{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
module Overloaded.Lists.Bidi (
nil,
Cons (..),
Uni.fromList,
) where
import Data.SOP.NP (NP (..), POP (..))
import qualified Data.IntMap as IM
import qualified Data.IntSet as IS
import qualified Data.Sequence as Seq
import qualified Data.Map as M
import qualified Data.Set as S
import qualified Data.Type.Nat as N
import qualified Data.Vec.Lazy as Vec
import qualified Overloaded.Lists as Uni
nil :: Uni.Nil a => a
nil :: a
nil = a
forall a. Nil a => a
Uni.nil
{-# INLINE nil #-}
class Uni.Cons x ys zs => Cons x ys zs | zs -> x ys, x ys -> zs where
cons :: x -> ys -> zs
cons = x -> ys -> zs
forall x ys zs. Cons x ys zs => x -> ys -> zs
Uni.cons
infixr 5 `cons`
instance (a ~ b, b ~ c) => Cons a [b] [c]
instance (Ord a, a ~ b, b ~ c) => Cons a (S.Set a) (S.Set a)
instance Cons Int IS.IntSet IS.IntSet
instance (a ~ b, b ~ c) => Cons a (Seq.Seq b) (Seq.Seq c)
instance (Ord k, k ~ k1, k ~ k2, v ~ v1, v ~ v2) => Cons (k, v) (M.Map k1 v1) (M.Map k2 v2)
instance (i ~ Int, a ~ b, b ~ c) => Cons (i, a) (IM.IntMap b) (IM.IntMap c)
instance (a ~ b, b ~ c, m ~ 'N.S n) => Cons a (Vec.Vec n b) (Vec.Vec m c)
instance (f ~ g, g ~ h, xxs ~ (x ': xs)) => Cons (f x) (NP g xs) (NP h xxs)
instance (f ~ g, g ~ h, xsxss ~ (xs ': xss)) => Cons (NP f xs) (POP g xss) (POP h xsxss)