{-# LANGUAGE CPP #-}
{-# LANGUAGE TemplateHaskellQuotes #-}
module Optics.TH.Internal.Product
( LensRules(..)
, FieldNamer
, DefName(..)
, ClassyNamer
, makeFieldOptics
, makeFieldOpticsForDec
, makeFieldOpticsForDec'
, makeFieldLabelsWith
, makeFieldLabelsForDec
, HasFieldClasses
) where
import Control.Monad
import Control.Monad.State
import Data.Either
import Data.Maybe
import Language.Haskell.TH
import qualified Data.List as L
import qualified Data.Map as M
import qualified Data.Set as S
import qualified Data.Traversable as T
import qualified Language.Haskell.TH.Datatype as D
import qualified Language.Haskell.TH.Syntax as TH
import Data.Either.Optics
import Data.Tuple.Optics
import Data.Set.Optics
import Language.Haskell.TH.Optics.Internal
import Optics.Core hiding (cons)
import Optics.Internal.Magic
import Optics.TH.Internal.Utils
typeSelf :: Traversal' Type Type
typeSelf :: Traversal' Type Type
typeSelf = TraversalVL Type Type Type Type -> Traversal' Type Type
forall s t a b. TraversalVL s t a b -> Traversal s t a b
traversalVL (TraversalVL Type Type Type Type -> Traversal' Type Type)
-> TraversalVL Type Type Type Type -> Traversal' Type Type
forall a b. (a -> b) -> a -> b
$ \Type -> f Type
f -> \case
ForallT tyVarBndrs ctx ty ->
#if MIN_VERSION_template_haskell(2,17,0)
let go (KindedTV nam flag kind) = KindedTV <$> pure nam <*> pure flag <*> f kind
go (PlainTV nam flag) = pure (PlainTV nam flag)
#else
let go :: TyVarBndr -> f TyVarBndr
go (KindedTV Name
nam Type
kind) = Name -> Type -> TyVarBndr
KindedTV (Name -> Type -> TyVarBndr) -> f Name -> f (Type -> TyVarBndr)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Name -> f Name
forall (f :: * -> *) a. Applicative f => a -> f a
pure Name
nam f (Type -> TyVarBndr) -> f Type -> f TyVarBndr
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> f Type
f Type
kind
go (PlainTV Name
nam) = TyVarBndr -> f TyVarBndr
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Name -> TyVarBndr
PlainTV Name
nam)
#endif
in [TyVarBndr] -> Cxt -> Type -> Type
ForallT ([TyVarBndr] -> Cxt -> Type -> Type)
-> f [TyVarBndr] -> f (Cxt -> Type -> Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (TyVarBndr -> f TyVarBndr) -> [TyVarBndr] -> f [TyVarBndr]
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse TyVarBndr -> f TyVarBndr
go [TyVarBndr]
tyVarBndrs f (Cxt -> Type -> Type) -> f Cxt -> f (Type -> Type)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (Type -> f Type) -> Cxt -> f Cxt
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse Type -> f Type
f Cxt
ctx f (Type -> Type) -> f Type -> f Type
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> f Type
f Type
ty
AppT ty1 ty2 -> Type -> Type -> Type
AppT (Type -> Type -> Type) -> f Type -> f (Type -> Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> f Type
f Type
ty1 f (Type -> Type) -> f Type -> f Type
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> f Type
f Type
ty2
SigT ty kind -> Type -> Type -> Type
SigT (Type -> Type -> Type) -> f Type -> f (Type -> Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> f Type
f Type
ty f (Type -> Type) -> f Type -> f Type
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> f Type
f Type
kind
InfixT ty1 nam ty2 -> Type -> Name -> Type -> Type
InfixT (Type -> Name -> Type -> Type)
-> f Type -> f (Name -> Type -> Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> f Type
f Type
ty1 f (Name -> Type -> Type) -> f Name -> f (Type -> Type)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Name -> f Name
forall (f :: * -> *) a. Applicative f => a -> f a
pure Name
nam f (Type -> Type) -> f Type -> f Type
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> f Type
f Type
ty2
UInfixT ty1 nam ty2 -> Type -> Name -> Type -> Type
UInfixT (Type -> Name -> Type -> Type)
-> f Type -> f (Name -> Type -> Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> f Type
f Type
ty1 f (Name -> Type -> Type) -> f Name -> f (Type -> Type)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Name -> f Name
forall (f :: * -> *) a. Applicative f => a -> f a
pure Name
nam f (Type -> Type) -> f Type -> f Type
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> f Type
f Type
ty2
ParensT ty -> Type -> Type
ParensT (Type -> Type) -> f Type -> f Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> f Type
f Type
ty
Type
ty -> Type -> f Type
forall (f :: * -> *) a. Applicative f => a -> f a
pure Type
ty
makeFieldOptics :: LensRules -> Name -> DecsQ
makeFieldOptics :: LensRules -> Name -> DecsQ
makeFieldOptics LensRules
rules = (StateT (Set Name) Q [Dec] -> Set Name -> DecsQ
forall (m :: * -> *) s a. Monad m => StateT s m a -> s -> m a
`evalStateT` Set Name
forall a. Set a
S.empty) (StateT (Set Name) Q [Dec] -> DecsQ)
-> (DatatypeInfo -> StateT (Set Name) Q [Dec])
-> DatatypeInfo
-> DecsQ
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LensRules -> DatatypeInfo -> StateT (Set Name) Q [Dec]
makeFieldOpticsForDatatype LensRules
rules (DatatypeInfo -> DecsQ)
-> (Name -> Q DatatypeInfo) -> Name -> DecsQ
forall (m :: * -> *) b c a.
Monad m =>
(b -> m c) -> (a -> m b) -> a -> m c
<=< Name -> Q DatatypeInfo
D.reifyDatatype
makeFieldOpticsForDec :: LensRules -> Dec -> DecsQ
makeFieldOpticsForDec :: LensRules -> Dec -> DecsQ
makeFieldOpticsForDec LensRules
rules = (StateT (Set Name) Q [Dec] -> Set Name -> DecsQ
forall (m :: * -> *) s a. Monad m => StateT s m a -> s -> m a
`evalStateT` Set Name
forall a. Set a
S.empty) (StateT (Set Name) Q [Dec] -> DecsQ)
-> (Dec -> StateT (Set Name) Q [Dec]) -> Dec -> DecsQ
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LensRules -> Dec -> StateT (Set Name) Q [Dec]
makeFieldOpticsForDec' LensRules
rules
makeFieldOpticsForDec' :: LensRules -> Dec -> HasFieldClasses [Dec]
makeFieldOpticsForDec' :: LensRules -> Dec -> StateT (Set Name) Q [Dec]
makeFieldOpticsForDec' LensRules
rules = LensRules -> DatatypeInfo -> StateT (Set Name) Q [Dec]
makeFieldOpticsForDatatype LensRules
rules (DatatypeInfo -> StateT (Set Name) Q [Dec])
-> (Dec -> StateT (Set Name) Q DatatypeInfo)
-> Dec
-> StateT (Set Name) Q [Dec]
forall (m :: * -> *) b c a.
