module Pairing.Modular where
import Protolude
import Math.NumberTheory.Moduli.Class
import Math.NumberTheory.Moduli.Sqrt
import Math.NumberTheory.UniqueFactorisation
import Pairing.Params
import Pairing.ByteRepr
import Crypto.Random (MonadRandom)
import Crypto.Number.Generate (generateMax)
import qualified Data.ByteString as BS
import Math.NumberTheory.Logarithms
withMod :: Integer -> (forall m . KnownNat m => Proxy m -> r) -> r
withMod n cont = case someNatVal n of
Nothing -> panic ("Somehow " <> show n <> " was not a Nat")
Just (SomeNat mName) -> cont mName
withModM :: Integer -> (forall n. KnownNat n => Proxy n -> m r) -> m r
withModM n cont = case someNatVal n of
Nothing -> panic ("Somehow " <> show n <> " was not a Nat")
Just (SomeNat mName) -> cont mName
withQ :: (forall m . KnownNat m => Proxy m -> r) -> r
withQ = withMod _q
withQM :: (forall n. KnownNat n => Proxy n -> m r) -> m r
withQM = withModM _q
withR :: (forall m . KnownNat m => Proxy m -> r) -> r
withR = withMod _r
withRM :: (forall n. KnownNat n => Proxy n -> m r) -> m r
withRM = withModM _r
newMod :: forall m . KnownNat m => Integer -> Proxy m -> Mod m
newMod n mName = fromInteger @(Mod m) n
toInteger :: Mod m -> Integer
toInteger = getVal
modUnOp :: forall m . KnownNat m => Integer -> (Mod m -> Mod m) -> Proxy m -> Integer
modUnOp n f mName = getVal $ f (fromInteger @(Mod m) n)
modBinOp :: forall m . KnownNat m => Integer -> Integer -> (Mod m -> Mod m -> Mod m) -> Proxy m -> Integer
modBinOp r s f mName = getVal $ f (fromInteger @(Mod m) r) (fromInteger @(Mod m) s)
multInverse :: KnownNat m => Mod m -> Maybe (Mod m)
multInverse n = do
m <- isMultElement n
let mm = invertGroup m
pure (multElement mm)
modUnOpM :: forall m a . (KnownNat m, Monad a) => Integer -> (Mod m -> a (Mod m)) -> Proxy m -> a Integer
modUnOpM n f mName = do
a <- f (fromInteger @(Mod m) n)
pure (getVal a)
modUnOpMTup :: forall m a . (KnownNat m, Monad a) => Integer -> (Mod m -> a (Mod m, Mod m)) -> Proxy m -> a (Integer, Integer)
modUnOpMTup n f mName = do
(a, b) <- f (fromInteger @(Mod m) n)
pure (getVal a, getVal b)
threeModFourCongruence :: Integer -> Bool
threeModFourCongruence q = q `mod` 4 == 3 `mod` 4
isSquare :: forall m . KnownNat m => Proxy m -> Mod m -> Bool
isSquare _ a = if (threeModFourCongruence (getMod a)) then (length kp > 0) else False
where
kp = sqrtsMod a
sqrtOf :: forall m . KnownNat m => Mod m -> Maybe (Mod m)
sqrtOf i = fst <$> bothSqrtOf i
bothSqrtOf :: forall m . KnownNat m => Mod m -> Maybe (Mod m, Mod m)
bothSqrtOf i = case sqrtsMod i of
[] -> Nothing
(x : x1 : xs) -> Just (x, x1)
[_] -> Nothing
legendre :: Integer -> Integer
legendre a = if conv > 1 then (-1) else conv
where
conv = withQ (modUnOp a f)
f m = m `powMod` p2
p2 = (_q - 1) `quot` 2
randomMod :: forall n m. (MonadRandom m, KnownNat n) => Proxy n -> m (Mod n)
randomMod mName = do
seed <- generateMax _q
pure (fromInteger @(Mod n) seed)
fromBytes :: forall n. (KnownNat n) => ByteString -> Proxy n -> Mod n
fromBytes bs mn = newMod (fromBytesToInteger bs) mn