) -> r -> r
forIndex Size ctx
n forall (tp :: k). r -> Index ctx tp -> r
f r
r =
case forall {k} (ctx :: Ctx k). Size ctx -> SizeView ctx
viewSize Size ctx
n of
SizeView ctx
ZeroSize -> r
r
IncSize Size ctx
p -> forall (tp :: k). r -> Index ctx tp -> r
f (forall {k} (ctx :: Ctx k) r.
Size ctx -> (forall (tp :: k). r -> Index ctx tp -> r) -> r -> r
forIndex Size ctx
p (coerce :: forall a b. Coercible a b => a -> b
coerce forall (tp :: k). r -> Index ctx tp -> r
f) r
r) (forall {k} (ctx :: Ctx k) (tp :: k).
Size ctx -> Index (ctx ::> tp) tp
nextIndex Size ctx
p)
forIndexRange :: forall ctx r
. Int
-> Size ctx
-> (forall tp . Index ctx tp -> r -> r)
-> r
-> r
forIndexRange :: forall {k} (ctx :: Ctx k) r.
Int
-> Size ctx -> (forall (tp :: k). Index ctx tp -> r -> r) -> r -> r
forIndexRange Int
i (Size Int
n) forall (tp :: k). Index ctx tp -> r -> r
f r
r
| Int
i forall a. Ord a => a -> a -> Bool
>= Int
n = r
r
| Bool
otherwise = forall (tp :: k). Index ctx tp -> r -> r
f (forall k (ctx :: Ctx k) (tp :: k). Int -> Index ctx tp
Index Int
i) (forall {k} (ctx :: Ctx k) r.
Int
-> Size ctx -> (forall (tp :: k). Index ctx tp -> r -> r) -> r -> r
forIndexRange (Int
iforall a. Num a => a -> a -> a
+Int
1) (forall k (ctx :: Ctx k). Int -> Size ctx
Size Int
n) forall (tp :: k). Index ctx tp -> r -> r
f r
r)
intIndex :: Int -> Size ctx -> Maybe (Some (Index ctx))
intIndex :: forall {k} (ctx :: Ctx k).
Int -> Size ctx -> Maybe (Some (Index ctx))
intIndex Int
i Size ctx
n | Int
0 forall a. Ord a => a -> a -> Bool
<= Int
i Bool -> Bool -> Bool
&& Int
i forall a. Ord a => a -> a -> Bool
< forall {k} (ctx :: Ctx k). Size ctx -> Int
sizeInt Size ctx
n = forall a. a -> Maybe a
Just (forall k (f :: k -> *) (x :: k). f x -> Some f
Some (forall k (ctx :: Ctx k) (tp :: k). Int -> Index ctx tp
Index Int
i))
| Bool
otherwise = forall a. Maybe a
Nothing
instance Show (Index ctx tp) where
show :: Index ctx tp -> String
show = forall a. Show a => a -> String
show forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall k (ctx :: Ctx k) (tp :: k). Index ctx tp -> Int
indexVal
instance ShowF (Index ctx)
data IndexView ctx tp where
IndexViewLast :: !(Size ctx ) -> IndexView (ctx '::> t) t
IndexViewInit :: !(Index ctx t) -> IndexView (ctx '::> u) t
deriving instance Show (IndexView ctx tp)
instance ShowF (IndexView ctx)
viewIndex :: Size ctx -> Index ctx tp -> IndexView ctx tp
viewIndex :: forall {k} (ctx :: Ctx k) (tp :: k).
Size ctx -> Index ctx tp -> IndexView ctx tp
viewIndex (Size Int
sz) (Index Int
i)
| Int
sz' forall a. Eq a => a -> a -> Bool
== Int
i = forall a b. a -> b
unsafeCoerce (forall {k} (ctx :: Ctx k) (t :: k).
Size ctx -> IndexView (ctx '::> t) t
IndexViewLast (forall k (ctx :: Ctx k). Int -> Size ctx
Size Int
sz'))
| Bool
otherwise = forall a b. a -> b
unsafeCoerce (forall {k} (ctx :: Ctx k) (t :: k) (tp :: k).
Index ctx t -> IndexView (ctx '::> tp) t
IndexViewInit (forall k (ctx :: Ctx k) (tp :: k). Int -> Index ctx tp
Index Int
i))
where
sz' :: Int
sz' = Int
szforall a. Num a => a -> a -> a
-Int
1
data IndexRange (ctx :: Ctx k) (sub :: Ctx k)
= IndexRange {-# UNPACK #-} !Int
{-# UNPACK #-} !Int
allRange :: Size ctx -> IndexRange ctx ctx
allRange :: forall {k} (ctx :: Ctx k). Size ctx -> IndexRange ctx ctx
allRange (Size Int
n) = forall k (ctx :: Ctx k) (sub :: Ctx k).
Int -> Int -> IndexRange ctx sub
IndexRange Int
0 Int
n
indexOfRange :: IndexRange ctx (EmptyCtx ::> e) -> Index ctx e
indexOfRange :: forall {k} (ctx :: Ctx k) (e :: k).
IndexRange ctx (EmptyCtx ::> e) -> Index ctx e
indexOfRange (IndexRange Int
i Int
n) = forall a. (?callStack::CallStack) => Bool -> a -> a
assert (Int
n forall a. Eq a => a -> a -> Bool
== Int
1) forall a b. (a -> b) -> a -> b
$ forall k (ctx :: Ctx k) (tp :: k). Int -> Index ctx tp
Index Int
i
dropTailRange :: IndexRange ctx (x <+> y) -> Size y -> IndexRange ctx x
dropTailRange :: forall {k} (ctx :: Ctx k) (x :: Ctx k) (y :: Ctx k).
IndexRange ctx (x <+> y) -> Size y -> IndexRange ctx x
dropTailRange (IndexRange Int
i Int
n) (Size Int
j) = forall a. (?callStack::CallStack) => Bool -> a -> a
assert (Int
n forall a. Ord a => a -> a -> Bool
>= Int
j) forall a b. (a -> b) -> a -> b
$ forall k (ctx :: Ctx k) (sub :: Ctx k).
Int -> Int -> IndexRange ctx sub
IndexRange Int
i (Int
n forall a. Num a => a -> a -> a
- Int
j)
dropHeadRange :: IndexRange ctx (x <+> y) -> Size x -> IndexRange ctx y
dropHeadRange :: forall {k} (ctx :: Ctx k) (x :: Ctx k) (y :: Ctx k).
IndexRange ctx (x <+> y) -> Size x -> IndexRange ctx y
dropHeadRange (IndexRange Int
i Int
n) (Size Int
j) = forall a. (?callStack::CallStack) => Bool -> a -> a
assert (Int
i' forall a. Ord a => a -> a -> Bool
>= Int
i Bool -> Bool -> Bool
&& Int
n forall a. Ord a => a -> a -> Bool
>= Int
j) forall a b. (a -> b) -> a -> b
$ forall k (ctx :: Ctx k) (sub :: Ctx k).
Int -> Int -> IndexRange ctx sub
IndexRange Int
i' (Int
n forall a. Num a => a -> a -> a
- Int
j)
where i' :: Int
i' = Int
i forall a. Num a => a -> a -> a
+ Int
j
data Height = Zero | Succ Height
type family Pred (k :: Height) :: Height
type instance Pred ('Succ h) = h
data BalancedTree h (f :: k -> Type) (p :: Ctx k) where
BalLeaf :: !(f x) -> BalancedTree 'Zero f (SingleCtx x)
BalPair :: !(BalancedTree h f x)
-> !(BalancedTree h f y)
-> BalancedTree ('Succ h) f (x <+> y)
bal_size :: BalancedTree h f p -> Int
bal_size :: forall {k} (h :: Height) (f :: k -> *) (p :: Ctx k).
BalancedTree h f p -> Int
bal_size (BalLeaf f x
_) = Int
1
bal_size (BalPair BalancedTree h f x
x BalancedTree h f y
y) = forall {k} (h :: Height) (f :: k -> *) (p :: Ctx k).
BalancedTree h f p -> Int
bal_size BalancedTree h f x
x forall a. Num a => a -> a -> a
+ forall {k} (h :: Height) (f :: k -> *) (p :: Ctx k).
BalancedTree h f p -> Int
bal_size BalancedTree h f y
y
instance TestEqualityFC (BalancedTree h) where
testEqualityFC :: forall (f :: k -> *).
(forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y))
-> forall (x :: Ctx k) (y :: Ctx k).
BalancedTree h f x -> BalancedTree h f y -> Maybe (x :~: y)
testEqualityFC forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y)
test (BalLeaf f x
x) (BalLeaf f x
y) = do
x :~: x
Refl <- forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y)
test f x
x f x
y
forall (m :: * -> *) a. Monad m => a -> m a
return forall {k} (a :: k). a :~: a
Refl
testEqualityFC forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y)
test (BalPair BalancedTree h f x
x1 BalancedTree h f y
x2) (BalPair BalancedTree h f x
y1 BalancedTree h f y
y2) = do
x :~: x
Refl <- forall k l (t :: (k -> *) -> l -> *) (f :: k -> *).
TestEqualityFC t =>
(forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y))
-> forall (x :: l) (y :: l). t f x -> t f y -> Maybe (x :~: y)
testEqualityFC forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y)
test BalancedTree h f x
x1 BalancedTree h f x
y1
y :~: y
Refl <- forall k l (t :: (k -> *) -> l -> *) (f :: k -> *).
TestEqualityFC t =>
(forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y))
-> forall (x :: l) (y :: l). t f x -> t f y -> Maybe (x :~: y)
testEqualityFC forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y)
test BalancedTree h f y
x2 BalancedTree h f y
y2
forall (m :: * -> *) a. Monad m => a -> m a
return forall {k} (a :: k). a :~: a
Refl
instance OrdFC (BalancedTree h) where
compareFC :: forall (f :: k -> *).
(forall (x :: k) (y :: k). f x -> f y -> OrderingF x y)
-> forall (x :: Ctx k) (y :: Ctx k).
BalancedTree h f x -> BalancedTree h f y -> OrderingF x y
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
test (BalLeaf f x
x) (BalLeaf f x
y) =
forall j k (a :: j) (b :: j) (c :: k) (d :: k).
OrderingF a b -> ((a ~ b) => OrderingF c d) -> OrderingF c d
joinOrderingF (forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
test f x
x f x
y) forall a b. (a -> b) -> a -> b
$ forall {k} (x :: k). OrderingF x x
EQF
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
test (BalPair BalancedTree h f x
x1 BalancedTree h f y
x2) (BalPair BalancedTree h f x
y1 BalancedTree h f y
y2) =
forall j k (a :: j) (b :: j) (c :: k) (d :: k).
OrderingF a b -> ((a ~ b) => OrderingF c d) -> OrderingF c d
joinOrderingF (forall k l (t :: (k -> *) -> l -> *) (f :: k -> *).
OrdFC t =>
(forall (x :: k) (y :: k). f x -> f y -> OrderingF x y)
-> forall (x :: l) (y :: l). t f x -> t f y -> OrderingF x y
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
test BalancedTree h f x
x1 BalancedTree h f x
y1) forall a b. (a -> b) -> a -> b
$
forall j k (a :: j) (b :: j) (c :: k) (d :: k).
OrderingF a b -> ((a ~ b) => OrderingF c d) -> OrderingF c d
joinOrderingF (forall k l (t :: (k -> *) -> l -> *) (f :: k -> *).
OrdFC t =>
(forall (x :: k) (y :: k). f x -> f y -> OrderingF x y)
-> forall (x :: l) (y :: l). t f x -> t f y -> OrderingF x y
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
test BalancedTree h f y
x2 BalancedTree h f y
y2) forall a b. (a -> b) -> a -> b
$
forall {k} (x :: k). OrderingF x x
EQF
instance HashableF f => HashableF (BalancedTree h f) where
hashWithSaltF :: forall (tp :: Ctx k). Int -> BalancedTree h f tp -> Int
hashWithSaltF Int
s BalancedTree h f tp
t =
case BalancedTree h f tp
t of
BalLeaf f x
x -> Int
s forall k (f :: k -> *) (tp :: k). HashableF f => Int -> f tp -> Int
`hashWithSaltF` f x
x
BalPair BalancedTree h f x
x BalancedTree h f y
y -> Int
s forall k (f :: k -> *) (tp :: k). HashableF f => Int -> f tp -> Int
`hashWithSaltF` BalancedTree h f x
x forall k (f :: k -> *) (tp :: k). HashableF f => Int -> f tp -> Int
`hashWithSaltF` BalancedTree h f y
y
fmap_bal :: (forall tp . f tp -> g tp)
-> BalancedTree h f c
-> BalancedTree h g c
fmap_bal :: forall {k} (f :: k -> *) (g :: k -> *) (h :: Height) (c :: Ctx k).
(forall (tp :: k). f tp -> g tp)
-> BalancedTree h f c -> BalancedTree h g c
fmap_bal = forall {k} (f :: k -> *) (g :: k -> *) (h :: Height) (c :: Ctx k).
(forall (tp :: k). f tp -> g tp)
-> BalancedTree h f c -> BalancedTree h g c
go
where go :: (forall tp . f tp -> g tp)
-> BalancedTree h f c
-> BalancedTree h g c
go :: forall {k} (f :: k -> *) (g :: k -> *) (h :: Height) (c :: Ctx k).
(forall (tp :: k). f tp -> g tp)
-> BalancedTree h f c -> BalancedTree h g c
go forall (tp :: k). f tp -> g tp
f (BalLeaf f x
x) = forall {k} (f :: k -> *) (ctx :: k).
f ctx -> BalancedTree 'Zero f (SingleCtx ctx)
BalLeaf (forall (tp :: k). f tp -> g tp
f f x
x)
go forall (tp :: k). f tp -> g tp
f (BalPair BalancedTree h f x
x BalancedTree h f y
y) = forall {k} (ctx :: Height) (f :: k -> *) (tp :: Ctx k)
(y :: Ctx k).
BalancedTree ctx f tp
-> BalancedTree ctx f y -> BalancedTree ('Succ ctx) f (tp <+> y)
BalPair (forall {k} (f :: k -> *) (g :: k -> *) (h :: Height) (c :: Ctx k).
(forall (tp :: k). f tp -> g tp)
-> BalancedTree h f c -> BalancedTree h g c
go forall (tp :: k). f tp -> g tp
f BalancedTree h f x
x) (forall {k} (f :: k -> *) (g :: k -> *) (h :: Height) (c :: Ctx k).
(forall (tp :: k). f tp -> g tp)
-> BalancedTree h f c -> BalancedTree h g c
go forall (tp :: k). f tp -> g tp
f BalancedTree h f y
y)
{-# INLINABLE fmap_bal #-}
traverse_bal :: Applicative m
=> (forall tp . f tp -> m (g tp))
-> BalancedTree h f c
-> m (BalancedTree h g c)
traverse_bal :: forall {k} (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: Height)
(c :: Ctx k).