Monad m =>
(b -> m c) -> (a -> m b) -> a -> m c
<=< Q DatatypeInfo -> StateT (Set Name) Q DatatypeInfo
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (Q DatatypeInfo -> StateT (Set Name) Q DatatypeInfo)
-> (Dec -> Q DatatypeInfo)
-> Dec
-> StateT (Set Name) Q DatatypeInfo
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Dec -> Q DatatypeInfo
D.normalizeDec
makeFieldOpticsForDatatype :: LensRules -> D.DatatypeInfo -> HasFieldClasses [Dec]
makeFieldOpticsForDatatype :: LensRules -> DatatypeInfo -> StateT (Set Name) Q [Dec]
makeFieldOpticsForDatatype LensRules
rules DatatypeInfo
info =
do Map DefName (OpticStab, [(Name, Int, [Int])])
perDef <- Q (Map DefName (OpticStab, [(Name, Int, [Int])]))
-> StateT
(Set Name) Q (Map DefName (OpticStab, [(Name, Int, [Int])]))
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (Q (Map DefName (OpticStab, [(Name, Int, [Int])]))
-> StateT
(Set Name) Q (Map DefName (OpticStab, [(Name, Int, [Int])])))
-> Q (Map DefName (OpticStab, [(Name, Int, [Int])]))
-> StateT
(Set Name) Q (Map DefName (OpticStab, [(Name, Int, [Int])]))
forall a b. (a -> b) -> a -> b
$ do
[(Name, [(Maybe Name, Type)])]
fieldCons <- (ConstructorInfo -> Q (Name, [(Maybe Name, Type)]))
-> [ConstructorInfo] -> Q [(Name, [(Maybe Name, Type)])]
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (DatatypeInfo -> ConstructorInfo -> Q (Name, [(Maybe Name, Type)])
normalizeConstructor DatatypeInfo
info) [ConstructorInfo]
cons
let allFields :: [Name]
allFields = Optic' A_Fold '[] [(Name, [(Maybe Name, Type)])] Name
-> [(Name, [(Maybe Name, Type)])] -> [Name]
forall k (is :: IxList) s a.
Is k A_Fold =>
Optic' k is s a -> s -> [a]
toListOf (Fold [(Name, [(Maybe Name, Type)])] (Name, [(Maybe Name, Type)])
forall (f :: * -> *) a. Foldable f => Fold (f a) a
folded Fold [(Name, [(Maybe Name, Type)])] (Name, [(Maybe Name, Type)])
-> Optic
A_Lens
'[]
(Name, [(Maybe Name, Type)])
(Name, [(Maybe Name, Type)])
[(Maybe Name, Type)]
[(Maybe Name, Type)]
-> Optic
A_Fold
'[]
[(Name, [(Maybe Name, Type)])]
[(Name, [(Maybe Name, Type)])]
[(Maybe Name, Type)]
[(Maybe Name, Type)]
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic
A_Lens
'[]
(Name, [(Maybe Name, Type)])
(Name, [(Maybe Name, Type)])
[(Maybe Name, Type)]
[(Maybe Name, Type)]
forall s t a b. Field2 s t a b => Lens s t a b
_2 Optic
A_Fold
'[]
[(Name, [(Maybe Name, Type)])]
[(Name, [(Maybe Name, Type)])]
[(Maybe Name, Type)]
[(Maybe Name, Type)]
-> Optic
A_Fold
'[]
[(Maybe Name, Type)]
[(Maybe Name, Type)]
(Maybe Name, Type)
(Maybe Name, Type)
-> Optic
A_Fold
'[]
[(Name, [(Maybe Name, Type)])]
[(Name, [(Maybe Name, Type)])]
(Maybe Name, Type)
(Maybe Name, Type)
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic
A_Fold
'[]
[(Maybe Name, Type)]
[(Maybe Name, Type)]
(Maybe Name, Type)
(Maybe Name, Type)
forall (f :: * -> *) a. Foldable f => Fold (f a) a
folded Optic
A_Fold
'[]
[(Name, [(Maybe Name, Type)])]
[(Name, [(Maybe Name, Type)])]
(Maybe Name, Type)
(Maybe Name, Type)
-> Optic
A_Lens
'[]
(Maybe Name, Type)
(Maybe Name, Type)
(Maybe Name)
(Maybe Name)
-> Optic
A_Fold
'[]
[(Name, [(Maybe Name, Type)])]
[(Name, [(Maybe Name, Type)])]
(Maybe Name)
(Maybe Name)
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic
A_Lens
'[]
(Maybe Name, Type)
(Maybe Name, Type)
(Maybe Name)
(Maybe Name)
forall s t a b. Field1 s t a b => Lens s t a b
_1 Optic
A_Fold
'[]
[(Name, [(Maybe Name, Type)])]
[(Name, [(Maybe Name, Type)])]
(Maybe Name)
(Maybe Name)
-> Optic A_Fold '[] (Maybe Name) (Maybe Name) Name Name
-> Optic' A_Fold '[] [(Name, [(Maybe Name, Type)])] Name
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic A_Fold '[] (Maybe Name) (Maybe Name) Name Name
forall (f :: * -> *) a. Foldable f => Fold (f a) a
folded) [(Name, [(Maybe Name, Type)])]
fieldCons
let defCons :: [(Name, [([DefName], Type)])]
defCons = Optic
A_Traversal
'[]
[(Name, [(Maybe Name, Type)])]
[(Name, [([DefName], Type)])]
(Maybe Name)
[DefName]
-> (Maybe Name -> [DefName])
-> [(Name, [(Maybe Name, Type)])]
-> [(Name, [([DefName], Type)])]
forall k (is :: IxList) s t a b.
Is k A_Setter =>
Optic k is s t a b -> (a -> b) -> s -> t
over Optic
A_Traversal
'[]
[(Name, [(Maybe Name, Type)])]
[(Name, [([DefName], Type)])]
(Maybe Name)
[DefName]
forall a b.
Traversal [(Name, [(a, Type)])] [(Name, [(b, Type)])] a b
normFieldLabels (LensRules
-> Name -> [ConstructorInfo] -> [Name] -> Maybe Name -> [DefName]
expandName LensRules
rules Name
tyName [ConstructorInfo]
cons [Name]
allFields) [(Name, [(Maybe Name, Type)])]
fieldCons
allDefs :: Set DefName
allDefs = Optic' A_Fold '[] [(Name, [([DefName], Type)])] DefName
-> [(Name, [([DefName], Type)])] -> Set DefName
forall k a (is :: IxList) s.
(Is k A_Fold, Ord a) =>
Optic' k is s a -> s -> Set a
setOf (Traversal
[(Name, [([DefName], Type)])]
[(Name, [([DefName], Type)])]
[DefName]
[DefName]
forall a b.
