{-| Description : Decideable equality (i.e. evidence of non-equality) on type families Copyright : (c) Galois, Inc 2014-2019 Maintainer : Langston Barrett <langston@galois.com> This defines a class @DecidableEq@, which represents decidable equality on a type family. This is different from GHC's @TestEquality@ in that it provides evidence of non-equality. In fact, it is a superclass of @TestEquality@. -} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE PolyKinds #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE TypeInType #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE Safe #-} module Data.Parameterized.DecidableEq ( DecidableEq(..) ) where import Data.Void (Void) import Data.Type.Equality ((:~:)) -- | Decidable equality. class DecidableEq f where decEq :: f a -> f b -> Either (a :~: b) ((a :~: b) -> Void) -- TODO: instances for sums, products of types with decidable equality -- import Data.Type.Equality ((:~:), TestEquality(..)) -- instance (DecidableEq f) => TestEquality f where -- testEquality a b = -- case decEq a b of -- Left prf -> Just prf -- Right _ -> Nothing