Applicative m =>
(forall (tp :: k). f tp -> m (g tp))
-> BalancedTree h f c -> m (BalancedTree h g c)
traverse_bal = forall {k} (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: Height)
(c :: Ctx k).
Applicative m =>
(forall (tp :: k). f tp -> m (g tp))
-> BalancedTree h f c -> m (BalancedTree h g c)
go
where go :: Applicative m
=> (forall tp . f tp -> m (g tp))
-> BalancedTree h f c
-> m (BalancedTree h g c)
go :: forall {k} (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: Height)
(c :: Ctx k).
Applicative m =>
(forall (tp :: k). f tp -> m (g tp))
-> BalancedTree h f c -> m (BalancedTree h g c)
go forall (tp :: k). f tp -> m (g tp)
f (BalLeaf f x
x) = forall {k} (f :: k -> *) (ctx :: k).
f ctx -> BalancedTree 'Zero f (SingleCtx ctx)
BalLeaf forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (tp :: k). f tp -> m (g tp)
f f x
x
go forall (tp :: k). f tp -> m (g tp)
f (BalPair BalancedTree h f x
x BalancedTree h f y
y) = forall {k} (ctx :: Height) (f :: k -> *) (tp :: Ctx k)
(y :: Ctx k).
BalancedTree ctx f tp
-> BalancedTree ctx f y -> BalancedTree ('Succ ctx) f (tp <+> y)
BalPair forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall {k} (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: Height)
(c :: Ctx k).
Applicative m =>
(forall (tp :: k). f tp -> m (g tp))
-> BalancedTree h f c -> m (BalancedTree h g c)
go forall (tp :: k). f tp -> m (g tp)
f BalancedTree h f x
x forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall {k} (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: Height)
(c :: Ctx k).
Applicative m =>
(forall (tp :: k). f tp -> m (g tp))
-> BalancedTree h f c -> m (BalancedTree h g c)
go forall (tp :: k). f tp -> m (g tp)
f BalancedTree h f y
y
{-# INLINABLE traverse_bal #-}
instance ShowF f => Show (BalancedTree h f tp) where
show :: BalancedTree h f tp -> String
show (BalLeaf f x
x) = forall k (f :: k -> *) (tp :: k). ShowF f => f tp -> String
showF f x
x
show (BalPair BalancedTree h f x
x BalancedTree h f y
y) = String
"BalPair " forall a. [a] -> [a] -> [a]
Prelude.++ forall a. Show a => a -> String
show BalancedTree h f x
x forall a. [a] -> [a] -> [a]
Prelude.++ String
" " forall a. [a] -> [a] -> [a]
Prelude.++ forall a. Show a => a -> String
show BalancedTree h f y
y
instance ShowF f => ShowF (BalancedTree h f)
unsafe_bal_generate :: forall ctx h f t
. Int
-> Int
-> (forall tp . Index ctx tp -> f tp)
-> BalancedTree h f t
unsafe_bal_generate :: forall {k} (ctx :: Ctx k) (h :: Height) (f :: k -> *) (t :: Ctx k).
Int
-> Int
-> (forall (tp :: k). Index ctx tp -> f tp)
-> BalancedTree h f t
unsafe_bal_generate Int
h Int
o forall (tp :: k). Index ctx tp -> f tp
f
| Int
h forall a. Ord a => a -> a -> Bool
< Int
0 = forall a. (?callStack::CallStack) => String -> a
error String
"unsafe_bal_generate given negative height"
| Int
h forall a. Eq a => a -> a -> Bool
== Int
0 = forall a b. a -> b
unsafeCoerce forall a b. (a -> b) -> a -> b
$ forall {k} (f :: k -> *) (ctx :: k).
f ctx -> BalancedTree 'Zero f (SingleCtx ctx)
BalLeaf (forall (tp :: k). Index ctx tp -> f tp
f (forall k (ctx :: Ctx k) (tp :: k). Int -> Index ctx tp
Index Int
o))
| Bool
otherwise =
let l :: BalancedTree Any f Any
l = forall {k} (ctx :: Ctx k) (h :: Height) (f :: k -> *) (t :: Ctx k).
Int
-> Int
-> (forall (tp :: k). Index ctx tp -> f tp)
-> BalancedTree h f t
unsafe_bal_generate (Int
hforall a. Num a => a -> a -> a
-Int
1) Int
o forall (tp :: k). Index ctx tp -> f tp
f
o' :: Int
o' = Int
o forall a. Num a => a -> a -> a
+ Int
1 forall a. Bits a => a -> Int -> a
`shiftL` (Int
hforall a. Num a => a -> a -> a
-Int
1)
u :: BalancedTree Any f Any
u = forall a. (?callStack::CallStack) => Bool -> a -> a
assert (Int
o forall a. Num a => a -> a -> a
+ forall {k} (h :: Height) (f :: k -> *) (p :: Ctx k).
BalancedTree h f p -> Int
bal_size BalancedTree Any f Any
l forall a. Eq a => a -> a -> Bool
== Int
o') forall a b. (a -> b) -> a -> b
$ forall {k} (ctx :: Ctx k) (h :: Height) (f :: k -> *) (t :: Ctx k).
Int
-> Int
-> (forall (tp :: k). Index ctx tp -> f tp)
-> BalancedTree h f t
unsafe_bal_generate (Int
hforall a. Num a => a -> a -> a
-Int
1) Int
o' forall (tp :: k). Index ctx tp -> f tp
f
in forall a b. a -> b
unsafeCoerce forall a b. (a -> b) -> a -> b
$ forall {k} (ctx :: Height) (f :: k -> *) (tp :: Ctx k)
(y :: Ctx k).
BalancedTree ctx f tp
-> BalancedTree ctx f y -> BalancedTree ('Succ ctx) f (tp <+> y)
BalPair BalancedTree Any f Any
l BalancedTree Any f Any
u
unsafe_bal_generateM :: forall m ctx h f t
. Applicative m
=> Int
-> Int
-> (forall x . Index ctx x -> m (f x))
-> m (BalancedTree h f t)
unsafe_bal_generateM :: forall {k} (m :: * -> *) (ctx :: Ctx k) (h :: Height) (f :: k -> *)
(t :: Ctx k).
Applicative m =>
Int
-> Int
-> (forall (x :: k). Index ctx x -> m (f x))
-> m (BalancedTree h f t)
unsafe_bal_generateM Int
h Int
o forall (x :: k). Index ctx x -> m (f x)
f
| Int
h forall a. Eq a => a -> a -> Bool
== Int
0 = forall a b. a -> b
unsafeCoerce forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall {k} (f :: k -> *) (ctx :: k).
f ctx -> BalancedTree 'Zero f (SingleCtx ctx)
BalLeaf forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (x :: k). Index ctx x -> m (f x)
f (forall k (ctx :: Ctx k) (tp :: k). Int -> Index ctx tp
Index Int
o)
| Bool
otherwise =
let o' :: Int
o' = Int
o forall a. Num a => a -> a -> a
+ Int
1 forall a. Bits a => a -> Int -> a
`shiftL` (Int
hforall a. Num a => a -> a -> a
-Int
1)
g :: BalancedTree Any f Any
-> BalancedTree Any f Any -> BalancedTree h f t
g BalancedTree Any f Any
lv BalancedTree Any f Any
uv = forall a. (?callStack::CallStack) => Bool -> a -> a
assert (Int
o' forall a. Eq a => a -> a -> Bool
== Int
o forall a. Num a => a -> a -> a
+ forall {k} (h :: Height) (f :: k -> *) (p :: Ctx k).
BalancedTree h f p -> Int
bal_size BalancedTree Any f Any
lv) forall a b. (a -> b) -> a -> b
$
forall a b. a -> b
unsafeCoerce (forall {k} (ctx :: Height) (f :: k -> *) (tp :: Ctx k)
(y :: Ctx k).
BalancedTree ctx f tp
-> BalancedTree ctx f y -> BalancedTree ('Succ ctx) f (tp <+> y)
BalPair BalancedTree Any f Any
lv BalancedTree Any f Any
uv)
in BalancedTree Any f Any
-> BalancedTree Any f Any -> BalancedTree h f t
g forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall {k} (m :: * -> *) (ctx :: Ctx k) (h :: Height) (f :: k -> *)
(t :: Ctx k).
Applicative m =>
Int
-> Int
-> (forall (x :: k). Index ctx x -> m (f x))
-> m (BalancedTree h f t)
unsafe_bal_generateM (Int
hforall a. Num a => a -> a -> a
-Int
1) Int
o forall (x :: k). Index ctx x -> m (f x)
f
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall {k} (m :: * -> *) (ctx :: Ctx k) (h :: Height) (f :: k -> *)
(t :: Ctx k).
Applicative m =>
Int
-> Int
-> (forall (x :: k). Index ctx x -> m (f x))
-> m (BalancedTree h f t)
unsafe_bal_generateM (Int
hforall a. Num a => a -> a -> a
-Int
1) Int
o' forall (x :: k). Index ctx x -> m (f x)
f
unsafe_bal_index :: BalancedTree h f a
-> Int
-> Int
-> f tp
unsafe_bal_index :: forall {k} (h :: Height) (f :: k -> *) (a :: Ctx k) (tp :: k).
BalancedTree h f a -> Int -> Int -> f tp
unsafe_bal_index BalancedTree h f a
_ Int
j Int
i
| seq :: forall a b. a -> b -> b
seq Int
j forall a b. (a -> b) -> a -> b
$ seq :: forall a b. a -> b -> b
seq Int
i forall a b. (a -> b) -> a -> b
$ Bool
False = forall a. (?callStack::CallStack) => String -> a
error String
"bad unsafe_bal_index"
unsafe_bal_index (BalLeaf f x
u) Int
_ Int
i = forall a. (?callStack::CallStack) => Bool -> a -> a
assert (Int
i forall a. Eq a => a -> a -> Bool
== Int
0) forall a b. (a -> b) -> a -> b
$ forall a b. a -> b
unsafeCoerce f x
u
unsafe_bal_index (BalPair BalancedTree h f x
x BalancedTree h f y
y) Int
j Int
i
| Int
j forall a. Bits a => a -> Int -> Bool
`testBit` (Int
iforall a. Num a => a -> a -> a
-Int
1) = forall {k} (h :: Height) (f :: k -> *) (a :: Ctx k) (tp :: k).
BalancedTree h f a -> Int -> Int -> f tp
unsafe_bal_index BalancedTree h f y
y Int
j forall a b. (a -> b) -> a -> b
$! (Int
iforall a. Num a => a -> a -> a
-Int
1)
| Bool
otherwise = forall {k} (h :: Height) (f :: k -> *) (a :: Ctx k) (tp :: k).
BalancedTree h f a -> Int -> Int -> f tp
unsafe_bal_index BalancedTree h f x
x Int
j forall a b. (a -> b) -> a -> b
$! (Int
iforall a. Num a => a -> a -> a
-Int
1)
unsafe_bal_adjust :: Functor m
=> (f x -> m (f y))
-> BalancedTree h f a
-> Int
-> Int
-> m (BalancedTree h f b)
unsafe_bal_adjust :: forall {k} (m :: * -> *) (f :: k -> *) (x :: k) (y :: k)
(h :: Height) (a :: Ctx k) (b :: Ctx k).
Functor m =>
(f x -> m (f y))
-> BalancedTree h f a -> Int -> Int -> m (BalancedTree h f b)
unsafe_bal_adjust f x -> m (f y)
f (BalLeaf f x
u) Int
_ Int
i = forall a. (?callStack::CallStack) => Bool -> a -> a
assert (Int
i forall a. Eq a => a -> a -> Bool
== Int
0) forall a b. (a -> b) -> a -> b
$
(forall a b. a -> b
unsafeCoerce forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall {k} (f :: k -> *) (ctx :: k).
f ctx -> BalancedTree 'Zero f (SingleCtx ctx)
BalLeaf forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (f x -> m (f y)
f (forall a b. a -> b
unsafeCoerce f x
u)))
unsafe_bal_adjust f x -> m (f y)
f (BalPair BalancedTree h f x
x BalancedTree h f y
y) Int
j Int
i
| Int
j forall a. Bits a => a -> Int -> Bool
`testBit` (Int
iforall a. Num a => a -> a -> a
-Int
1) = (forall a b. a -> b
unsafeCoerce forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall {k} (ctx :: Height) (f :: k -> *) (tp :: Ctx k)
(y :: Ctx k).
BalancedTree ctx f tp
-> BalancedTree ctx f y -> BalancedTree ('Succ ctx) f (tp <+> y)
BalPair BalancedTree h f x
x forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (forall {k} (m :: * -> *) (f :: k -> *) (x :: k) (y :: k)
(h :: Height) (a :: Ctx k) (b :: Ctx k).
Functor m =>
(f x -> m (f y))
-> BalancedTree h f a -> Int -> Int -> m (BalancedTree h f b)
unsafe_bal_adjust f x -> m (f y)
f BalancedTree h f y
y Int
j (Int
iforall a. Num a => a -> a -> a
-Int
1)))
| Bool
otherwise = (forall a b. a -> b
unsafeCoerce forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b c. (a -> b -> c) -> b -> a -> c
flip forall {k} (ctx :: Height) (f :: k -> *) (tp :: Ctx k)
(y :: Ctx k).
BalancedTree ctx f tp
-> BalancedTree ctx f y -> BalancedTree ('Succ ctx) f (tp <+> y)
BalPair BalancedTree h f y
y forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (forall {k} (m :: * -> *) (f :: k -> *) (x :: k) (y :: k)
(h :: Height) (a :: Ctx k) (b :: Ctx k).
Functor m =>
(f x -> m (f y))
-> BalancedTree h f a -> Int -> Int -> m (BalancedTree h f b)
unsafe_bal_adjust f x -> m (f y)
f BalancedTree h f x
x Int
j (Int
iforall a. Num a => a -> a -> a
-Int
1)))
{-# SPECIALIZE unsafe_bal_adjust
:: (f x -> Identity (f y))
-> BalancedTree h f a
-> Int
-> Int
-> Identity (BalancedTree h f b)
#-}
bal_zipWithM :: Applicative m
=> (forall x . f x -> g x -> m (h x))
-> BalancedTree u f a
-> BalancedTree u g a
-> m (BalancedTree u h a)
bal_zipWithM :: forall {k} (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: k -> *)
(u :: Height) (a :: Ctx k).