Traversal [(Name, [(a, Type)])] [(Name, [(b, Type)])] a b
normFieldLabels Traversal
[(Name, [([DefName], Type)])]
[(Name, [([DefName], Type)])]
[DefName]
[DefName]
-> Optic A_Fold '[] [DefName] [DefName] DefName DefName
-> Optic' A_Fold '[] [(Name, [([DefName], Type)])] DefName
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic A_Fold '[] [DefName] [DefName] DefName DefName
forall (f :: * -> *) a. Foldable f => Fold (f a) a
folded) [(Name, [([DefName], Type)])]
defCons
Map DefName (Q (OpticStab, [(Name, Int, [Int])]))
-> Q (Map DefName (OpticStab, [(Name, Int, [Int])]))
forall (t :: * -> *) (f :: * -> *) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
T.sequenceA ((DefName -> Q (OpticStab, [(Name, Int, [Int])]))
-> Set DefName -> Map DefName (Q (OpticStab, [(Name, Int, [Int])]))
forall k a. (k -> a) -> Set k -> Map k a
M.fromSet (Bool
-> LensRules
-> Type
-> [(Name, [([DefName], Type)])]
-> DefName
-> Q (OpticStab, [(Name, Int, [Int])])
buildScaffold Bool
False LensRules
rules Type
s [(Name, [([DefName], Type)])]
defCons) Set DefName
allDefs)
let defs :: [(DefName, (OpticStab, [(Name, Int, [Int])]))]
defs = Map DefName (OpticStab, [(Name, Int, [Int])])
-> [(DefName, (OpticStab, [(Name, Int, [Int])]))]
forall k a. Map k a -> [(k, a)]
M.toList Map DefName (OpticStab, [(Name, Int, [Int])])
perDef
case LensRules -> ClassyNamer
_classyLenses LensRules
rules Name
tyName of
Just (Name
className, Name
methodName) ->
LensRules
-> Name
-> Name
-> Type
-> [(DefName, (OpticStab, [(Name, Int, [Int])]))]
-> StateT (Set Name) Q [Dec]
makeClassyDriver LensRules
rules Name
className Name
methodName Type
s [(DefName, (OpticStab, [(Name, Int, [Int])]))]
defs
Maybe (Name, Name)
Nothing -> do
Bool -> StateT (Set Name) Q () -> StateT (Set Name) Q ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Optic'
A_Traversal
'[]
[(DefName, (OpticStab, [(Name, Int, [Int])]))]
(Name, Name)
-> [(DefName, (OpticStab, [(Name, Int, [Int])]))] -> Bool
forall k (is :: IxList) s a.
Is k A_Fold =>
Optic' k is s a -> s -> Bool
has (Traversal
[(DefName, (OpticStab, [(Name, Int, [Int])]))]
[(DefName, (OpticStab, [(Name, Int, [Int])]))]
(DefName, (OpticStab, [(Name, Int, [Int])]))
(DefName, (OpticStab, [(Name, Int, [Int])]))
forall (t :: * -> *) a b.
Traversable t =>
Traversal (t a) (t b) a b
traversed Traversal
[(DefName, (OpticStab, [(Name, Int, [Int])]))]
[(DefName, (OpticStab, [(Name, Int, [Int])]))]
(DefName, (OpticStab, [(Name, Int, [Int])]))
(DefName, (OpticStab, [(Name, Int, [Int])]))
-> Optic
A_Lens
'[]
(DefName, (OpticStab, [(Name, Int, [Int])]))
(DefName, (OpticStab, [(Name, Int, [Int])]))
DefName
DefName
-> Optic
A_Traversal
'[]
[(DefName, (OpticStab, [(Name, Int, [Int])]))]
[(DefName, (OpticStab, [(Name, Int, [Int])]))]
DefName
DefName
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic
A_Lens
'[]
(DefName, (OpticStab, [(Name, Int, [Int])]))
(DefName, (OpticStab, [(Name, Int, [Int])]))
DefName
DefName
forall s t a b. Field1 s t a b => Lens s t a b
_1 Optic
A_Traversal
'[]
[(DefName, (OpticStab, [(Name, Int, [Int])]))]
[(DefName, (OpticStab, [(Name, Int, [Int])]))]
DefName
DefName
-> Optic A_Prism '[] DefName DefName (Name, Name) (Name, Name)
-> Optic'
A_Traversal
'[]
[(DefName, (OpticStab, [(Name, Int, [Int])]))]
(Name, Name)
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic A_Prism '[] DefName DefName (Name, Name) (Name, Name)
_MethodName) [(DefName, (OpticStab, [(Name, Int, [Int])]))]
defs) (StateT (Set Name) Q () -> StateT (Set Name) Q ())
-> StateT (Set Name) Q () -> StateT (Set Name) Q ()
forall a b. (a -> b) -> a -> b
$ do
Q () -> StateT (Set Name) Q ()
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift Q ()
requireExtensionsForFields
[[Dec]]
decss <- ((DefName, (OpticStab, [(Name, Int, [Int])]))
-> StateT (Set Name) Q [Dec])
-> [(DefName, (OpticStab, [(Name, Int, [Int])]))]
-> StateT (Set Name) Q [[Dec]]
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (LensRules
-> (DefName, (OpticStab, [(Name, Int, [Int])]))
-> StateT (Set Name) Q [Dec]
makeFieldOptic LensRules
rules) [(DefName, (OpticStab, [(Name, Int, [Int])]))]
defs
[Dec] -> StateT (Set Name) Q [Dec]
forall (m :: * -> *) a. Monad m => a -> m a
return ([[Dec]] -> [Dec]
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat [[Dec]]
decss)
where
tyName :: Name
tyName = DatatypeInfo -> Name
D.datatypeName DatatypeInfo
info
s :: Type
s = DatatypeInfo -> Type -> Type
addKindInfo DatatypeInfo
info (Type -> Type) -> Type -> Type
forall a b. (a -> b) -> a -> b
$ DatatypeInfo -> Type
D.datatypeType DatatypeInfo
info
cons :: [ConstructorInfo]
cons = DatatypeInfo -> [ConstructorInfo]
D.datatypeCons DatatypeInfo
info
normFieldLabels :: Traversal [(Name,[(a,Type)])] [(Name,[(b,Type)])] a b
normFieldLabels :: Traversal [(Name, [(a, Type)])] [(Name, [(b, Type)])] a b
normFieldLabels = Traversal
[(Name, [(a, Type)])]
[(Name, [(b, Type)])]
(Name, [(a, Type)])
(Name, [(b, Type)])
forall (t :: * -> *) a b.
Traversable t =>
Traversal (t a) (t b) a b
traversed Traversal
[(Name, [(a, Type)])]
[(Name, [(b, Type)])]
(Name, [(a, Type)])
(Name, [(b, Type)])
-> Optic
A_Lens
'[]
(Name, [(a, Type)])
(Name, [(b, Type)])
[(a, Type)]
[(b, Type)]
-> Optic
A_Traversal
'[]
[(Name, [(a, Type)])]
[(Name, [(b, Type)])]
[(a, Type)]
[(b, Type)]
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic
A_Lens
'[]
(Name, [(a, Type)])
(Name, [(b, Type)])
[(a, Type)]
[(b, Type)]
forall s t a b. Field2 s t a b => Lens s t a b
_2 Optic
A_Traversal
'[]
[(Name, [(a, Type)])]
[(Name, [(b, Type)])]
[(a, Type)]
[(b, Type)]
-> Optic
A_Traversal '[] [(a, Type)] [(b, Type)] (a, Type) (b, Type)
-> Optic
A_Traversal
'[]
[(Name, [(a, Type)])]
[(Name, [(b, Type)])]
(a, Type)
(b, Type)
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic A_Traversal '[] [(a, Type)] [(b, Type)] (a, Type) (b, Type)
forall (t :: * -> *) a b.
Traversable t =>
Traversal (t a) (t b) a b
traversed Optic
A_Traversal
'[]
[(Name, [(a, Type)])]
[(Name, [(b, Type)])]
(a, Type)
(b, Type)
-> Optic A_Lens '[] (a, Type) (b, Type) a b
-> Traversal [(Name, [(a, Type)])] [(Name, [(b, Type)])] a b
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic A_Lens '[] (a, Type) (b, Type) a b
forall s t a b. Field1 s t a b => Lens s t a b
_1
expandName :: LensRules -> Name -> [D.ConstructorInfo] -> [Name] -> Maybe Name -> [DefName]
expandName :: LensRules
-> Name -> [ConstructorInfo] -> [Name] -> Maybe Name -> [DefName]
expandName LensRules
rules Name
tyName [ConstructorInfo]
cons [Name]
allFields =
(Name -> [DefName]) -> [Name] -> [DefName]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (LensRules -> FieldNamer
_fieldToDef LensRules
rules Name
tyName [Name]
allFields (Name -> [DefName]) -> (Name -> Name) -> Name -> [DefName]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Optic A_Lens '[] Name Name String String
-> (String -> String) -> Name -> Name
forall k (is :: IxList) s t a b.