Applicative m =>
(forall (x :: k). f x -> g x -> m (h x))
-> BalancedTree u f a
-> BalancedTree u g a
-> m (BalancedTree u h a)
bal_zipWithM forall (x :: k). f x -> g x -> m (h x)
f (BalLeaf f x
x) (BalLeaf g x
y) = forall {k} (f :: k -> *) (ctx :: k).
f ctx -> BalancedTree 'Zero f (SingleCtx ctx)
BalLeaf forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (x :: k). f x -> g x -> m (h x)
f f x
x g x
y
bal_zipWithM forall (x :: k). f x -> g x -> m (h x)
f (BalPair BalancedTree h f x
x1 BalancedTree h f y
x2) (BalPair BalancedTree h g x
y1 BalancedTree h g y
y2) =
forall {k} (ctx :: Height) (f :: k -> *) (tp :: Ctx k)
(y :: Ctx k).
BalancedTree ctx f tp
-> BalancedTree ctx f y -> BalancedTree ('Succ ctx) f (tp <+> y)
BalPair forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall {k} (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: k -> *)
(u :: Height) (a :: Ctx k).
Applicative m =>
(forall (x :: k). f x -> g x -> m (h x))
-> BalancedTree u f a
-> BalancedTree u g a
-> m (BalancedTree u h a)
bal_zipWithM forall (x :: k). f x -> g x -> m (h x)
f BalancedTree h f x
x1 (forall a b. a -> b
unsafeCoerce BalancedTree h g x
y1)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall {k} (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: k -> *)
(u :: Height) (a :: Ctx k).
Applicative m =>
(forall (x :: k). f x -> g x -> m (h x))
-> BalancedTree u f a
-> BalancedTree u g a
-> m (BalancedTree u h a)
bal_zipWithM forall (x :: k). f x -> g x -> m (h x)
f BalancedTree h f y
x2 (forall a b. a -> b
unsafeCoerce BalancedTree h g y
y2)
{-# INLINABLE bal_zipWithM #-}
data BinomialTree (h::Height) (f :: k -> Type) :: Ctx k -> Type where
Empty :: BinomialTree h f EmptyCtx
PlusOne :: !Int
-> !(BinomialTree ('Succ h) f x)
-> !(BalancedTree h f y)
-> BinomialTree h f (x <+> y)
PlusZero :: !Int
-> !(BinomialTree ('Succ h) f x)
-> BinomialTree h f x
tsize :: BinomialTree h f a -> Int
tsize :: forall {k} (h :: Height) (f :: k -> *) (a :: Ctx k).
BinomialTree h f a -> Int
tsize BinomialTree h f a
Empty = Int
0
tsize (PlusOne Int
s BinomialTree ('Succ h) f x
_ BalancedTree h f y
_) = Int
2forall a. Num a => a -> a -> a
*Int
sforall a. Num a => a -> a -> a
+Int
1
tsize (PlusZero Int
s BinomialTree ('Succ h) f a
_) = Int
2forall a. Num a => a -> a -> a
*Int
s
t_cnt_size :: BinomialTree h f a -> Int
t_cnt_size :: forall {k} (h :: Height) (f :: k -> *) (a :: Ctx k).
BinomialTree h f a -> Int
t_cnt_size BinomialTree h f a
Empty = Int
0
t_cnt_size (PlusOne Int
_ BinomialTree ('Succ h) f x
l BalancedTree h f y
r) = forall {k} (h :: Height) (f :: k -> *) (a :: Ctx k).
BinomialTree h f a -> Int
t_cnt_size BinomialTree ('Succ h) f x
l forall a. Num a => a -> a -> a
+ forall {k} (h :: Height) (f :: k -> *) (p :: Ctx k).
BalancedTree h f p -> Int
bal_size BalancedTree h f y
r
t_cnt_size (PlusZero Int
_ BinomialTree ('Succ h) f a
l) = forall {k} (h :: Height) (f :: k -> *) (a :: Ctx k).
BinomialTree h f a -> Int
t_cnt_size BinomialTree ('Succ h) f a
l
append :: BinomialTree h f x
-> BalancedTree h f y
-> BinomialTree h f (x <+> y)
append :: forall {k} (h :: Height) (f :: k -> *) (x :: Ctx k) (y :: Ctx k).
BinomialTree h f x
-> BalancedTree h f y -> BinomialTree h f (x <+> y)
append BinomialTree h f x
Empty BalancedTree h f y
y = forall {k} (h :: Height) (f :: k -> *) (ctx :: Ctx k)
(tp :: Ctx k).
Int
-> BinomialTree ('Succ h) f ctx
-> BalancedTree h f tp
-> BinomialTree h f (ctx <+> tp)
PlusOne Int
0 forall {k} (h :: Height) (f :: k -> *). BinomialTree h f EmptyCtx
Empty BalancedTree h f y
y
append (PlusOne Int
_ BinomialTree ('Succ h) f x
t BalancedTree h f y
x) BalancedTree h f y
y =
case forall {k} (p :: Ctx k -> *) (x :: Ctx k) (q :: Ctx k -> *)
(y :: Ctx k) (r :: Ctx k -> *) (z :: Ctx k).
p x -> q y -> r z -> (x <+> (y <+> z)) :~: ((x <+> y) <+> z)
assoc BinomialTree ('Succ h) f x
t BalancedTree h f y
x BalancedTree h f y
y of
(x <+> (y <+> y)) :~: ((x <+> y) <+> y)
Refl ->
let t' :: BinomialTree ('Succ h) f (x <+> (y <+> y))
t' = forall {k} (h :: Height) (f :: k -> *) (x :: Ctx k) (y :: Ctx k).
BinomialTree h f x
-> BalancedTree h f y -> BinomialTree h f (x <+> y)
append BinomialTree ('Succ h) f x
t (forall {k} (ctx :: Height) (f :: k -> *) (tp :: Ctx k)
(y :: Ctx k).
BalancedTree ctx f tp
-> BalancedTree ctx f y -> BalancedTree ('Succ ctx) f (tp <+> y)
BalPair BalancedTree h f y
x BalancedTree h f y
y)
in forall {k} (h :: Height) (f :: k -> *) (x :: Ctx k).
Int -> BinomialTree ('Succ h) f x -> BinomialTree h f x
PlusZero (forall {k} (h :: Height) (f :: k -> *) (a :: Ctx k).
BinomialTree h f a -> Int
tsize BinomialTree ('Succ h) f (x <+> (y <+> y))
t') BinomialTree ('Succ h) f (x <+> (y <+> y))
t'
append (PlusZero Int
s BinomialTree ('Succ h) f x
t) BalancedTree h f y
x = forall {k} (h :: Height) (f :: k -> *) (ctx :: Ctx k)
(tp :: Ctx k).
Int
-> BinomialTree ('Succ h) f ctx
-> BalancedTree h f tp
-> BinomialTree h f (ctx <+> tp)
PlusOne Int
s BinomialTree ('Succ h) f x
t BalancedTree h f y
x
instance TestEqualityFC (BinomialTree h) where
testEqualityFC :: forall (f :: k -> *).
(forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y))
-> forall (x :: Ctx k) (y :: Ctx k).
BinomialTree h f x -> BinomialTree h f y -> Maybe (x :~: y)
testEqualityFC forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y)
_ BinomialTree h f x
Empty BinomialTree h f y
Empty = forall (m :: * -> *) a. Monad m => a -> m a
return forall {k} (a :: k). a :~: a
Refl
testEqualityFC forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y)
test (PlusZero Int
_ BinomialTree ('Succ h) f x
x1) (PlusZero Int
_ BinomialTree ('Succ h) f y
y1) = do
x :~: y
Refl <- forall k l (t :: (k -> *) -> l -> *) (f :: k -> *).
TestEqualityFC t =>
(forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y))
-> forall (x :: l) (y :: l). t f x -> t f y -> Maybe (x :~: y)
testEqualityFC forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y)
test BinomialTree ('Succ h) f x
x1 BinomialTree ('Succ h) f y
y1
forall (m :: * -> *) a. Monad m => a -> m a
return forall {k} (a :: k). a :~: a
Refl
testEqualityFC forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y)
test (PlusOne Int
_ BinomialTree ('Succ h) f x
x1 BalancedTree h f y
x2) (PlusOne Int
_ BinomialTree ('Succ h) f x
y1 BalancedTree h f y
y2) = do
x :~: x
Refl <- forall k l (t :: (k -> *) -> l -> *) (f :: k -> *).
TestEqualityFC t =>
(forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y))
-> forall (x :: l) (y :: l). t f x -> t f y -> Maybe (x :~: y)
testEqualityFC forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y)
test BinomialTree ('Succ h) f x
x1 BinomialTree ('Succ h) f x
y1
y :~: y
Refl <- forall k l (t :: (k -> *) -> l -> *) (f :: k -> *).
TestEqualityFC t =>
(forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y))
-> forall (x :: l) (y :: l). t f x -> t f y -> Maybe (x :~: y)
testEqualityFC forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y)
test BalancedTree h f y
x2 BalancedTree h f y
y2
forall (m :: * -> *) a. Monad m => a -> m a
return forall {k} (a :: k). a :~: a
Refl
testEqualityFC forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y)
_ BinomialTree h f x
_ BinomialTree h f y
_ = forall a. Maybe a
Nothing
instance OrdFC (BinomialTree h) where
compareFC :: forall (f :: k -> *).
(forall (x :: k) (y :: k). f x -> f y -> OrderingF x y)
-> forall (x :: Ctx k) (y :: Ctx k).
BinomialTree h f x -> BinomialTree h f y -> OrderingF x y
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
_ BinomialTree h f x
Empty BinomialTree h f y
Empty = forall {k} (x :: k). OrderingF x x
EQF
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
_ BinomialTree h f x
Empty BinomialTree h f y
_ = forall {k} (x :: k) (y :: k). OrderingF x y
LTF
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
_ BinomialTree h f x
_ BinomialTree h f y
Empty = forall {k} (x :: k) (y :: k). OrderingF x y
GTF
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
test (PlusZero Int
_ BinomialTree ('Succ h) f x
x1) (PlusZero Int
_ BinomialTree ('Succ h) f y
y1) =
forall j k (a :: j) (b :: j) (c :: k) (d :: k).
OrderingF a b -> ((a ~ b) => OrderingF c d) -> OrderingF c d
joinOrderingF (forall k l (t :: (k -> *) -> l -> *) (f :: k -> *).
OrdFC t =>
(forall (x :: k) (y :: k). f x -> f y -> OrderingF x y)
-> forall (x :: l) (y :: l). t f x -> t f y -> OrderingF x y
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
test BinomialTree ('Succ h) f x
x1 BinomialTree ('Succ h) f y
y1) forall a b. (a -> b) -> a -> b
$ forall {k} (x :: k). OrderingF x x
EQF
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
_ PlusZero{} BinomialTree h f y
_ = forall {k} (x :: k) (y :: k). OrderingF x y
LTF
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
_ BinomialTree h f x
_ PlusZero{} = forall {k} (x :: k) (y :: k). OrderingF x y
GTF
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
test (PlusOne Int
_ BinomialTree ('Succ h) f x
x1 BalancedTree h f y
x2) (PlusOne Int
_ BinomialTree ('Succ h) f x
y1 BalancedTree h f y
y2) =
forall j k (a :: j) (b :: j) (c :: k) (d :: k).
OrderingF a b -> ((a ~ b) => OrderingF c d) -> OrderingF c d
joinOrderingF (forall k l (t :: (k -> *) -> l -> *) (f :: k -> *).
OrdFC t =>
(forall (x :: k) (y :: k). f x -> f y -> OrderingF x y)
-> forall (x :: l) (y :: l). t f x -> t f y -> OrderingF x y
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
test BinomialTree ('Succ h) f x
x1 BinomialTree ('Succ h) f x
y1) forall a b. (a -> b) -> a -> b
$
forall j k (a :: j) (b :: j) (c :: k) (d :: k).
OrderingF a b -> ((a ~ b) => OrderingF c d) -> OrderingF c d
joinOrderingF (forall k l (t :: (k -> *) -> l -> *) (f :: k -> *).
OrdFC t =>
(forall (x :: k) (y :: k). f x -> f y -> OrderingF x y)
-> forall (x :: l) (y :: l). t f x -> t f y -> OrderingF x y
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
test BalancedTree h f y
x2 BalancedTree h f y
y2) forall a b. (a -> b) -> a -> b
$
forall {k} (x :: k). OrderingF x x
EQF
instance HashableF f => HashableF (BinomialTree h f) where
hashWithSaltF :: forall (tp :: Ctx k). Int -> BinomialTree h f tp -> Int
hashWithSaltF Int
s BinomialTree h f tp
t =
case BinomialTree h f tp
t of
BinomialTree h f tp
Empty -> Int
s
PlusZero Int
_ BinomialTree ('Succ h) f tp
x -> Int
s forall k (f :: k -> *) (tp :: k). HashableF f => Int -> f tp -> Int
`hashWithSaltF` BinomialTree ('Succ h) f tp
x
PlusOne Int
_ BinomialTree ('Succ h) f x
x BalancedTree h f y
y -> Int
s forall k (f :: k -> *) (tp :: k). HashableF f => Int -> f tp -> Int
`hashWithSaltF` BinomialTree ('Succ h) f x
x forall k (f :: k -> *) (tp :: k). HashableF f => Int -> f tp -> Int
`hashWithSaltF` BalancedTree h f y
y
fmap_bin :: (forall tp . f tp -> g tp)
-> BinomialTree h f c
-> BinomialTree h g c
fmap_bin :: forall {k} (f :: k -> *) (g :: k -> *) (h :: Height) (c :: Ctx k).
(forall (tp :: k). f tp -> g tp)
-> BinomialTree h f c -> BinomialTree h g c
fmap_bin forall (tp :: k). f tp -> g tp
_ BinomialTree h f c
Empty = forall {k} (h :: Height) (f :: k -> *). BinomialTree h f EmptyCtx
Empty
fmap_bin forall (tp :: k). f tp -> g tp
f (PlusOne Int
s BinomialTree ('Succ h) f x
t BalancedTree h f y
x) = forall {k} (h :: Height) (f :: k -> *) (ctx :: Ctx k)
(tp :: Ctx k).
Int
-> BinomialTree ('Succ h) f ctx
-> BalancedTree h f tp
-> BinomialTree h f (ctx <+> tp)
PlusOne Int
s (forall {k} (f :: k -> *) (g :: k -> *) (h :: Height) (c :: Ctx k).
(forall (tp :: k). f tp -> g tp)
-> BinomialTree h f c -> BinomialTree h g c
fmap_bin forall (tp :: k). f tp -> g tp
f BinomialTree ('Succ h) f x
t) (forall {k} (f :: k -> *) (g :: k -> *) (h :: Height) (c :: Ctx k).
(forall (tp :: k). f tp -> g tp)
-> BalancedTree h f c -> BalancedTree h g c
fmap_bal forall (tp :: k). f tp -> g tp
f BalancedTree h f y
x)
fmap_bin forall (tp :: k). f tp -> g tp
f (PlusZero Int
s BinomialTree ('Succ h) f c
t) = forall {k} (h :: Height) (f :: k -> *) (x :: Ctx k).
Int -> BinomialTree ('Succ h) f x -> BinomialTree h f x
PlusZero Int
s (forall {k} (f :: k -> *) (g :: k -> *) (h :: Height) (c :: Ctx k).
(forall (tp :: k). f tp -> g tp)
-> BinomialTree h f c -> BinomialTree h g c
fmap_bin forall (tp :: k). f tp -> g tp
f BinomialTree ('Succ h) f c
t)
{-# INLINABLE fmap_bin #-}
traverse_bin :: Applicative m
=> (forall tp . f tp -> m (g tp))
-> BinomialTree h f c
-> m (BinomialTree h g c)
traverse_bin :: forall {k} (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: Height)
(c :: Ctx k).
Applicative m =>
(forall (tp :: k). f tp -> m (g tp))
-> BinomialTree h f c -> m (BinomialTree h g c)
traverse_bin forall (tp :: k). f tp -> m (g tp)
_ BinomialTree h f c
Empty = forall (f :: * -> *) a. Applicative f => a -> f a
pure forall {k} (h :: Height) (f :: k -> *). BinomialTree h f EmptyCtx
Empty
traverse_bin forall (tp :: k). f tp -> m (g tp)
f (PlusOne Int
s BinomialTree ('Succ h) f x
t BalancedTree h f y
x) = forall {k} (h :: Height) (f :: k -> *) (ctx :: Ctx k)
(tp :: Ctx k).
Int
-> BinomialTree ('Succ h) f ctx
-> BalancedTree h f tp
-> BinomialTree h f (ctx <+> tp)
PlusOne Int
s forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall {k} (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: Height)
(c :: Ctx k).
Applicative m =>
(forall (tp :: k). f tp -> m (g tp))
-> BinomialTree h f c -> m (BinomialTree h g c)
traverse_bin forall (tp :: k). f tp -> m (g tp)
f BinomialTree ('Succ h) f x
t forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall {k} (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: Height)
(c :: Ctx k).
Applicative m =>
(forall (tp :: k). f tp -> m (g tp))
-> BalancedTree h f c -> m (BalancedTree h g c)
traverse_bal forall (tp :: k). f tp -> m (g tp)
f BalancedTree h f y
x
traverse_bin forall (tp :: k). f tp -> m (g tp)
f (PlusZero Int
s BinomialTree ('Succ h) f c
t) = forall {k} (h :: Height) (f :: k -> *) (x :: Ctx k).
Int -> BinomialTree ('Succ h) f x -> BinomialTree h f x
PlusZero Int
s forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall {k} (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: Height)
(c :: Ctx k).
Applicative m =>
(forall (tp :: k). f tp -> m (g tp))
-> BinomialTree h f c -> m (BinomialTree h g c)
traverse_bin forall (tp :: k). f tp -> m (g tp)
f BinomialTree ('Succ h) f c
t
{-# INLINABLE traverse_bin #-}
unsafe_bin_generate :: forall h f ctx t
. Int
-> Int
-> (forall x . Index ctx x -> f x)
-> BinomialTree h f t
unsafe_bin_generate :: forall {k} (h :: Height) (f :: k -> *) (ctx :: Ctx k) (t :: Ctx k).
Int
-> Int
-> (forall (x :: k). Index ctx x -> f x)
-> BinomialTree h f t
unsafe_bin_generate Int
sz Int
h forall (x :: k). Index ctx x -> f x
f
| Int
sz forall a. Eq a => a -> a -> Bool
== Int
0 = forall a b. a -> b
unsafeCoerce forall {k} (h :: Height) (f :: k -> *). BinomialTree h f EmptyCtx
Empty
| Int
sz forall a. Bits a => a -> Int -> Bool
`testBit` Int
0 =
let s :: Int
s = Int
sz forall a. Bits a => a -> Int -> a
`shiftR` Int
1
t :: BinomialTree ('Succ Any) f Any
t = forall {k} (h :: Height) (f :: k -> *) (ctx :: Ctx k) (t :: Ctx k).
Int
-> Int
-> (forall (x :: k). Index ctx x -> f x)
-> BinomialTree h f t
unsafe_bin_generate Int
s (Int
hforall a. Num a => a -> a -> a
+Int
1) forall (x :: k). Index ctx x -> f x
f
o :: Int
o = Int
s forall a. Num a => a -> a -> a
* Int
2forall a b. (Num a, Integral b) => a -> b -> a
^(Int
hforall a. Num a => a -> a -> a
+Int
1)
u :: BalancedTree Any f Any
u = forall a. (?callStack::CallStack) => Bool -> a -> a
assert (Int
o forall a. Eq a => a -> a -> Bool
== forall {k} (h :: Height) (f :: k -> *) (a :: Ctx k).
BinomialTree h f a -> Int
t_cnt_size BinomialTree ('Succ Any) f Any
t) forall a b. (a -> b) -> a -> b
$ forall {k} (ctx :: Ctx k) (h :: Height) (f :: k -> *) (t :: Ctx k).
Int
-> Int
-> (forall (tp :: k). Index ctx tp -> f tp)
-> BalancedTree h f t
unsafe_bal_generate Int
h Int
o forall (x :: k). Index ctx x -> f x
f
in forall a b. a -> b
unsafeCoerce (forall {k} (h :: Height) (f :: k -> *) (ctx :: Ctx k)
(tp :: Ctx k).
Int
-> BinomialTree ('Succ h) f ctx
-> BalancedTree h f tp
-> BinomialTree h f (ctx <+> tp)
PlusOne Int
s BinomialTree ('Succ Any) f Any
t BalancedTree Any f Any
u)
| Bool
otherwise =
let s :: Int
s = Int
sz forall a. Bits a => a -> Int -> a
`shiftR` Int
1
t :: BinomialTree ('Succ h) f t
t = forall {k} (h :: Height) (f :: k -> *) (ctx :: Ctx k) (t :: Ctx k).
Int
-> Int
-> (forall (x :: k). Index ctx x -> f x)
-> BinomialTree h f t
unsafe_bin_generate (Int
sz forall a. Bits a => a -> Int -> a
`shiftR` Int
1) (Int
hforall a. Num a => a -> a -> a
+Int
1) forall (x :: k). Index ctx x -> f x
f
r :: BinomialTree h f t
r :: BinomialTree h f t
r = forall {k} (h :: Height) (f :: k -> *) (x :: Ctx k).
Int -> BinomialTree ('Succ h) f x -> BinomialTree h f x
PlusZero Int
s BinomialTree ('Succ h) f t
t
in BinomialTree h f t
r
unsafe_bin_generateM :: forall m h f ctx t
. Applicative m
=> Int
-> Int
-> (forall x . Index ctx x -> m (f x))
-> m (BinomialTree h f t)
unsafe_bin_generateM :: forall {k} (m :: * -> *) (h :: Height) (f :: k -> *) (ctx :: Ctx k)
(t :: Ctx k).
Applicative m =>
Int
-> Int
-> (forall (x :: k). Index ctx x -> m (f x))
-> m (BinomialTree h f t)
unsafe_bin_generateM Int
sz Int
h forall (x :: k). Index ctx x -> m (f x)
f
| Int
sz forall a. Eq a => a -> a -> Bool
== Int
0 = forall (f :: * -> *) a. Applicative f => a -> f a
pure (forall a b. a -> b
unsafeCoerce forall {k} (h :: Height) (f :: k -> *). BinomialTree h f EmptyCtx
Empty)
| Int
sz forall a. Bits a => a -> Int -> Bool
`testBit` Int
0 =
let s :: Int
s = Int
sz forall a. Bits a => a -> Int -> a
`shiftR` Int
1
t :: m (BinomialTree Any f Any)
t = forall {k} (m :: * -> *) (h :: Height) (f :: k -> *) (ctx :: Ctx k)
(t :: Ctx k).
Applicative m =>
Int
-> Int
-> (forall (x :: k). Index ctx x -> m (f x))
-> m (BinomialTree h f t)
unsafe_bin_generateM Int
s (Int
hforall a. Num a => a -> a -> a
+Int
1) forall (x :: k). Index ctx x -> m (f x)
f
o :: Int
o = Int
s forall a. Num a => a -> a -> a
* Int
2forall a b. (Num a, Integral b) => a -> b -> a
^(Int
hforall a. Num a => a -> a -> a
+Int
1)
u :: m (BalancedTree Any f Any)
u = forall {k} (m :: * -> *) (ctx :: Ctx k) (h :: Height) (f :: k -> *)
(t :: Ctx k).
Applicative m =>
Int
-> Int
-> (forall (x :: k). Index ctx x -> m (f x))
-> m (BalancedTree h f t)
unsafe_bal_generateM Int
h Int
o forall (x :: k). Index ctx x -> m (f x)
f
r :: m (BinomialTree h f t)
r = forall a b. a -> b
unsafeCoerce (forall {k} (h :: Height) (f :: k -> *) (ctx :: Ctx k)
(tp :: Ctx k).
Int
-> BinomialTree ('Succ h) f ctx
-> BalancedTree h f tp
-> BinomialTree h f (ctx <+> tp)
PlusOne Int
s) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m (BinomialTree Any f Any)
t forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> m (BalancedTree Any f Any)
u
in m (BinomialTree h f t)
r
| Bool
otherwise =
let s :: Int
s = Int
sz forall a. Bits a => a -> Int -> a
`shiftR` Int
1
t :: m (BinomialTree ('Succ h) f t)
t = forall {k} (m :: * -> *) (h :: Height) (f :: k -> *) (ctx :: Ctx k)
(t :: Ctx k).
Applicative m =>
Int
-> Int
-> (forall (x :: k). Index ctx x -> m (f x))
-> m (BinomialTree h f t)
unsafe_bin_generateM Int
s (Int
hforall a. Num a => a -> a -> a
+Int
1) forall (x :: k). Index ctx x -> m (f x)
f
r :: m (BinomialTree h f t)
r :: m (BinomialTree h f t)
r = forall {k} (h :: Height) (f :: k -> *) (x :: Ctx k).
Int -> BinomialTree ('Succ h) f x -> BinomialTree h f x
PlusZero Int
s forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m (BinomialTree ('Succ h) f t)
t
in m (BinomialTree h f t)
r
data DropResult f (ctx :: Ctx k) where
DropEmpty :: DropResult f EmptyCtx
DropExt :: BinomialTree 'Zero f x
-> f y
-> DropResult f (x ::> y)
bal_drop :: forall h f x y
. BinomialTree h f x
-> BalancedTree h f y
-> DropResult f (x <+> y)
bal_drop :: forall {k} (h :: Height) (f :: k -> *) (x :: Ctx k) (y :: Ctx k).
BinomialTree h f x -> BalancedTree h f y -> DropResult f (x <+> y)
bal_drop BinomialTree h f x
t (BalLeaf f x
e) = forall {k} (f :: k -> *) (ctx :: Ctx k) (tp :: k).
BinomialTree 'Zero f ctx -> f tp -> DropResult f (ctx ::> tp)
DropExt BinomialTree h f x
t f x
e
bal_drop BinomialTree h f x
t (BalPair BalancedTree h f x
x BalancedTree h f y
y) =
forall a b. a -> b
unsafeCoerce (forall {k} (h :: Height) (f :: k -> *) (x :: Ctx k) (y :: Ctx k).
BinomialTree h f x -> BalancedTree h f y -> DropResult f (x <+> y)
bal_drop (forall {k} (h :: Height) (f :: k -> *) (ctx :: Ctx k)
(tp :: Ctx k).
Int
-> BinomialTree ('Succ h) f ctx
-> BalancedTree h f tp
-> BinomialTree h f (ctx <+> tp)
PlusOne (forall {k} (h :: Height) (f :: k -> *) (a :: Ctx k).
BinomialTree h f a -> Int
tsize BinomialTree h f x
t) (forall a b. a -> b
unsafeCoerce BinomialTree h f x
t) BalancedTree h f x
x) BalancedTree h f y
y)
bin_drop :: forall h f ctx
. BinomialTree h f ctx
-> DropResult f ctx
bin_drop :: forall {k} (h :: Height) (f :: k -> *) (ctx :: Ctx k).
BinomialTree h f ctx -> DropResult f ctx
bin_drop BinomialTree h f ctx
Empty = forall {k} (f :: k -> *). DropResult f EmptyCtx
DropEmpty
bin_drop (PlusZero Int
_ BinomialTree ('Succ h) f ctx
u) = forall {k} (h :: Height) (f :: k -> *) (ctx :: Ctx k).
BinomialTree h f ctx -> DropResult f ctx
bin_drop BinomialTree ('Succ h) f ctx
u
bin_drop (PlusOne Int
s BinomialTree ('Succ h) f x
t BalancedTree h f y
u) =
let m :: BinomialTree h f x
m = case BinomialTree ('Succ h) f x
t of
BinomialTree ('Succ h) f x
Empty -> forall {k} (h :: Height) (f :: k -> *). BinomialTree h f EmptyCtx
Empty
BinomialTree ('Succ h) f x
_ -> forall {k} (h :: Height) (f :: k -> *) (x :: Ctx k).
Int -> BinomialTree ('Succ h) f x -> BinomialTree h f x
PlusZero Int
s BinomialTree ('Succ h) f x
t
in forall {k} (h :: Height) (f :: k -> *) (x :: Ctx k) (y :: Ctx k).
BinomialTree h f x -> BalancedTree h f y -> DropResult f (x <+> y)
bal_drop BinomialTree h f x
m BalancedTree h f y
u
unsafe_bin_index :: BinomialTree h f a
-> Int
-> Int
-> f u
unsafe_bin_index :: forall {k} (h :: Height) (f :: k -> *) (a :: Ctx k) (u :: k).
BinomialTree h f a -> Int -> Int -> f u
unsafe_bin_index BinomialTree h f a
_ Int
_ Int
i
| seq :: forall a b. a -> b -> b
seq Int
i Bool
False = forall a. (?callStack::CallStack) => String -> a
error String
"bad unsafe_bin_index"
unsafe_bin_index BinomialTree h f a
Empty Int
_ Int
_ = forall a. (?callStack::CallStack) => String -> a
error String
"unsafe_bin_index reached end of list"
unsafe_bin_index (PlusOne Int
sz BinomialTree ('Succ h) f x
t BalancedTree h f y
u) Int
j Int
i
| Int
sz forall a. Eq a => a -> a -> Bool
== Int
j forall a. Bits a => a -> Int -> a
`shiftR` (Int
1forall a. Num a => a -> a -> a
+Int
i) = forall {k} (h :: Height) (f :: k -> *) (a :: Ctx k) (tp :: k).
BalancedTree h f a -> Int -> Int -> f tp
unsafe_bal_index BalancedTree h f y
u Int
j Int
i
| Bool
otherwise = forall {k} (h :: Height) (f :: k -> *) (a :: Ctx k) (u :: k).