Is k A_Setter =>
Optic k is s t a b -> (a -> b) -> s -> t
over Optic A_Lens '[] Name Name String String
nameString String -> String
stripSel) ([Name] -> [DefName])
-> (Maybe Name -> [Name]) -> Maybe Name -> [DefName]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Maybe Name -> [Name]
forall a. Maybe a -> [a]
maybeToList
where
stripSel :: String -> String
stripSel :: String -> String
stripSel String
n = String -> Maybe String -> String
forall a. a -> Maybe a -> a
fromMaybe String
n (Maybe String -> String) -> Maybe String -> String
forall a b. (a -> b) -> a -> b
$ String -> String -> Maybe String
forall a. Eq a => [a] -> [a] -> Maybe [a]
stripSuffix (Char
':'Char -> String -> String
forall a. a -> [a] -> [a]
:String
first_con_name)
(String -> Maybe String) -> Maybe String -> Maybe String
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< String -> String -> Maybe String
forall a. Eq a => [a] -> [a] -> Maybe [a]
L.stripPrefix String
"$sel:" String
n
stripSuffix :: Eq a => [a] -> [a] -> Maybe [a]
stripSuffix :: [a] -> [a] -> Maybe [a]
stripSuffix [a]
suffix = ([a] -> [a]) -> Maybe [a] -> Maybe [a]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap [a] -> [a]
forall a. [a] -> [a]
reverse (Maybe [a] -> Maybe [a]) -> ([a] -> Maybe [a]) -> [a] -> Maybe [a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [a] -> [a] -> Maybe [a]
forall a. Eq a => [a] -> [a] -> Maybe [a]
L.stripPrefix ([a] -> [a]
forall a. [a] -> [a]
reverse [a]
suffix) ([a] -> Maybe [a]) -> ([a] -> [a]) -> [a] -> Maybe [a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [a] -> [a]
forall a. [a] -> [a]
reverse
first_con_name :: String
first_con_name = case [ConstructorInfo]
cons of
ConstructorInfo
con:[ConstructorInfo]
_ -> Optic A_Lens '[] Name Name String String -> Name -> String
forall k (is :: IxList) s a.
Is k A_Getter =>
Optic' k is s a -> s -> a
view Optic A_Lens '[] Name Name String String
nameString (ConstructorInfo -> Name
D.constructorName ConstructorInfo
con)
[] -> String -> String
forall a. HasCallStack => String -> a
error String
"expandName: impossible for a record type with fields to have no constructors!"
nameString :: Lens' Name String
nameString :: Optic A_Lens '[] Name Name String String
nameString = (Name -> String)
-> (Name -> String -> Name)
-> Optic A_Lens '[] Name Name String String
forall s a b t. (s -> a) -> (s -> b -> t) -> Lens s t a b
lens (\ (TH.Name (TH.OccName String
s) NameFlavour
_) -> String
s)
(\ (TH.Name OccName
_ NameFlavour
f) String
s -> OccName -> NameFlavour -> Name
TH.Name (String -> OccName
TH.OccName String
s) NameFlavour
f)
makeFieldLabelsForDec :: LensRules -> Dec -> DecsQ
makeFieldLabelsForDec :: LensRules -> Dec -> DecsQ
makeFieldLabelsForDec LensRules
rules = LensRules -> DatatypeInfo -> DecsQ
makeFieldLabelsForDatatype LensRules
rules (DatatypeInfo -> DecsQ) -> (Dec -> Q DatatypeInfo) -> Dec -> DecsQ
forall (m :: * -> *) b c a.
Monad m =>
(b -> m c) -> (a -> m b) -> a -> m c
<=< Dec -> Q DatatypeInfo
D.normalizeDec
makeFieldLabelsWith :: LensRules -> Name -> DecsQ
makeFieldLabelsWith :: LensRules -> Name -> DecsQ
makeFieldLabelsWith LensRules
rules = Name -> Q DatatypeInfo
D.reifyDatatype (Name -> Q DatatypeInfo)
-> (DatatypeInfo -> DecsQ) -> Name -> DecsQ
forall (m :: * -> *) a b c.
Monad m =>
(a -> m b) -> (b -> m c) -> a -> m c
>=> LensRules -> DatatypeInfo -> DecsQ
makeFieldLabelsForDatatype LensRules
rules
makeFieldLabelsForDatatype :: LensRules -> D.DatatypeInfo -> Q [Dec]
makeFieldLabelsForDatatype :: LensRules -> DatatypeInfo -> DecsQ
makeFieldLabelsForDatatype LensRules
rules DatatypeInfo
info = do
Q ()
requireExtensionsForLabels
Map DefName (OpticStab, [(Name, Int, [Int])])
perDef <- do
[(Name, [(Maybe Name, Type)])]
fieldCons <- (ConstructorInfo -> Q (Name, [(Maybe Name, Type)]))
-> [ConstructorInfo] -> Q [(Name, [(Maybe Name, Type)])]
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (DatatypeInfo -> ConstructorInfo -> Q (Name, [(Maybe Name, Type)])
normalizeConstructor DatatypeInfo
info) [ConstructorInfo]
cons
let allFields :: [Name]
allFields = Optic' A_Fold '[] [(Name, [(Maybe Name, Type)])] Name
-> [(Name, [(Maybe Name, Type)])] -> [Name]
forall k (is :: IxList) s a.
Is k A_Fold =>
Optic' k is s a -> s -> [a]
toListOf (Fold [(Name, [(Maybe Name, Type)])] (Name, [(Maybe Name, Type)])
forall (f :: * -> *) a. Foldable f => Fold (f a) a
folded Fold [(Name, [(Maybe Name, Type)])] (Name, [(Maybe Name, Type)])
-> Optic
A_Lens
'[]
(Name, [(Maybe Name, Type)])
(Name, [(Maybe Name, Type)])
[(Maybe Name, Type)]
[(Maybe Name, Type)]
-> Optic
A_Fold
'[]
[(Name, [(Maybe Name, Type)])]
[(Name, [(Maybe Name, Type)])]
[(Maybe Name, Type)]
[(Maybe Name, Type)]
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic
A_Lens
'[]
(Name, [(Maybe Name, Type)])
(Name, [(Maybe Name, Type)])
[(Maybe Name, Type)]
[(Maybe Name, Type)]
forall s t a b. Field2 s t a b => Lens s t a b
_2 Optic
A_Fold
'[]
[(Name, [(Maybe Name, Type)])]
[(Name, [(Maybe Name, Type)])]
[(Maybe Name, Type)]
[(Maybe Name, Type)]
-> Optic
A_Fold
'[]
[(Maybe Name, Type)]
[(Maybe Name, Type)]
(Maybe Name, Type)
(Maybe Name, Type)
-> Optic
A_Fold
'[]
[(Name, [(Maybe Name, Type)])]
[(Name, [(Maybe Name, Type)])]
(Maybe Name, Type)
(Maybe Name, Type)
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic
A_Fold
'[]
[(Maybe Name, Type)]
[(Maybe Name, Type)]
(Maybe Name, Type)
(Maybe Name, Type)
forall (f :: * -> *) a. Foldable f => Fold (f a) a
folded Optic
A_Fold
'[]
[(Name, [(Maybe Name, Type)])]
[(Name, [(Maybe Name, Type)])]
(Maybe Name, Type)
(Maybe Name, Type)
-> Optic
A_Lens
'[]
(Maybe Name, Type)
(Maybe Name, Type)
(Maybe Name)
(Maybe Name)
-> Optic
A_Fold
'[]
[(Name, [(Maybe Name, Type)])]
[(Name, [(Maybe Name, Type)])]
(Maybe Name)
(Maybe Name)
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic
A_Lens
'[]
(Maybe Name, Type)
(Maybe Name, Type)
(Maybe Name)
(Maybe Name)
forall s t a b. Field1 s t a b => Lens s t a b
_1 Optic
A_Fold
'[]
[(Name, [(Maybe Name, Type)])]
[(Name, [(Maybe Name, Type)])]
(Maybe Name)
(Maybe Name)
-> Optic A_Fold '[] (Maybe Name) (Maybe Name) Name Name
-> Optic' A_Fold '[] [(Name, [(Maybe Name, Type)])] Name
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic A_Fold '[] (Maybe Name) (Maybe Name) Name Name
forall (f :: * -> *) a. Foldable f => Fold (f a) a
folded) [(Name, [(Maybe Name, Type)])]
fieldCons
let defCons :: [(Name, [([DefName], Type)])]
defCons = Optic
A_Traversal
'[]
[(Name, [(Maybe Name, Type)])]
[(Name, [([DefName], Type)])]
(Maybe Name)
[DefName]
-> (Maybe Name -> [DefName])
-> [(Name, [(Maybe Name, Type)])]
-> [(Name, [([DefName], Type)])]
forall k (is :: IxList) s t a b.
Is k A_Setter =>
Optic k is s t a b -> (a -> b) -> s -> t
over Optic
A_Traversal
'[]
[(Name, [(Maybe Name, Type)])]
[(Name, [([DefName], Type)])]
(Maybe Name)
[DefName]
forall a b.
Traversal [(Name, [(a, Type)])] [(Name, [(b, Type)])] a b
normFieldLabels (LensRules
-> Name -> [ConstructorInfo] -> [Name] -> Maybe Name -> [DefName]
expandName LensRules
rules Name
tyName [ConstructorInfo]
cons [Name]
allFields) [(Name, [(Maybe Name, Type)])]
fieldCons
allDefs :: Set DefName
allDefs = Optic' A_Fold '[] [(Name, [([DefName], Type)])] DefName
-> [(Name, [([DefName], Type)])] -> Set DefName
forall k a (is :: IxList) s.
(Is k A_Fold, Ord a) =>
Optic' k is s a -> s -> Set a
setOf (Traversal
[(Name, [([DefName], Type)])]
[(Name, [([DefName], Type)])]
[DefName]
[DefName]
forall a b.
Traversal [(Name, [(a, Type)])] [(Name, [(b, Type)])] a b
normFieldLabels Traversal
[(Name, [([DefName], Type)])]
[(Name, [([DefName], Type)])]
[DefName]
[DefName]
-> Optic A_Fold '[] [DefName] [DefName] DefName DefName
-> Optic' A_Fold '[] [(Name, [([DefName], Type)])] DefName
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic A_Fold '[] [DefName] [DefName] DefName DefName
forall (f :: * -> *) a. Foldable f => Fold (f a) a
folded) [(Name, [([DefName], Type)])]
defCons
Map DefName (Q (OpticStab, [(Name, Int, [Int])]))
-> Q (Map DefName (OpticStab, [(Name, Int, [Int])]))
forall (t :: * -> *) (f :: * -> *) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
T.sequenceA ((DefName -> Q (OpticStab, [(Name, Int, [Int])]))
-> Set DefName -> Map DefName (Q (OpticStab, [(Name, Int, [Int])]))
forall k a. (k -> a) -> Set k -> Map k a
M.fromSet (Bool
-> LensRules
-> Type
-> [(Name, [([DefName], Type)])]
-> DefName
-> Q (OpticStab, [(Name, Int, [Int])])
buildScaffold Bool
True LensRules
rules Type
s [(Name, [([DefName], Type)])]
defCons) Set DefName
allDefs)
let defs :: [(DefName, (OpticStab, [(Name, Int, [Int])]))]
defs = Map DefName (OpticStab, [(Name, Int, [Int])])
-> [(DefName, (OpticStab, [(Name, Int, [Int])]))]
forall k a. Map k a -> [(k, a)]
M.toList Map DefName (OpticStab, [(Name, Int, [Int])])
perDef
((DefName, (OpticStab, [(Name, Int, [Int])])) -> Q Dec)
-> [(DefName, (OpticStab, [(Name, Int, [Int])]))] -> DecsQ
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (DatatypeInfo
-> LensRules
-> (DefName, (OpticStab, [(Name, Int, [Int])]))
-> Q Dec
makeFieldLabel DatatypeInfo
info LensRules
rules) [(DefName, (OpticStab, [(Name, Int, [Int])]))]
defs
where
tyName :: Name
tyName = DatatypeInfo -> Name
D.datatypeName DatatypeInfo
info
s :: Type
s = DatatypeInfo -> Type -> Type
addKindInfo DatatypeInfo
info (Type -> Type) -> Type -> Type
forall a b. (a -> b) -> a -> b
$ DatatypeInfo -> Type
D.datatypeType DatatypeInfo
info
cons :: [ConstructorInfo]
cons = DatatypeInfo -> [ConstructorInfo]
D.datatypeCons DatatypeInfo
info
normFieldLabels :: Traversal [(Name,[(a,Type)])] [(Name,[(b,Type)])] a b
normFieldLabels :: Traversal [(Name, [(a, Type)])] [(Name, [(b, Type)])] a b
normFieldLabels = Traversal
[(Name, [(a, Type)])]
[(Name, [(b, Type)])]
(Name, [(a, Type)])
(Name, [(b, Type)])
forall (t :: * -> *) a b.
Traversable t =>
Traversal (t a) (t b) a b
traversed Traversal
[(Name, [(a, Type)])]
[(Name, [(b, Type)])]
(Name, [(a, Type)])
(Name, [(b, Type)])
-> Optic
A_Lens
'[]
(Name, [(a, Type)])
(Name, [(b, Type)])
[(a, Type)]
[(b, Type)]
-> Optic
A_Traversal
'[]
[(Name, [(a, Type)])]
[(Name, [(b, Type)])]
[(a, Type)]
[(b, Type)]
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic
A_Lens
'[]
(Name, [(a, Type)])
(Name, [(b, Type)])
[(a, Type)]
[(b, Type)]
forall s t a b. Field2 s t a b => Lens s t a b
_2 Optic
A_Traversal
'[]
[(Name, [(a, Type)])]
[(Name, [(b, Type)])]
[(a, Type)]
[(b, Type)]
-> Optic
A_Traversal '[] [(a, Type)] [(b, Type)] (a, Type) (b, Type)
-> Optic
A_Traversal
'[]
[(Name, [(a, Type)])]
[(Name, [(b, Type)])]
(a, Type)
(b, Type)
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic A_Traversal '[] [(a, Type)] [(b, Type)] (a, Type) (b, Type)
forall (t :: * -> *) a b.