BinomialTree h f a -> Int -> Int -> f u
unsafe_bin_index BinomialTree ('Succ h) f x
t Int
j forall a b. (a -> b) -> a -> b
$! (Int
1forall a. Num a => a -> a -> a
+Int
i)
unsafe_bin_index (PlusZero Int
sz BinomialTree ('Succ h) f a
t) Int
j Int
i
| Int
sz forall a. Eq a => a -> a -> Bool
== Int
j forall a. Bits a => a -> Int -> a
`shiftR` (Int
1forall a. Num a => a -> a -> a
+Int
i) = forall a. (?callStack::CallStack) => String -> a
error String
"unsafe_bin_index stopped at PlusZero"
| Bool
otherwise = forall {k} (h :: Height) (f :: k -> *) (a :: Ctx k) (u :: k).
BinomialTree h f a -> Int -> Int -> f u
unsafe_bin_index BinomialTree ('Succ h) f a
t Int
j forall a b. (a -> b) -> a -> b
$! (Int
1forall a. Num a => a -> a -> a
+Int
i)
unsafe_bin_adjust :: forall m h f x y a b
. Functor m
=> (f x -> m (f y))
-> BinomialTree h f a
-> Int
-> Int
-> m (BinomialTree h f b)
unsafe_bin_adjust :: forall {k} (m :: * -> *) (h :: Height) (f :: k -> *) (x :: k)
(y :: k) (a :: Ctx k) (b :: Ctx k).
Functor m =>
(f x -> m (f y))
-> BinomialTree h f a -> Int -> Int -> m (BinomialTree h f b)
unsafe_bin_adjust f x -> m (f y)
_ BinomialTree h f a
Empty Int
_ Int
_ = forall a. (?callStack::CallStack) => String -> a
error String
"unsafe_bin_adjust reached end of list"
unsafe_bin_adjust f x -> m (f y)
f (PlusOne Int
sz BinomialTree ('Succ h) f x
t BalancedTree h f y
u) Int
j Int
i
| Int
sz forall a. Eq a => a -> a -> Bool
== Int
j forall a. Bits a => a -> Int -> a
`shiftR` (Int
1forall a. Num a => a -> a -> a
+Int
i) =
forall a b. a -> b
unsafeCoerce forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall {k} (h :: Height) (f :: k -> *) (ctx :: Ctx k)
(tp :: Ctx k).
Int
-> BinomialTree ('Succ h) f ctx
-> BalancedTree h f tp
-> BinomialTree h f (ctx <+> tp)
PlusOne Int
sz BinomialTree ('Succ h) f x
t forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (forall {k} (m :: * -> *) (f :: k -> *) (x :: k) (y :: k)
(h :: Height) (a :: Ctx k) (b :: Ctx k).
Functor m =>
(f x -> m (f y))
-> BalancedTree h f a -> Int -> Int -> m (BalancedTree h f b)
unsafe_bal_adjust f x -> m (f y)
f BalancedTree h f y
u Int
j Int
i)
| Bool
otherwise =
forall a b. a -> b
unsafeCoerce forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b c. (a -> b -> c) -> b -> a -> c
flip (forall {k} (h :: Height) (f :: k -> *) (ctx :: Ctx k)
(tp :: Ctx k).
Int
-> BinomialTree ('Succ h) f ctx
-> BalancedTree h f tp
-> BinomialTree h f (ctx <+> tp)
PlusOne Int
sz) BalancedTree h f y
u forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (forall {k} (m :: * -> *) (h :: Height) (f :: k -> *) (x :: k)
(y :: k) (a :: Ctx k) (b :: Ctx k).
Functor m =>
(f x -> m (f y))
-> BinomialTree h f a -> Int -> Int -> m (BinomialTree h f b)
unsafe_bin_adjust f x -> m (f y)
f BinomialTree ('Succ h) f x
t Int
j (Int
iforall a. Num a => a -> a -> a
+Int
1))
unsafe_bin_adjust f x -> m (f y)
f (PlusZero Int
sz BinomialTree ('Succ h) f a
t) Int
j Int
i
| Int
sz forall a. Eq a => a -> a -> Bool
== Int
j forall a. Bits a => a -> Int -> a
`shiftR` (Int
1forall a. Num a => a -> a -> a
+Int
i) = forall a. (?callStack::CallStack) => String -> a
error String
"unsafe_bin_adjust stopped at PlusZero"
| Bool
otherwise = forall {k} (h :: Height) (f :: k -> *) (x :: Ctx k).
Int -> BinomialTree ('Succ h) f x -> BinomialTree h f x
PlusZero Int
sz forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (forall {k} (m :: * -> *) (h :: Height) (f :: k -> *) (x :: k)
(y :: k) (a :: Ctx k) (b :: Ctx k).
Functor m =>
(f x -> m (f y))
-> BinomialTree h f a -> Int -> Int -> m (BinomialTree h f b)
unsafe_bin_adjust f x -> m (f y)
f BinomialTree ('Succ h) f a
t Int
j (Int
iforall a. Num a => a -> a -> a
+Int
1))
{-# SPECIALIZE unsafe_bin_adjust
:: (f x -> Identity (f y))
-> BinomialTree h f a
-> Int
-> Int
-> Identity (BinomialTree h f b)
#-}
tree_zipWithM :: Applicative m
=> (forall x . f x -> g x -> m (h x))
-> BinomialTree u f a
-> BinomialTree u g a
-> m (BinomialTree u h a)
tree_zipWithM :: forall {k} (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: k -> *)
(u :: Height) (a :: Ctx k).
Applicative m =>
(forall (x :: k). f x -> g x -> m (h x))
-> BinomialTree u f a
-> BinomialTree u g a
-> m (BinomialTree u h a)
tree_zipWithM forall (x :: k). f x -> g x -> m (h x)
_ BinomialTree u f a
Empty BinomialTree u g a
Empty = forall (f :: * -> *) a. Applicative f => a -> f a
pure forall {k} (h :: Height) (f :: k -> *). BinomialTree h f EmptyCtx
Empty
tree_zipWithM forall (x :: k). f x -> g x -> m (h x)
f (PlusOne Int
s BinomialTree ('Succ u) f x
x1 BalancedTree u f y
x2) (PlusOne Int
_ BinomialTree ('Succ u) g x
y1 BalancedTree u g y
y2) =
forall {k} (h :: Height) (f :: k -> *) (ctx :: Ctx k)
(tp :: Ctx k).
Int
-> BinomialTree ('Succ h) f ctx
-> BalancedTree h f tp
-> BinomialTree h f (ctx <+> tp)
PlusOne Int
s forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall {k} (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: k -> *)
(u :: Height) (a :: Ctx k).
Applicative m =>
(forall (x :: k). f x -> g x -> m (h x))
-> BinomialTree u f a
-> BinomialTree u g a
-> m (BinomialTree u h a)
tree_zipWithM forall (x :: k). f x -> g x -> m (h x)
f BinomialTree ('Succ u) f x
x1 (forall a b. a -> b
unsafeCoerce BinomialTree ('Succ u) g x
y1)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall {k} (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: k -> *)
(u :: Height) (a :: Ctx k).
Applicative m =>
(forall (x :: k). f x -> g x -> m (h x))
-> BalancedTree u f a
-> BalancedTree u g a
-> m (BalancedTree u h a)
bal_zipWithM forall (x :: k). f x -> g x -> m (h x)
f BalancedTree u f y
x2 (forall a b. a -> b
unsafeCoerce BalancedTree u g y
y2)
tree_zipWithM forall (x :: k). f x -> g x -> m (h x)
f (PlusZero Int
s BinomialTree ('Succ u) f a
x1) (PlusZero Int
_ BinomialTree ('Succ u) g a
y1) =
forall {k} (h :: Height) (f :: k -> *) (x :: Ctx k).
Int -> BinomialTree ('Succ h) f x -> BinomialTree h f x
PlusZero Int
s forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall {k} (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: k -> *)
(u :: Height) (a :: Ctx k).
Applicative m =>
(forall (x :: k). f x -> g x -> m (h x))
-> BinomialTree u f a
-> BinomialTree u g a
-> m (BinomialTree u h a)
tree_zipWithM forall (x :: k). f x -> g x -> m (h x)
f BinomialTree ('Succ u) f a
x1 BinomialTree ('Succ u) g a
y1
tree_zipWithM forall (x :: k). f x -> g x -> m (h x)
_ BinomialTree u f a
_ BinomialTree u g a
_ = forall a. (?callStack::CallStack) => String -> a
error String
"ilegal args to tree_zipWithM"
{-# INLINABLE tree_zipWithM #-}
newtype Assignment (f :: k -> Type) (ctx :: Ctx k)
= Assignment (BinomialTree 'Zero f ctx)
type role Assignment nominal nominal
instance NFData (Assignment f ctx) where
rnf :: Assignment f ctx -> ()
rnf Assignment f ctx
a = seq :: forall a b. a -> b -> b
seq Assignment f ctx
a ()
size :: Assignment f ctx -> Size ctx
size :: forall {k} (f :: k -> *) (ctx :: Ctx k).
Assignment f ctx -> Size ctx
size (Assignment BinomialTree 'Zero f ctx
t) = forall k (ctx :: Ctx k). Int -> Size ctx
Size (forall {k} (h :: Height) (f :: k -> *) (a :: Ctx k).
BinomialTree h f a -> Int
tsize BinomialTree 'Zero f ctx
t)
replicate :: Size ctx -> (forall tp . f tp) -> Assignment f ctx
replicate :: forall {k} (ctx :: Ctx k) (f :: k -> *).
Size ctx -> (forall (tp :: k). f tp) -> Assignment f ctx
replicate Size ctx
n forall (tp :: k). f tp
c = forall {k} (ctx :: Ctx k) (f :: k -> *).
Size ctx
-> (forall (tp :: k). Index ctx tp -> f tp) -> Assignment f ctx
generate Size ctx
n (\Index ctx tp
_ -> forall (tp :: k). f tp
c)
generate :: Size ctx
-> (forall tp . Index ctx tp -> f tp)
-> Assignment f ctx
generate :: forall {k} (ctx :: Ctx k) (f :: k -> *).
Size ctx
-> (forall (tp :: k). Index ctx tp -> f tp) -> Assignment f ctx
generate Size ctx
n forall (tp :: k). Index ctx tp -> f tp
f = forall k (f :: k -> *) (ctx :: Ctx k).
BinomialTree 'Zero f ctx -> Assignment f ctx
Assignment BinomialTree 'Zero f ctx
r
where r :: BinomialTree 'Zero f ctx
r = forall {k} (h :: Height) (f :: k -> *) (ctx :: Ctx k) (t :: Ctx k).
Int
-> Int
-> (forall (x :: k). Index ctx x -> f x)
-> BinomialTree h f t
unsafe_bin_generate (forall {k} (ctx :: Ctx k). Size ctx -> Int
sizeInt Size ctx
n) Int
0 forall (tp :: k). Index ctx tp -> f tp
f
{-# NOINLINE generate #-}
generateM :: Applicative m
=> Size ctx
-> (forall tp . Index ctx tp -> m (f tp))
-> m (Assignment f ctx)
generateM :: forall {k} (m :: * -> *) (ctx :: Ctx k) (f :: k -> *).
Applicative m =>
Size ctx
-> (forall (tp :: k). Index ctx tp -> m (f tp))
-> m (Assignment f ctx)
generateM Size ctx
n forall (tp :: k). Index ctx tp -> m (f tp)
f = forall k (f :: k -> *) (ctx :: Ctx k).
BinomialTree 'Zero f ctx -> Assignment f ctx
Assignment forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall {k} (m :: * -> *) (h :: Height) (f :: k -> *) (ctx :: Ctx k)
(t :: Ctx k).
Applicative m =>
Int
-> Int
-> (forall (x :: k). Index ctx x -> m (f x))
-> m (BinomialTree h f t)
unsafe_bin_generateM (forall {k} (ctx :: Ctx k). Size ctx -> Int
sizeInt Size ctx
n) Int
0 forall (tp :: k). Index ctx tp -> m (f tp)
f
{-# NOINLINE generateM #-}
empty :: Assignment f EmptyCtx
empty :: forall {k} (f :: k -> *). Assignment f EmptyCtx
empty = forall k (f :: k -> *) (ctx :: Ctx k).
BinomialTree 'Zero f ctx -> Assignment f ctx
Assignment forall {k} (h :: Height) (f :: k -> *). BinomialTree h f EmptyCtx
Empty
extend :: Assignment f ctx -> f x -> Assignment f (ctx ::> x)
extend :: forall {k} (f :: k -> *) (ctx :: Ctx k) (x :: k).
Assignment f ctx -> f x -> Assignment f (ctx ::> x)
extend (Assignment BinomialTree 'Zero f ctx
x) f x
y = forall k (f :: k -> *) (ctx :: Ctx k).
BinomialTree 'Zero f ctx -> Assignment f ctx
Assignment forall a b. (a -> b) -> a -> b
$ forall {k} (h :: Height) (f :: k -> *) (x :: Ctx k) (y :: Ctx k).
BinomialTree h f x
-> BalancedTree h f y -> BinomialTree h f (x <+> y)
append BinomialTree 'Zero f ctx
x (forall {k} (f :: k -> *) (ctx :: k).
f ctx -> BalancedTree 'Zero f (SingleCtx ctx)
BalLeaf f x
y)
unsafeIndex :: proxy u -> Int -> Assignment f ctx -> f u
unsafeIndex :: forall {k} (proxy :: k -> *) (u :: k) (f :: k -> *) (ctx :: Ctx k).
proxy u -> Int -> Assignment f ctx -> f u
unsafeIndex proxy u
_ Int
idx (Assignment BinomialTree 'Zero f ctx
t) = seq :: forall a b. a -> b -> b
seq BinomialTree 'Zero f ctx
t forall a b. (a -> b) -> a -> b
$ forall {k} (h :: Height) (f :: k -> *) (a :: Ctx k) (u :: k).
BinomialTree h f a -> Int -> Int -> f u
unsafe_bin_index BinomialTree 'Zero f ctx
t Int
idx Int
0
(!) :: Assignment f ctx -> Index ctx tp -> f tp
Assignment f ctx
a ! :: forall {k} (f :: k -> *) (ctx :: Ctx k) (tp :: k).
Assignment f ctx -> Index ctx tp -> f tp
! Index Int
i = forall a. (?callStack::CallStack) => Bool -> a -> a
assert (Int
0 forall a. Ord a => a -> a -> Bool
<= Int
i Bool -> Bool -> Bool
&& Int
i forall a. Ord a => a -> a -> Bool
< forall {k} (ctx :: Ctx k). Size ctx -> Int
sizeInt (forall {k} (f :: k -> *) (ctx :: Ctx k).