Traversable t =>
Traversal (t a) (t b) a b
traversed Optic
A_Traversal
'[]
[(Name, [(a, Type)])]
[(Name, [(b, Type)])]
(a, Type)
(b, Type)
-> Optic A_Lens '[] (a, Type) (b, Type) a b
-> Traversal [(Name, [(a, Type)])] [(Name, [(b, Type)])] a b
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic A_Lens '[] (a, Type) (b, Type) a b
forall s t a b. Field1 s t a b => Lens s t a b
_1
makeFieldLabel
:: D.DatatypeInfo
-> LensRules
-> (DefName, (OpticStab, [(Name, Int, [Int])]))
-> Q Dec
makeFieldLabel :: DatatypeInfo
-> LensRules
-> (DefName, (OpticStab, [(Name, Int, [Int])]))
-> Q Dec
makeFieldLabel DatatypeInfo
info LensRules
rules (DefName
defName, (OpticStab
defType, [(Name, Int, [Int])]
cons)) = do
(Q Cxt
context, Q Type
instHead) <- case OpticStab
defType of
OpticSa [TyVarBndr]
vs Cxt
cx OpticType
otype Type
s Type
a0 -> do
let a :: Type
a = Cxt -> DatatypeInfo -> Type -> Type
addKindInfo' ((TyVarBndr -> Type) -> [TyVarBndr] -> Cxt
forall a b. (a -> b) -> [a] -> [b]
map TyVarBndr -> Type
forall flag. TyVarBndr -> Type
tyVarBndrToType [TyVarBndr]
vs) DatatypeInfo
info Type
a0
(Type
k, Type
cxtK) <- Type -> String -> Q (Type, Type)
eqSubst (Name -> Type
ConT (Name -> Type) -> Name -> Type
forall a b. (a -> b) -> a -> b
$ OpticType -> Name
opticTypeToTag OpticType
otype) String
"k"
(Type
a', Type
cxtA) <- Type -> String -> Q (Type, Type)
eqSubst Type
a String
"a"
(Type
b', Type
cxtB) <- Type -> String -> Q (Type, Type)
eqSubst Type
a String
"b"
let tyArgs :: Cxt
tyArgs = [TyLit -> Type
LitT (String -> TyLit
StrTyLit String
fieldName), Type
k, Type
s, Type
s, Type
a', Type
b']
context :: Cxt
context = [Cxt] -> Cxt
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat
[
if [TyVarBndr] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TyVarBndr]
vs then [] else [Name -> Cxt -> Type
conAppsT ''Dysfunctional Cxt
tyArgs]
, [Type
cxtK, Type
cxtA, Type
cxtB]
, Cxt
cx
]
(Q Cxt, Q Type) -> Q (Q Cxt, Q Type)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Cxt -> Q Cxt
forall (f :: * -> *) a. Applicative f => a -> f a
pure Cxt
context, Type -> Q Type
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Type -> Q Type) -> Type -> Q Type
forall a b. (a -> b) -> a -> b
$ Name -> Cxt -> Type
conAppsT ''LabelOptic Cxt
tyArgs)
OpticStab Bool
tvsCovered OpticType
otype Type
s Type
t Type
a Type
b -> do
(Type
k, Type
cxtK) <- Type -> String -> Q (Type, Type)
eqSubst (Name -> Type
ConT (Name -> Type) -> Name -> Type
forall a b. (a -> b) -> a -> b
$ OpticType -> Name
opticTypeToTag OpticType
otype) String
"k"
(Type
a', Type
cxtA) <- Type -> String -> Q (Type, Type)
eqSubst Type
a String
"a"
(Type
b', Type
cxtB) <- Type -> String -> Q (Type, Type)
eqSubst Type
b String
"b"
let tyArgs :: Cxt
tyArgs = [TyLit -> Type
LitT (String -> TyLit
StrTyLit String
fieldName), Type
k, Type
s, Type
t, Type
a', Type
b']
context :: Cxt
context = [Cxt] -> Cxt
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat
[
if Bool
tvsCovered then [] else [Name -> Cxt -> Type
conAppsT ''Dysfunctional Cxt
tyArgs]
, [Type
cxtK, Type
cxtA, Type
cxtB]
]
(Q Cxt, Q Type) -> Q (Q Cxt, Q Type)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Cxt -> Q Cxt
forall (f :: * -> *) a. Applicative f => a -> f a
pure Cxt
context, Type -> Q Type
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Type -> Q Type) -> Type -> Q Type
forall a b. (a -> b) -> a -> b
$ Name -> Cxt -> Type
conAppsT ''LabelOptic Cxt
tyArgs)
Q Cxt -> Q Type -> [Q Dec] -> Q Dec
instanceD Q Cxt
context Q Type
instHead (Name -> [Q Dec]
fun 'labelOptic)
where
opticTypeToTag :: OpticType -> Name
opticTypeToTag OpticType
AffineFoldType = ''An_AffineFold
opticTypeToTag OpticType
AffineTraversalType = ''An_AffineTraversal
opticTypeToTag OpticType
FoldType = ''A_Fold
opticTypeToTag OpticType
GetterType = ''A_Getter
opticTypeToTag OpticType
IsoType = ''An_Iso
opticTypeToTag OpticType
LensType = ''A_Lens
opticTypeToTag OpticType
TraversalType = ''A_Traversal
fieldName :: String
fieldName = case DefName
defName of
TopName Name
fname -> Name -> String
nameBase Name
fname
MethodName Name
_ Name
fname -> Name -> String
nameBase Name
fname
fun :: Name -> [DecQ]
fun :: Name -> [Q Dec]
fun Name
n = Name -> [ClauseQ] -> Q Dec
funD Name
n [ClauseQ
funDef] Q Dec -> [Q Dec] -> [Q Dec]
forall a. a -> [a] -> [a]
: Name -> [Q Dec]
inlinePragma Name
n
funDef :: ClauseQ
funDef :: ClauseQ
funDef = LensRules -> OpticType -> [(Name, Int, [Int])] -> ClauseQ
makeFieldClause LensRules
rules (OpticStab -> OpticType
stabToOpticType OpticStab
defType) [(Name, Int, [Int])]
cons
normalizeConstructor ::
D.DatatypeInfo ->
D.ConstructorInfo ->
Q (Name, [(Maybe Name, Type)])
normalizeConstructor :: DatatypeInfo -> ConstructorInfo -> Q (Name, [(Maybe Name, Type)])
normalizeConstructor DatatypeInfo
info ConstructorInfo
con =
(Name, [(Maybe Name, Type)]) -> Q (Name, [(Maybe Name, Type)])
forall (m :: * -> *) a. Monad m => a -> m a
return (ConstructorInfo -> Name
D.constructorName ConstructorInfo
con,
(Maybe Name -> Type -> (Maybe Name, Type))
-> [Maybe Name] -> Cxt -> [(Maybe Name, Type)]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith Maybe Name -> Type -> (Maybe Name, Type)
checkForExistentials [Maybe Name]
fieldNames (ConstructorInfo -> Cxt
D.constructorFields ConstructorInfo
con))
where
fieldNames :: [Maybe Name]
fieldNames =
case ConstructorInfo -> ConstructorVariant
D.constructorVariant ConstructorInfo
con of
D.RecordConstructor [Name]
xs -> (Name -> Maybe Name) -> [Name] -> [Maybe Name]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Name -> Maybe Name
forall a. a -> Maybe a
Just [Name]
xs
ConstructorVariant
D.NormalConstructor -> Maybe Name -> [Maybe Name]
forall a. a -> [a]
repeat Maybe Name
forall a. Maybe a
Nothing
ConstructorVariant
D.InfixConstructor -> Maybe Name -> [Maybe Name]
forall a. a -> [a]
repeat Maybe Name
forall a. Maybe a
Nothing
checkForExistentials :: Maybe Name -> Type -> (Maybe Name, Type)
checkForExistentials Maybe Name
_ Type
fieldtype
| (TyVarBndr -> Bool) -> [TyVarBndr] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any (\TyVarBndr
tv -> TyVarBndr -> Name
forall flag. TyVarBndr -> Name
D.tvName TyVarBndr
tv Name -> Set Name -> Bool
forall a. Ord a => a -> Set a -> Bool
`S.member` Set Name
used) [TyVarBndr]
unallowable
= (Maybe Name
forall a. Maybe a
Nothing, DatatypeInfo -> Type -> Type
addKindInfo DatatypeInfo
info Type
fieldtype)
where
used :: Set Name
used = Optic' A_Traversal '[] Type Name -> Type -> Set Name
forall k a (is :: IxList) s.