Assignment f ctx -> Size ctx
size Assignment f ctx
a)) forall a b. (a -> b) -> a -> b
$
forall {k} (proxy :: k -> *) (u :: k) (f :: k -> *) (ctx :: Ctx k).
proxy u -> Int -> Assignment f ctx -> f u
unsafeIndex forall {k} (t :: k). Proxy t
Proxy Int
i Assignment f ctx
a
(!^) :: KnownDiff l r => Assignment f r -> Index l tp -> f tp
Assignment f r
a !^ :: forall {k} (l :: Ctx k) (r :: Ctx k) (f :: k -> *) (tp :: k).
KnownDiff l r =>
Assignment f r -> Index l tp -> f tp
!^ Index l tp
i = Assignment f r
a forall {k} (f :: k -> *) (ctx :: Ctx k) (tp :: k).
Assignment f ctx -> Index ctx tp -> f tp
! forall {k} (l :: Ctx k) (r :: Ctx k) (tp :: k).
KnownDiff l r =>
Index l tp -> Index r tp
extendIndex Index l tp
i
instance TestEqualityFC Assignment where
testEqualityFC :: forall (f :: k -> *).
(forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y))
-> forall (x :: Ctx k) (y :: Ctx k).
Assignment f x -> Assignment f y -> Maybe (x :~: y)
testEqualityFC forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y)
test (Assignment BinomialTree 'Zero f x
x) (Assignment BinomialTree 'Zero f y
y) = do
x :~: y
Refl <- forall k l (t :: (k -> *) -> l -> *) (f :: k -> *).
TestEqualityFC t =>
(forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y))
-> forall (x :: l) (y :: l). t f x -> t f y -> Maybe (x :~: y)
testEqualityFC forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y)
test BinomialTree 'Zero f x
x BinomialTree 'Zero f y
y
forall (m :: * -> *) a. Monad m => a -> m a
return forall {k} (a :: k). a :~: a
Refl
instance TestEquality f => TestEquality (Assignment f) where
testEquality :: forall (a :: Ctx k) (b :: Ctx k).
Assignment f a -> Assignment f b -> Maybe (a :~: b)
testEquality = forall k l (t :: (k -> *) -> l -> *) (f :: k -> *).
TestEqualityFC t =>
(forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y))
-> forall (x :: l) (y :: l). t f x -> t f y -> Maybe (x :~: y)
testEqualityFC forall {k} (f :: k -> *) (a :: k) (b :: k).
TestEquality f =>
f a -> f b -> Maybe (a :~: b)
testEquality
instance TestEquality f => Eq (Assignment f ctx) where
Assignment f ctx
x == :: Assignment f ctx -> Assignment f ctx -> Bool
== Assignment f ctx
y = forall a. Maybe a -> Bool
isJust (forall {k} (f :: k -> *) (a :: k) (b :: k).
TestEquality f =>
f a -> f b -> Maybe (a :~: b)
testEquality Assignment f ctx
x Assignment f ctx
y)
instance OrdFC Assignment where
compareFC :: forall (f :: k -> *).
(forall (x :: k) (y :: k). f x -> f y -> OrderingF x y)
-> forall (x :: Ctx k) (y :: Ctx k).
Assignment f x -> Assignment f y -> OrderingF x y
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
test (Assignment BinomialTree 'Zero f x
x) (Assignment BinomialTree 'Zero f y
y) =
forall j k (a :: j) (b :: j) (c :: k) (d :: k).
OrderingF a b -> ((a ~ b) => OrderingF c d) -> OrderingF c d
joinOrderingF (forall k l (t :: (k -> *) -> l -> *) (f :: k -> *).
OrdFC t =>
(forall (x :: k) (y :: k). f x -> f y -> OrderingF x y)
-> forall (x :: l) (y :: l). t f x -> t f y -> OrderingF x y
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
test BinomialTree 'Zero f x
x BinomialTree 'Zero f y
y) forall a b. (a -> b) -> a -> b
$ forall {k} (x :: k). OrderingF x x
EQF
instance OrdF f => OrdF (Assignment f) where
compareF :: forall (x :: Ctx k) (y :: Ctx k).
Assignment f x -> Assignment f y -> OrderingF x y
compareF = forall k l (t :: (k -> *) -> l -> *) (f :: k -> *).
OrdFC t =>
(forall (x :: k) (y :: k). f x -> f y -> OrderingF x y)
-> forall (x :: l) (y :: l). t f x -> t f y -> OrderingF x y
compareFC forall k (ktp :: k -> *) (x :: k) (y :: k).
OrdF ktp =>
ktp x -> ktp y -> OrderingF x y
compareF
instance OrdF f => Ord (Assignment f ctx) where
compare :: Assignment f ctx -> Assignment f ctx -> Ordering
compare Assignment f ctx
x Assignment f ctx
y = forall {k} (x :: k) (y :: k). OrderingF x y -> Ordering
toOrdering (forall k (ktp :: k -> *) (x :: k) (y :: k).
OrdF ktp =>
ktp x -> ktp y -> OrderingF x y
compareF Assignment f ctx
x Assignment f ctx
y)
instance HashableF (Index ctx) where
hashWithSaltF :: forall (tp :: k). Int -> Index ctx tp -> Int
hashWithSaltF Int
s Index ctx tp
i = forall a. Hashable a => Int -> a -> Int
hashWithSalt Int
s (forall k (ctx :: Ctx k) (tp :: k). Index ctx tp -> Int
indexVal Index ctx tp
i)
instance Hashable (Index ctx tp) where
hashWithSalt :: Int -> Index ctx tp -> Int
hashWithSalt = forall k (f :: k -> *) (tp :: k). HashableF f => Int -> f tp -> Int
hashWithSaltF
instance (HashableF f, TestEquality f) => Hashable (Assignment f ctx) where
hashWithSalt :: Int -> Assignment f ctx -> Int
hashWithSalt Int
s (Assignment BinomialTree 'Zero f ctx
a) = forall k (f :: k -> *) (tp :: k). HashableF f => Int -> f tp -> Int
hashWithSaltF Int
s BinomialTree 'Zero f ctx
a
instance (HashableF f, TestEquality f) => HashableF (Assignment f) where
hashWithSaltF :: forall (tp :: Ctx k). Int -> Assignment f tp -> Int
hashWithSaltF = forall a. Hashable a => Int -> a -> Int
hashWithSalt
instance ShowF f => Show (Assignment f ctx) where
show :: Assignment f ctx -> String
show Assignment f ctx
a = String
"[" forall a. [a] -> [a] -> [a]
Prelude.++ forall a. [a] -> [[a]] -> [a]
intercalate String
", " (forall k l (t :: (k -> *) -> l -> *) (f :: k -> *) a.
FoldableFC t =>
(forall (x :: k). f x -> a) -> forall (x :: l). t f x -> [a]
toListFC forall k (f :: k -> *) (tp :: k). ShowF f => f tp -> String
showF Assignment f ctx
a) forall a. [a] -> [a] -> [a]
Prelude.++ String
"]"
instance ShowF f => ShowF (Assignment f)
{-# DEPRECATED adjust "Replace 'adjust f i asgn' with 'Lens.over (ixF i) f asgn' instead." #-}
adjust :: (f tp -> f tp) -> Index ctx tp -> Assignment f ctx -> Assignment f ctx
adjust :: forall {k} (f :: k -> *) (tp :: k) (ctx :: Ctx k).
(f tp -> f tp)
-> Index ctx tp -> Assignment f ctx -> Assignment f ctx
adjust f tp -> f tp
f Index ctx tp
idx Assignment f ctx
asgn = forall a. Identity a -> a
runIdentity (forall {k} (m :: * -> *) (f :: k -> *) (tp :: k) (ctx :: Ctx k).
Functor m =>
(f tp -> m (f tp))
-> Index ctx tp -> Assignment f ctx -> m (Assignment f ctx)
adjustM (forall a. a -> Identity a
Identity forall b c a. (b -> c) -> (a -> b) -> a -> c
. f tp -> f tp
f) Index ctx tp
idx Assignment f ctx
asgn)
{-# DEPRECATED update "Replace 'update idx val asgn' with 'Lens.set (ixF idx) val asgn' instead." #-}
update :: Index ctx tp -> f tp -> Assignment f ctx -> Assignment f ctx
update :: forall {k} (ctx :: Ctx k) (tp :: k) (f :: k -> *).
Index ctx tp -> f tp -> Assignment f ctx -> Assignment f ctx
update Index ctx tp
i f tp
v Assignment f ctx
a = forall {k} (f :: k -> *) (tp :: k) (ctx :: Ctx k).
(f tp -> f tp)
-> Index ctx tp -> Assignment f ctx -> Assignment f ctx
adjust (\f tp
_ -> f tp
v) Index ctx tp
i Assignment f ctx
a
adjustM :: Functor m => (f tp -> m (f tp)) -> Index ctx tp -> Assignment f ctx -> m (Assignment f ctx)
adjustM :: forall {k} (m :: * -> *) (f :: k -> *) (tp :: k) (ctx :: Ctx k).
Functor m =>
(f tp -> m (f tp))
-> Index ctx tp -> Assignment f ctx -> m (Assignment f ctx)
adjustM f tp -> m (f tp)
f (Index Int
i) (Assignment BinomialTree 'Zero f ctx
a) = forall k (f :: k -> *) (ctx :: Ctx k).
BinomialTree 'Zero f ctx -> Assignment f ctx
Assignment forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (forall {k} (m :: * -> *) (h :: Height) (f :: k -> *) (x :: k)
(y :: k) (a :: Ctx k) (b :: Ctx k).
Functor m =>
(f x -> m (f y))
-> BinomialTree h f a -> Int -> Int -> m (BinomialTree h f b)
unsafe_bin_adjust f tp -> m (f tp)
f BinomialTree 'Zero f ctx
a Int
i Int
0)
{-# SPECIALIZE adjustM :: (f tp -> Identity (f tp)) -> Index ctx tp -> Assignment f ctx -> Identity (Assignment f ctx) #-}
type instance IndexF (Assignment f ctx) = Index ctx
type instance IxValueF (Assignment f ctx) = f
instance forall k (f :: k -> Type) ctx. IxedF' k (Assignment (f :: k -> Type) ctx) where
ixF' :: Index ctx x -> Lens.Lens' (Assignment f ctx) (f x)
ixF' :: forall (x :: k). Index ctx x -> Lens' (Assignment f ctx) (f x)
ixF' Index ctx x
idx f x -> f (f x)
f = forall {k} (m :: * -> *) (f :: k -> *) (tp :: k) (ctx :: Ctx k).
Functor m =>
(f tp -> m (f tp))
-> Index ctx tp -> Assignment f ctx -> m (Assignment f ctx)
adjustM f x -> f (f x)
f Index ctx x
idx
instance forall k (f :: k -> Type) ctx. IxedF k (Assignment f ctx) where
ixF :: forall (x :: k).
IndexF (Assignment f ctx) x
-> Traversal' (Assignment f ctx) (IxValueF (Assignment f ctx) x)
ixF IndexF (Assignment f ctx) x
idx = forall k m (x :: k).
IxedF' k m =>
IndexF m x -> Lens' m (IxValueF m x)
ixF' IndexF (Assignment f ctx) x
idx
unsafeUpdate :: Int -> Assignment f ctx -> f u -> Assignment f ctx'
unsafeUpdate :: forall {k} (f :: k -> *) (ctx :: Ctx k) (u :: k) (ctx' :: Ctx k).
Int -> Assignment f ctx -> f u -> Assignment f ctx'
unsafeUpdate Int
i (Assignment BinomialTree 'Zero f ctx
a) f u
e = forall k (f :: k -> *) (ctx :: Ctx k).
BinomialTree 'Zero f ctx -> Assignment f ctx
Assignment (forall a. Identity a -> a
runIdentity (forall {k} (m :: * -> *) (h :: Height) (f :: k -> *) (x :: k)
(y :: k) (a :: Ctx k) (b :: Ctx k).
Functor m =>
(f x -> m (f y))
-> BinomialTree h f a -> Int -> Int -> m (BinomialTree h f b)
unsafe_bin_adjust (\f Any
_ -> forall a. a -> Identity a
Identity f u
e) BinomialTree 'Zero f ctx
a Int
i Int
0))
data AssignView f ctx where
AssignEmpty :: AssignView f EmptyCtx
AssignExtend :: Assignment f ctx
-> f tp
-> AssignView f (ctx::>tp)
viewAssign :: forall f ctx . Assignment f ctx -> AssignView f ctx
viewAssign :: forall {k} (f :: k -> *) (ctx :: Ctx k).
Assignment f ctx -> AssignView f ctx
viewAssign (Assignment BinomialTree 'Zero f ctx
x) =
case forall {k} (h :: Height) (f :: k -> *) (ctx :: Ctx k).
BinomialTree h f ctx -> DropResult f ctx
bin_drop BinomialTree 'Zero f ctx
x of
DropResult f ctx
DropEmpty -> forall {k} (f :: k -> *). AssignView f EmptyCtx
AssignEmpty
DropExt BinomialTree 'Zero f x
t f y
v -> forall {k} (f :: k -> *) (ctx :: Ctx k) (tp :: k).
Assignment f ctx -> f tp -> AssignView f (ctx ::> tp)
AssignExtend (forall k (f :: k -> *) (ctx :: Ctx k).
BinomialTree 'Zero f ctx -> Assignment f ctx
Assignment BinomialTree 'Zero f x
t) f y
v
zipWith :: (forall x . f x -> g x -> h x)
-> Assignment f a
-> Assignment g a
-> Assignment h a
zipWith :: forall {k} (f :: k -> *) (g :: k -> *) (h :: k -> *) (a :: Ctx k).
(forall (x :: k). f x -> g x -> h x)
-> Assignment f a -> Assignment g a -> Assignment h a
zipWith forall (x :: k). f x -> g x -> h x
f = \Assignment f a
x Assignment g a
y -> forall a. Identity a -> a
runIdentity forall a b. (a -> b) -> a -> b
$ forall {k} (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: k -> *)
(a :: Ctx k).
Applicative m =>
(forall (x :: k). f x -> g x -> m (h x))
-> Assignment f a -> Assignment g a -> m (Assignment h a)
zipWithM (\f x
u g x
v -> forall (f :: * -> *) a. Applicative f => a -> f a
pure (forall (x :: k). f x -> g x -> h x
f f x
u g x
v)) Assignment f a
x Assignment g a
y
{-# INLINE zipWith #-}
zipWithM :: Applicative m
=> (forall x . f x -> g x -> m (h x))
-> Assignment f a
-> Assignment g a
-> m (Assignment h a)
zipWithM :: forall {k} (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: k -> *)
(a :: Ctx k).
Applicative m =>
(forall (x :: k). f x -> g x -> m (h x))
-> Assignment f a -> Assignment g a -> m (Assignment h a)
zipWithM forall (x :: k). f x -> g x -> m (h x)
f (Assignment BinomialTree 'Zero f a
x) (Assignment BinomialTree 'Zero g a
y) = forall k (f :: k -> *) (ctx :: Ctx k).
BinomialTree 'Zero f ctx -> Assignment f ctx
Assignment forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall {k} (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: k -> *)
(u :: Height) (a :: Ctx k).
Applicative m =>
(forall (x :: k). f x -> g x -> m (h x))
-> BinomialTree u f a
-> BinomialTree u g a
-> m (BinomialTree u h a)
tree_zipWithM forall (x :: k). f x -> g x -> m (h x)
f BinomialTree 'Zero f a
x BinomialTree 'Zero g a
y
{-# INLINABLE zipWithM #-}
instance FunctorFC Assignment where
fmapFC :: forall (f :: k -> *) (g :: k -> *).
(forall (x :: k). f x -> g x)
-> forall (x :: Ctx k). Assignment f x -> Assignment g x
fmapFC = \forall (x :: k). f x -> g x
f (Assignment BinomialTree 'Zero f x
x) -> forall k (f :: k -> *) (ctx :: Ctx k).
BinomialTree 'Zero f ctx -> Assignment f ctx
Assignment (forall {k} (f :: k -> *) (g :: k -> *) (h :: Height) (c :: Ctx k).
(forall (tp :: k). f tp -> g tp)
-> BinomialTree h f c -> BinomialTree h g c
fmap_bin forall (x :: k). f x -> g x
f BinomialTree 'Zero f x
x)
{-# INLINE fmapFC #-}
instance FoldableFC Assignment where
foldMapFC :: forall (f :: k -> *) m.
Monoid m =>
(forall (x :: k). f x -> m)
-> forall (x :: Ctx k). Assignment f x -> m
foldMapFC = forall {k} {l} (t :: (k -> *) -> l -> *) m (f :: k -> *).
(TraversableFC t, Monoid m) =>
(forall (x :: k). f x -> m) -> forall (x :: l). t f x -> m
foldMapFCDefault
{-# INLINE foldMapFC #-}
instance TraversableFC Assignment where
traverseFC :: forall (f :: k -> *) (g :: k -> *) (m :: * -> *).
Applicative m =>
(forall (x :: k). f x -> m (g x))
-> forall (x :: Ctx k). Assignment f x -> m (Assignment g x)
traverseFC = \forall (x :: k). f x -> m (g x)
f (Assignment BinomialTree 'Zero f x
x) -> forall k (f :: k -> *) (ctx :: Ctx k).
BinomialTree 'Zero f ctx -> Assignment f ctx
Assignment forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall {k} (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: Height)
(c :: Ctx k).
Applicative m =>
(forall (tp :: k). f tp -> m (g tp))
-> BinomialTree h f c -> m (BinomialTree h g c)
traverse_bin forall (x :: k). f x -> m (g x)
f BinomialTree 'Zero f x
x
{-# INLINE traverseFC #-}
instance FunctorFCWithIndex Assignment where
imapFC :: forall (f :: k -> *) (g :: k -> *) (z :: Ctx k).
(forall (x :: k). IndexF (Assignment f z) x -> f x -> g x)
-> Assignment f z -> Assignment g z
imapFC = forall {k} {l} (t :: (k -> *) -> l -> *) (f :: k -> *)
(g :: k -> *) (z :: l).
TraversableFCWithIndex t =>
(forall (x :: k). IndexF (t f z) x -> f x -> g x) -> t f z -> t g z
imapFCDefault
instance FoldableFCWithIndex Assignment where
ifoldMapFC :: forall (f :: k -> *) m (z :: Ctx k).
Monoid m =>
(forall (x :: k). IndexF (Assignment f z) x -> f x -> m)
-> Assignment f z -> m
ifoldMapFC = forall {k} {l} (t :: (k -> *) -> l -> *) m (z :: l) (f :: k -> *).
(TraversableFCWithIndex t, Monoid m) =>
(forall (x :: k). IndexF (t f z) x -> f x -> m) -> t f z -> m
ifoldMapFCDefault
instance TraversableFCWithIndex Assignment where
itraverseFC :: forall (m :: * -> *) (z :: Ctx k) (f :: k -> *) (g :: k -> *).
Applicative m =>
(forall (x :: k). IndexF (Assignment f z) x -> f x -> m (g x))
-> Assignment f z -> m (Assignment g z)
itraverseFC = forall {k} (m :: * -> *) (ctx :: Ctx k) (f :: k -> *)
(g :: k -> *).
Applicative m =>
(forall (tp :: k). Index ctx tp -> f tp -> m (g tp))
-> Assignment f ctx -> m (Assignment g ctx)
traverseWithIndex
traverseWithIndex :: Applicative m
=> (forall tp . Index ctx tp -> f tp -> m (g tp))
-> Assignment f ctx
-> m (Assignment g ctx)
traverseWithIndex :: forall {k} (m :: * -> *) (ctx :: Ctx k) (f :: k -> *)
(g :: k -> *).
Applicative m =>
(forall (tp :: k). Index ctx tp -> f tp -> m (g tp))
-> Assignment f ctx -> m (Assignment g ctx)
traverseWithIndex forall (tp :: k). Index ctx tp -> f tp -> m (g tp)
f Assignment f ctx
a = forall {k} (m :: * -> *) (ctx :: Ctx k) (f :: k -> *).
Applicative m =>
Size ctx
-> (forall (tp :: k). Index ctx tp -> m (f tp))
-> m (Assignment f ctx)
generateM (forall {k} (f :: k -> *) (ctx :: Ctx k).
Assignment f ctx -> Size ctx
size Assignment f ctx
a) forall a b. (a -> b) -> a -> b
$ \Index ctx tp
i -> forall (tp :: k). Index ctx tp -> f tp -> m (g tp)
f Index ctx tp
i (Assignment f ctx
a forall {k} (f :: k -> *) (ctx :: Ctx k) (tp :: k).
Assignment f ctx -> Index ctx tp -> f tp
! Index ctx tp
i)
appendBal :: Assignment f x -> BalancedTree h f y -> Assignment f (x <+> y)
appendBal :: forall {k} (f :: k -> *) (x :: Ctx k) (h :: Height) (y :: Ctx k).
Assignment f x -> BalancedTree h f y -> Assignment f (x <+> y)
appendBal Assignment f x
x (BalLeaf f x
a) = Assignment f x
x forall {k} (f :: k -> *) (ctx :: Ctx k) (x :: k).
Assignment f ctx -> f x -> Assignment f (ctx ::> x)
`extend` f x
a
appendBal Assignment f x
x (BalPair BalancedTree h f x
y BalancedTree h f y
z) =
case forall {k} (p :: Ctx k -> *) (x :: Ctx k) (q :: Ctx k -> *)
(y :: Ctx k) (r :: Ctx k -> *) (z :: Ctx k).
p x -> q y -> r z -> (x <+> (y <+> z)) :~: ((x <+> y) <+> z)
assoc Assignment f x
x BalancedTree h f x
y BalancedTree h f y
z of
(x <+> (x <+> y)) :~: ((x <+> x) <+> y)
Refl -> Assignment f x
x forall {k} (f :: k -> *) (x :: Ctx k) (h :: Height) (y :: Ctx k).
Assignment f x -> BalancedTree h f y -> Assignment f (x <+> y)
`appendBal` BalancedTree h f x
y forall {k} (f :: k -> *) (x :: Ctx k) (h :: Height) (y :: Ctx k).
Assignment f x -> BalancedTree h f y -> Assignment f (x <+> y)
`appendBal` BalancedTree h f y
z
appendBin :: Assignment f x -> BinomialTree h f y -> Assignment f (x <+> y)
appendBin :: forall {k} (f :: k -> *) (x :: Ctx k) (h :: Height) (y :: Ctx k).
Assignment f x -> BinomialTree h f y -> Assignment f (x <+> y)
appendBin Assignment f x
x BinomialTree h f y
Empty = Assignment f x
x
appendBin Assignment f x
x (PlusOne Int
_ BinomialTree ('Succ h) f x
y BalancedTree h f y
z) =
case forall {k} (p :: Ctx k -> *) (x :: Ctx k) (q :: Ctx k -> *)
(y :: Ctx k) (r :: Ctx k -> *) (z :: Ctx k).
p x -> q y -> r z -> (x <+> (y <+> z)) :~: ((x <+> y) <+> z)
assoc Assignment f x
x BinomialTree ('Succ h) f x
y BalancedTree h f y
z of
(x <+> (x <+> y)) :~: ((x <+> x) <+> y)
Refl -> Assignment f x
x forall {k} (f :: k -> *) (x :: Ctx k) (h :: Height) (y :: Ctx k).
Assignment f x -> BinomialTree h f y -> Assignment f (x <+> y)
`appendBin` BinomialTree ('Succ h) f x
y forall {k} (f :: k -> *) (x :: Ctx k) (h :: Height) (y :: Ctx k).
Assignment f x -> BalancedTree h f y -> Assignment f (x <+> y)
`appendBal` BalancedTree h f y
z
appendBin Assignment f x
x (PlusZero Int
_ BinomialTree ('Succ h) f y
y) = Assignment f x
x forall {k} (f :: k -> *) (x :: Ctx k) (h :: Height) (y :: Ctx k).
Assignment f x -> BinomialTree h f y -> Assignment f (x <+> y)
`appendBin` BinomialTree ('Succ h) f y
y
(<++>) :: Assignment f x -> Assignment f y -> Assignment f (x <+> y)
Assignment f x
x <++> :: forall {k} (f :: k -> *) (x :: Ctx k) (y :: Ctx k).
Assignment f x -> Assignment f y -> Assignment f (x <+> y)
<++> Assignment BinomialTree 'Zero f y
y = Assignment f x
x forall {k} (f :: k -> *) (x :: Ctx k) (h :: Height) (y :: Ctx k).
Assignment f x -> BinomialTree h f y -> Assignment f (x <+> y)
`appendBin` BinomialTree 'Zero f y
y
instance (KnownRepr (Assignment f) ctx, KnownRepr f bt)
=> KnownRepr (Assignment f) (ctx ::> bt) where
knownRepr :: Assignment f (ctx ::> bt)
knownRepr = forall k (f :: k -> *) (ctx :: k). KnownRepr f ctx => f ctx
knownRepr forall {k} (f :: k -> *) (ctx :: Ctx k) (x :: k).
Assignment f ctx -> f x -> Assignment f (ctx ::> x)
`extend` forall k (f :: k -> *) (ctx :: k). KnownRepr f ctx => f ctx
knownRepr
instance KnownRepr (Assignment f) EmptyCtx where
knownRepr :: Assignment f EmptyCtx
knownRepr = forall {k} (f :: k -> *). Assignment f EmptyCtx
empty
unsafeLens :: Int -> Lens.Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens :: forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
idx =
forall s a b t. (s -> a) -> (s -> b -> t) -> Lens s t a b
Lens.lens (forall {k} (proxy :: k -> *) (u :: k) (f :: k -> *) (ctx :: Ctx k).
proxy u -> Int -> Assignment f ctx -> f u
unsafeIndex forall {k} (t :: k). Proxy t
Proxy Int
idx) (forall {k} (f :: k -> *) (ctx :: Ctx k) (u :: k) (ctx' :: Ctx k).