(Is k A_Fold, Ord a) =>
Optic' k is s a -> s -> Set a
setOf Optic' A_Traversal '[] Type Name
forall t. HasTypeVars t => Traversal' t Name
typeVars Type
fieldtype
unallowable :: [TyVarBndr]
unallowable = ConstructorInfo -> [TyVarBndr]
D.constructorVars ConstructorInfo
con
checkForExistentials Maybe Name
fieldname Type
fieldtype = (Maybe Name
fieldname, DatatypeInfo -> Type -> Type
addKindInfo DatatypeInfo
info Type
fieldtype)
buildScaffold ::
Bool ->
LensRules ->
Type ->
[(Name, [([DefName], Type)])] ->
DefName ->
Q (OpticStab, [(Name, Int, [Int])])
buildScaffold :: Bool
-> LensRules
-> Type
-> [(Name, [([DefName], Type)])]
-> DefName
-> Q (OpticStab, [(Name, Int, [Int])])
buildScaffold Bool
forClassInstance LensRules
rules Type
s [(Name, [([DefName], Type)])]
cons DefName
defName =
do (Type
t,Type
a,Type
b, Bool
tvsCovered) <- Bool -> Type -> [Either Type Type] -> Q (Type, Type, Type, Bool)
buildTab Bool
forClassInstance Type
s ([Either Type Type] -> Q (Type, Type, Type, Bool))
-> [Either Type Type] -> Q (Type, Type, Type, Bool)
forall a b. (a -> b) -> a -> b
$
((Name, [Either Type Type]) -> [Either Type Type])
-> [(Name, [Either Type Type])] -> [Either Type Type]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (Name, [Either Type Type]) -> [Either Type Type]
forall a b. (a, b) -> b
snd [(Name, [Either Type Type])]
consForDef
let defType :: OpticStab
defType
| Just ([TyVarBndr]
tyvars, Cxt
cx, Type
a') <- Optic' A_Prism '[] Type ([TyVarBndr], Cxt, Type)
-> Type -> Maybe ([TyVarBndr], Cxt, Type)
forall k (is :: IxList) s a.
Is k An_AffineFold =>
Optic' k is s a -> s -> Maybe a
preview Optic' A_Prism '[] Type ([TyVarBndr], Cxt, Type)
_ForallT Type
a =
let optic :: OpticType
optic | Bool
lensCase = OpticType
GetterType
| Bool
affineCase = OpticType
AffineFoldType
| Bool
otherwise = OpticType
FoldType
in [TyVarBndr] -> Cxt -> OpticType -> Type -> Type -> OpticStab
OpticSa [TyVarBndr]
tyvars Cxt
cx OpticType
optic Type
s Type
a'
| Bool -> Bool
not (LensRules -> Bool
_allowUpdates LensRules
rules) =
let optic :: OpticType
optic | Bool
lensCase = OpticType
GetterType
| Bool
affineCase = OpticType
AffineFoldType
| Bool
otherwise = OpticType
FoldType
in [TyVarBndr] -> Cxt -> OpticType -> Type -> Type -> OpticStab
OpticSa [] [] OpticType
optic Type
s Type
a
| LensRules -> Bool
_simpleLenses LensRules
rules Bool -> Bool -> Bool
|| Type
s Type -> Type -> Bool
forall a. Eq a => a -> a -> Bool
== Type
t Bool -> Bool -> Bool
&& Type
a Type -> Type -> Bool
forall a. Eq a => a -> a -> Bool
== Type
b =
let optic :: OpticType
optic | Bool
isoCase Bool -> Bool -> Bool
&& LensRules -> Bool
_allowIsos LensRules
rules = OpticType
IsoType
| Bool
lensCase = OpticType
LensType
| Bool
affineCase = OpticType
AffineTraversalType
| Bool
otherwise = OpticType
TraversalType
in [TyVarBndr] -> Cxt -> OpticType -> Type -> Type -> OpticStab
OpticSa [] [] OpticType
optic Type
s Type
a
| Bool
otherwise =
let optic :: OpticType
optic | Bool
isoCase Bool -> Bool -> Bool
&& LensRules -> Bool
_allowIsos LensRules
rules = OpticType
IsoType
| Bool
lensCase = OpticType
LensType
| Bool
affineCase = OpticType
AffineTraversalType
| Bool
otherwise = OpticType
TraversalType
in Bool -> OpticType -> Type -> Type -> Type -> Type -> OpticStab
OpticStab Bool
tvsCovered OpticType
optic Type
s Type
t Type
a Type
b
(OpticStab, [(Name, Int, [Int])])
-> Q (OpticStab, [(Name, Int, [Int])])
forall (m :: * -> *) a. Monad m => a -> m a
return (OpticStab
defType, [(Name, Int, [Int])]
scaffolds)
where
consForDef :: [(Name, [Either Type Type])]
consForDef :: [(Name, [Either Type Type])]
consForDef = Optic
A_Setter
'[]
[(Name, [([DefName], Type)])]
[(Name, [Either Type Type])]
([DefName], Type)
(Either Type Type)
-> (([DefName], Type) -> Either Type Type)
-> [(Name, [([DefName], Type)])]
-> [(Name, [Either Type Type])]
forall k (is :: IxList) s t a b.
Is k A_Setter =>
Optic k is s t a b -> (a -> b) -> s -> t
over (Setter
[(Name, [([DefName], Type)])]
[(Name, [Either Type Type])]
(Name, [([DefName], Type)])
(Name, [Either Type Type])
forall (f :: * -> *) a b. Functor f => Setter (f a) (f b) a b
mapped Setter
[(Name, [([DefName], Type)])]
[(Name, [Either Type Type])]
(Name, [([DefName], Type)])
(Name, [Either Type Type])
-> Optic
A_Lens
'[]
(Name, [([DefName], Type)])
(Name, [Either Type Type])
[([DefName], Type)]
[Either Type Type]
-> Optic
A_Setter
'[]
[(Name, [([DefName], Type)])]
[(Name, [Either Type Type])]
[([DefName], Type)]
[Either Type Type]
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic
A_Lens
'[]
(Name, [([DefName], Type)])
(Name, [Either Type Type])
[([DefName], Type)]
[Either Type Type]
forall s t a b. Field2 s t a b => Lens s t a b
_2 Optic
A_Setter
'[]
[(Name, [([DefName], Type)])]
[(Name, [Either Type Type])]
[([DefName], Type)]
[Either Type Type]
-> Optic
A_Setter
'[]
[([DefName], Type)]
[Either Type Type]
([DefName], Type)
(Either Type Type)
-> Optic
A_Setter
'[]
[(Name, [([DefName], Type)])]
[(Name, [Either Type Type])]
([DefName], Type)
(Either Type Type)
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic
A_Setter
'[]
[([DefName], Type)]
[Either Type Type]
([DefName], Type)
(Either Type Type)
forall (f :: * -> *) a b. Functor f => Setter (f a) (f b) a b
mapped) ([DefName], Type) -> Either Type Type
categorize [(Name, [([DefName], Type)])]
cons
scaffolds :: [(Name, Int, [Int])]
scaffolds :: [(Name, Int, [Int])]
scaffolds = [ (Name
n, [Either Type Type] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Either Type Type]
ts, [Either Type Type] -> [Int]
rightIndices [Either Type Type]
ts) | (Name
n,[Either Type Type]
ts) <- [(Name, [Either Type Type])]
consForDef ]
rightIndices :: [Either Type Type] -> [Int]
rightIndices :: [Either Type Type] -> [Int]
rightIndices = (Either Type Type -> Bool) -> [Either Type Type] -> [Int]
forall a. (a -> Bool) -> [a] -> [Int]
L.findIndices (Optic' A_Prism '[] (Either Type Type) Type
-> Either Type Type -> Bool
forall k (is :: IxList) s a.