Int -> Assignment f ctx -> f u -> Assignment f ctx'
unsafeUpdate Int
idx)
type Assignment1 f x1 = Assignment f ('EmptyCtx '::> x1)
instance Lens.Field1 (Assignment1 f t) (Assignment1 f u) (f t) (f u) where
_1 :: Lens (Assignment1 f t) (Assignment1 f u) (f t) (f u)
_1 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
0
type Assignment2 f x1 x2
= Assignment f ('EmptyCtx '::> x1 '::> x2)
instance Lens.Field1 (Assignment2 f t x2) (Assignment2 f u x2) (f t) (f u) where
_1 :: Lens (Assignment2 f t x2) (Assignment2 f u x2) (f t) (f u)
_1 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
0
instance Lens.Field2 (Assignment2 f x1 t) (Assignment2 f x1 u) (f t) (f u) where
_2 :: Lens (Assignment2 f x1 t) (Assignment2 f x1 u) (f t) (f u)
_2 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
1
type Assignment3 f x1 x2 x3
= Assignment f ('EmptyCtx '::> x1 '::> x2 '::> x3)
instance Lens.Field1 (Assignment3 f t x2 x3)
(Assignment3 f u x2 x3)
(f t)
(f u) where
_1 :: Lens (Assignment3 f t x2 x3) (Assignment3 f u x2 x3) (f t) (f u)
_1 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
0
instance Lens.Field2 (Assignment3 f x1 t x3)
(Assignment3 f x1 u x3)
(f t)
(f u) where
_2 :: Lens (Assignment3 f x1 t x3) (Assignment3 f x1 u x3) (f t) (f u)
_2 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
1
instance Lens.Field3 (Assignment3 f x1 x2 t)
(Assignment3 f x1 x2 u)
(f t)
(f u) where
_3 :: Lens (Assignment3 f x1 x2 t) (Assignment3 f x1 x2 u) (f t) (f u)
_3 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
2
type Assignment4 f x1 x2 x3 x4
= Assignment f ('EmptyCtx '::> x1 '::> x2 '::> x3 '::> x4)
instance Lens.Field1 (Assignment4 f t x2 x3 x4)
(Assignment4 f u x2 x3 x4)
(f t)
(f u) where
_1 :: Lens
(Assignment4 f t x2 x3 x4) (Assignment4 f u x2 x3 x4) (f t) (f u)
_1 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
0
instance Lens.Field2 (Assignment4 f x1 t x3 x4)
(Assignment4 f x1 u x3 x4)
(f t)
(f u) where
_2 :: Lens
(Assignment4 f x1 t x3 x4) (Assignment4 f x1 u x3 x4) (f t) (f u)
_2 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
1
instance Lens.Field3 (Assignment4 f x1 x2 t x4)
(Assignment4 f x1 x2 u x4)
(f t)
(f u) where
_3 :: Lens
(Assignment4 f x1 x2 t x4) (Assignment4 f x1 x2 u x4) (f t) (f u)
_3 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
2
instance Lens.Field4 (Assignment4 f x1 x2 x3 t)
(Assignment4 f x1 x2 x3 u)
(f t)
(f u) where
_4 :: Lens
(Assignment4 f x1 x2 x3 t) (Assignment4 f x1 x2 x3 u) (f t) (f u)
_4 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
3
type Assignment5 f x1 x2 x3 x4 x5
= Assignment f ('EmptyCtx '::> x1 '::> x2 '::> x3 '::> x4 '::> x5)
instance Lens.Field1 (Assignment5 f t x2 x3 x4 x5)
(Assignment5 f u x2 x3 x4 x5)
(f t)
(f u) where
_1 :: Lens
(Assignment5 f t x2 x3 x4 x5)
(Assignment5 f u x2 x3 x4 x5)
(f t)
(f u)
_1 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
0
instance Lens.Field2 (Assignment5 f x1 t x3 x4 x5)
(Assignment5 f x1 u x3 x4 x5)
(f t)
(f u) where
_2 :: Lens
(Assignment5 f x1 t x3 x4 x5)
(Assignment5 f x1 u x3 x4 x5)
(f t)
(f u)
_2 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
1
instance Lens.Field3 (Assignment5 f x1 x2 t x4 x5)
(Assignment5 f x1 x2 u x4 x5)
(f t)
(f u) where
_3 :: Lens
(Assignment5 f x1 x2 t x4 x5)
(Assignment5 f x1 x2 u x4 x5)
(f t)
(f u)
_3 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
2
instance Lens.Field4 (Assignment5 f x1 x2 x3 t x5)
(Assignment5 f x1 x2 x3 u x5)
(f t)
(f u) where
_4 :: Lens
(Assignment5 f x1 x2 x3 t x5)
(Assignment5 f x1 x2 x3 u x5)
(f t)
(f u)
_4 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
3
instance Lens.Field5 (Assignment5 f x1 x2 x3 x4 t)
(Assignment5 f x1 x2 x3 x4 u)
(f t)
(f u) where
_5 :: Lens
(Assignment5 f x1 x2 x3 x4 t)
(Assignment5 f x1 x2 x3 x4 u)
(f t)
(f u)
_5 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
4
type Assignment6 f x1 x2 x3 x4 x5 x6
= Assignment f ('EmptyCtx '::> x1 '::> x2 '::> x3 '::> x4 '::> x5 '::> x6)
instance Lens.Field1 (Assignment6 f t x2 x3 x4 x5 x6)
(Assignment6 f u x2 x3 x4 x5 x6)
(f t)
(f u) where
_1 :: Lens
(Assignment6 f t x2 x3 x4 x5 x6)
(Assignment6 f u x2 x3 x4 x5 x6)
(f t)
(f u)
_1 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
0
instance Lens.Field2 (Assignment6 f x1 t x3 x4 x5 x6)
(Assignment6 f x1 u x3 x4 x5 x6)
(f t)
(f u) where
_2 :: Lens
(Assignment6 f x1 t x3 x4 x5 x6)
(Assignment6 f x1 u x3 x4 x5 x6)
(f t)
(f u)
_2 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
1
instance Lens.Field3 (Assignment6 f x1 x2 t x4 x5 x6)
(Assignment6 f x1 x2 u x4 x5 x6)
(f t)
(f u) where
_3 :: Lens
(Assignment6 f x1 x2 t x4 x5 x6)
(Assignment6 f x1 x2 u x4 x5 x6)
(f t)
(f u)
_3 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
2
instance Lens.Field4 (Assignment6 f x1 x2 x3 t x5 x6)
(Assignment6 f x1 x2 x3 u x5 x6)
(f t)
(f u) where
_4 :: Lens
(Assignment6 f x1 x2 x3 t x5 x6)
(Assignment6 f x1 x2 x3 u x5 x6)
(f t)
(f u)
_4 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
3
instance Lens.Field5 (Assignment6 f x1 x2 x3 x4 t x6)
(Assignment6 f x1 x2 x3 x4 u x6)
(f t)
(f u) where
_5 :: Lens
(Assignment6 f x1 x2 x3 x4 t x6)
(Assignment6 f x1 x2 x3 x4 u x6)
(f t)
(f u)
_5 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
4
instance Lens.Field6 (Assignment6 f x1 x2 x3 x4 x5 t)
(Assignment6 f x1 x2 x3 x4 x5 u)
(f t)
(f u) where
_6 :: Lens
(Assignment6 f x1 x2 x3 x4 x5 t)
(Assignment6 f x1 x2 x3 x4 x5 u)
(f t)
(f u)
_6 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
5
type Assignment7 f x1 x2 x3 x4 x5 x6 x7
= Assignment f ('EmptyCtx '::> x1 '::> x2 '::> x3 '::> x4 '::> x5 '::> x6 '::> x7)
instance Lens.Field1 (Assignment7 f t x2 x3 x4 x5 x6 x7)
(Assignment7 f u x2 x3 x4 x5 x6 x7)
(f t)
(f u) where
_1 :: Lens
(Assignment7 f t x2 x3 x4 x5 x6 x7)
(Assignment7 f u x2 x3 x4 x5 x6 x7)
(f t)
(f u)
_1 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
0
instance Lens.Field2 (Assignment7 f x1 t x3 x4 x5 x6 x7)
(Assignment7 f x1 u x3 x4 x5 x6 x7)
(f t)
(f u) where
_2 :: Lens
(Assignment7 f x1 t x3 x4 x5 x6 x7)
(Assignment7 f x1 u x3 x4 x5 x6 x7)
(f t)
(f u)
_2 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
1
instance Lens.Field3 (Assignment7 f x1 x2 t x4 x5 x6 x7)
(Assignment7 f x1 x2 u x4 x5 x6 x7)
(f t)
(f u) where
_3 :: Lens
(Assignment7 f x1 x2 t x4 x5 x6 x7)
(Assignment7 f x1 x2 u x4 x5 x6 x7)
(f t)
(f u)
_3 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
2
instance Lens.Field4 (Assignment7 f x1 x2 x3 t x5 x6 x7)
(Assignment7 f x1 x2 x3 u x5 x6 x7)
(f t)
(f u) where
_4 :: Lens
(Assignment7 f x1 x2 x3 t x5 x6 x7)
(Assignment7 f x1 x2 x3 u x5 x6 x7)
(f t)
(f u)
_4 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
3
instance Lens.Field5 (Assignment7 f x1 x2 x3 x4 t x6 x7)
(Assignment7 f x1 x2 x3 x4 u x6 x7)
(f t)
(f u) where
_5 :: Lens
(Assignment7 f x1 x2 x3 x4 t x6 x7)
(Assignment7 f x1 x2 x3 x4 u x6 x7)
(f t)
(f u)
_5 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
4
instance Lens.Field6 (Assignment7 f x1 x2 x3 x4 x5 t x7)
(Assignment7 f x1 x2 x3 x4 x5 u x7)
(f t)
(f u) where
_6 :: Lens
(Assignment7 f x1 x2 x3 x4 x5 t x7)
(Assignment7 f x1 x2 x3 x4 x5 u x7)
(f t)
(f u)
_6 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
5
instance Lens.Field7 (Assignment7 f x1 x2 x3 x4 x5 x6 t)
(Assignment7 f x1 x2 x3 x4 x5 x6 u)
(f t)
(f u) where
_7 :: Lens
(Assignment7 f x1 x2 x3 x4 x5 x6 t)
(Assignment7 f x1 x2 x3 x4 x5 x6 u)
(f t)
(f u)
_7 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
6
type Assignment8 f x1 x2 x3 x4 x5 x6 x7 x8
= Assignment f ('EmptyCtx '::> x1 '::> x2 '::> x3 '::> x4 '::> x5 '::> x6 '::> x7 '::> x8)
instance Lens.Field1 (Assignment8 f t x2 x3 x4 x5 x6 x7 x8)
(Assignment8 f u x2 x3 x4 x5 x6 x7 x8)
(f t)
(f u) where
_1 :: Lens
(Assignment8 f t x2 x3 x4 x5 x6 x7 x8)
(Assignment8 f u x2 x3 x4 x5 x6 x7 x8)
(f t)
(f u)
_1 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
0
instance Lens.Field2 (Assignment8 f x1 t x3 x4 x5 x6 x7 x8)
(Assignment8 f x1 u x3 x4 x5 x6 x7 x8)
(f t)
(f u) where
_2 :: Lens
(Assignment8 f x1 t x3 x4 x5 x6 x7 x8)
(Assignment8 f x1 u x3 x4 x5 x6 x7 x8)
(f t)
(f u)
_2 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
1
instance Lens.Field3 (Assignment8 f x1 x2 t x4 x5 x6 x7 x8)
(Assignment8 f x1 x2 u x4 x5 x6 x7 x8)
(f t)
(f u) where
_3 :: Lens
(Assignment8 f x1 x2 t x4 x5 x6 x7 x8)
(Assignment8 f x1 x2 u x4 x5 x6 x7 x8)
(f t)
(f u)
_3 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
2
instance Lens.Field4 (Assignment8 f x1 x2 x3 t x5 x6 x7 x8)
(Assignment8 f x1 x2 x3 u x5 x6 x7 x8)
(f t)
(f u) where
_4 :: Lens
(Assignment8 f x1 x2 x3 t x5 x6 x7 x8)
(Assignment8 f x1 x2 x3 u x5 x6 x7 x8)
(f t)
(f u)
_4 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
3
instance Lens.Field5 (Assignment8 f x1 x2 x3 x4 t x6 x7 x8)
(Assignment8 f x1 x2 x3 x4 u x6 x7 x8)
(f t)
(f u) where
_5 :: Lens
(Assignment8 f x1 x2 x3 x4 t x6 x7 x8)
(Assignment8 f x1 x2 x3 x4 u x6 x7 x8)
(f t)
(f u)
_5 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
4
instance Lens.Field6 (Assignment8 f x1 x2 x3 x4 x5 t x7 x8)
(Assignment8 f x1 x2 x3 x4 x5 u x7 x8)
(f t)
(f u) where
_6 :: Lens
(Assignment8 f x1 x2 x3 x4 x5 t x7 x8)
(Assignment8 f x1 x2 x3 x4 x5 u x7 x8)
(f t)
(f u)
_6 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
5
instance Lens.Field7 (Assignment8 f x1 x2 x3 x4 x5 x6 t x8)
(Assignment8 f x1 x2 x3 x4 x5 x6 u x8)
(f t)
(f u) where
_7 :: Lens
(Assignment8 f x1 x2 x3 x4 x5 x6 t x8)
(Assignment8 f x1 x2 x3 x4 x5 x6 u x8)
(f t)
(f u)
_7 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
6
instance Lens.Field8 (Assignment8 f x1 x2 x3 x4 x5 x6 x7 t)
(Assignment8 f x1 x2 x3 x4 x5 x6 x7 u)
(f t)
(f u) where
_8 :: Lens
(Assignment8 f x1 x2 x3 x4 x5 x6 x7 t)
(Assignment8 f x1 x2 x3 x4 x5 x6 x7 u)
(f t)
(f u)
_8 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
7
type Assignment9 f x1 x2 x3 x4 x5 x6 x7 x8 x9
= Assignment f ('EmptyCtx '::> x1 '::> x2 '::> x3 '::> x4 '::> x5 '::> x6 '::> x7 '::> x8 '::> x9)
instance Lens.Field1 (Assignment9 f t x2 x3 x4 x5 x6 x7 x8 x9)
(Assignment9 f u x2 x3 x4 x5 x6 x7 x8 x9)
(f t)
(f u) where
_1 :: Lens
(Assignment9 f t x2 x3 x4 x5 x6 x7 x8 x9)
(Assignment9 f u x2 x3 x4 x5 x6 x7 x8 x9)
(f t)
(f u)
_1 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
0
instance Lens.Field2 (Assignment9 f x1 t x3 x4 x5 x6 x7 x8 x9)
(Assignment9 f x1 u x3 x4 x5 x6 x7 x8 x9)
(f t)
(f u) where
_2 :: Lens
(Assignment9 f x1 t x3 x4 x5 x6 x7 x8 x9)
(Assignment9 f x1 u x3 x4 x5 x6 x7 x8 x9)
(f t)
(f u)
_2 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
1
instance Lens.Field3 (Assignment9 f x1 x2 t x4 x5 x6 x7 x8 x9)
(Assignment9 f x1 x2 u x4 x5 x6 x7 x8 x9)
(f t)
(f u) where
_3 :: Lens
(Assignment9 f x1 x2 t x4 x5 x6 x7 x8 x9)
(Assignment9 f x1 x2 u x4 x5 x6 x7 x8 x9)
(f t)
(f u)
_3 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
2
instance Lens.Field4 (Assignment9 f x1 x2 x3 t x5 x6 x7 x8 x9)
(Assignment9 f x1 x2 x3 u x5 x6 x7 x8 x9)
(f t)
(f u) where
_4 :: Lens
(Assignment9 f x1 x2 x3 t x5 x6 x7 x8 x9)
(Assignment9 f x1 x2 x3 u x5 x6 x7 x8 x9)
(f t)
(f u)
_4 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
3
instance Lens.Field5 (Assignment9 f x1 x2 x3 x4 t x6 x7 x8 x9)
(Assignment9 f x1 x2 x3 x4 u x6 x7 x8 x9)
(f t)
(f u) where
_5 :: Lens
(Assignment9 f x1 x2 x3 x4 t x6 x7 x8 x9)
(Assignment9 f x1 x2 x3 x4 u x6 x7 x8 x9)
(f t)
(f u)
_5 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
4
instance Lens.Field6 (Assignment9 f x1 x2 x3 x4 x5 t x7 x8 x9)
(Assignment9 f x1 x2 x3 x4 x5 u x7 x8 x9)
(f t)
(f u) where
_6 :: Lens
(Assignment9 f x1 x2 x3 x4 x5 t x7 x8 x9)
(Assignment9 f x1 x2 x3 x4 x5 u x7 x8 x9)
(f t)
(f u)
_6 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
5
instance Lens.Field7 (Assignment9 f x1 x2 x3 x4 x5 x6 t x8 x9)
(Assignment9 f x1 x2 x3 x4 x5 x6 u x8 x9)
(f t)
(f u) where
_7 :: Lens
(Assignment9 f x1 x2 x3 x4 x5 x6 t x8 x9)
(Assignment9 f x1 x2 x3 x4 x5 x6 u x8 x9)
(f t)
(f u)
_7 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
6
instance Lens.Field8 (Assignment9 f x1 x2 x3 x4 x5 x6 x7 t x9)
(Assignment9 f x1 x2 x3 x4 x5 x6 x7 u x9)
(f t)
(f u) where
_8 :: Lens
(Assignment9 f x1 x2 x3 x4 x5 x6 x7 t x9)
(Assignment9 f x1 x2 x3 x4 x5 x6 x7 u x9)
(f t)
(f u)
_8 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
7
instance Lens.Field9 (Assignment9 f x1 x2 x3 x4 x5 x6 x7 x8 t)
(Assignment9 f x1 x2 x3 x4 x5 x6 x7 x8 u)
(f t)
(f u) where
_9 :: Lens
(Assignment9 f x1 x2 x3 x4 x5 x6 x7 x8 t)
(Assignment9 f x1 x2 x3 x4 x5 x6 x7 x8 u)
(f t)
(f u)
_9 = forall {k} (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
8