Is k A_Fold =>
Optic' k is s a -> s -> Bool
has Optic' A_Prism '[] (Either Type Type) Type
forall a b c. Prism (Either a b) (Either a c) b c
_Right)
categorize :: ([DefName], Type) -> Either Type Type
categorize :: ([DefName], Type) -> Either Type Type
categorize ([DefName]
defNames, Type
t)
| DefName
defName DefName -> [DefName] -> Bool
forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` [DefName]
defNames = Type -> Either Type Type
forall a b. b -> Either a b
Right Type
t
| Bool
otherwise = Type -> Either Type Type
forall a b. a -> Either a b
Left Type
t
affectedFields :: [Int]
affectedFields :: [Int]
affectedFields = Optic' A_Fold '[] [(Name, Int, [Int])] Int
-> [(Name, Int, [Int])] -> [Int]
forall k (is :: IxList) s a.
Is k A_Fold =>
Optic' k is s a -> s -> [a]
toListOf (Fold [(Name, Int, [Int])] (Name, Int, [Int])
forall (f :: * -> *) a. Foldable f => Fold (f a) a
folded Fold [(Name, Int, [Int])] (Name, Int, [Int])
-> Optic
A_Lens '[] (Name, Int, [Int]) (Name, Int, [Int]) [Int] [Int]
-> Optic
A_Fold '[] [(Name, Int, [Int])] [(Name, Int, [Int])] [Int] [Int]
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic A_Lens '[] (Name, Int, [Int]) (Name, Int, [Int]) [Int] [Int]
forall s t a b. Field3 s t a b => Lens s t a b
_3 Optic
A_Fold '[] [(Name, Int, [Int])] [(Name, Int, [Int])] [Int] [Int]
-> Optic A_Getter '[] [Int] [Int] Int Int
-> Optic' A_Fold '[] [(Name, Int, [Int])] Int
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% ([Int] -> Int) -> Optic A_Getter '[] [Int] [Int] Int Int
forall s a. (s -> a) -> Getter s a
to [Int] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length) [(Name, Int, [Int])]
scaffolds
lensCase :: Bool
lensCase :: Bool
lensCase = (Int -> Bool) -> [Int] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all (Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
1) [Int]
affectedFields
affineCase :: Bool
affineCase :: Bool
affineCase = (Int -> Bool) -> [Int] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all (Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
1) [Int]
affectedFields
isoCase :: Bool
isoCase :: Bool
isoCase = case [(Name, Int, [Int])]
scaffolds of
[(Name
_,Int
1,[Int
0])] -> Bool
True
[(Name, Int, [Int])]
_ -> Bool
False
data OpticType
= AffineFoldType
| AffineTraversalType
| FoldType
| GetterType
| IsoType
| LensType
| TraversalType
deriving Int -> OpticType -> String -> String
[OpticType] -> String -> String
OpticType -> String
(Int -> OpticType -> String -> String)
-> (OpticType -> String)
-> ([OpticType] -> String -> String)
-> Show OpticType
forall a.
(Int -> a -> String -> String)
-> (a -> String) -> ([a] -> String -> String) -> Show a
showList :: [OpticType] -> String -> String
$cshowList :: [OpticType] -> String -> String
show :: OpticType -> String
$cshow :: OpticType -> String
showsPrec :: Int -> OpticType -> String -> String
$cshowsPrec :: Int -> OpticType -> String -> String
Show
opticTypeName :: Bool -> OpticType -> Name
opticTypeName :: Bool -> OpticType -> Name
opticTypeName Bool
typeChanging OpticType
AffineTraversalType = if Bool
typeChanging
then ''AffineTraversal
else ''AffineTraversal'
opticTypeName Bool
_typeChanging OpticType
AffineFoldType = ''AffineFold
opticTypeName Bool
_typeChanging OpticType
FoldType = ''Fold
opticTypeName Bool
_typeChanging OpticType
GetterType = ''Getter
opticTypeName Bool
typeChanging OpticType
IsoType = if Bool
typeChanging
then ''Iso
else ''Iso'
opticTypeName Bool
typeChanging OpticType
LensType = if Bool
typeChanging
then ''Lens
else ''Lens'
opticTypeName Bool
typeChanging OpticType
TraversalType = if Bool
typeChanging
then ''Traversal
else ''Traversal'
data OpticStab
= OpticStab Bool OpticType Type Type Type Type
| OpticSa [TyVarBndrSpec] Cxt OpticType Type Type
deriving Int -> OpticStab -> String -> String
[OpticStab] -> String -> String
OpticStab -> String
(Int -> OpticStab -> String -> String)
-> (OpticStab -> String)
-> ([OpticStab] -> String -> String)
-> Show OpticStab
forall a.
(Int -> a -> String -> String)
-> (a -> String) -> ([a] -> String -> String) -> Show a
showList :: [OpticStab] -> String -> String
$cshowList :: [OpticStab] -> String -> String
show :: OpticStab -> String
$cshow :: OpticStab -> String
showsPrec :: Int -> OpticStab -> String -> String
$cshowsPrec :: Int -> OpticStab -> String -> String
Show
stabToType :: OpticStab -> Type
stabToType :: OpticStab -> Type
stabToType (OpticStab Bool
_ OpticType
c Type
s Type
t Type
a Type
b) =
[TyVarBndr] -> Cxt -> Type -> Type
quantifyType [] [] (Bool -> OpticType -> Name
opticTypeName Bool
True OpticType
c Name -> Cxt -> Type
`conAppsT` [Type
s,Type
t,Type
a,Type
b])
stabToType (OpticSa [TyVarBndr]
vs Cxt
cx OpticType
c Type
s Type
a) =
[TyVarBndr] -> Cxt -> Type -> Type
quantifyType [TyVarBndr]
vs Cxt
cx (Bool -> OpticType -> Name
opticTypeName Bool
False OpticType
c Name -> Cxt -> Type
`conAppsT` [Type
s,Type
a])
stabToContext :: OpticStab -> Cxt
stabToContext :: OpticStab -> Cxt
stabToContext OpticStab{} = []
stabToContext (OpticSa [TyVarBndr]
_ Cxt
cx OpticType
_ Type
_ Type
_) = Cxt
cx
stabToOpticType :: OpticStab -> OpticType
stabToOpticType :: OpticStab -> OpticType
stabToOpticType (OpticStab Bool
_ OpticType
c Type
_ Type
_ Type
_ Type
_) = OpticType
c
stabToOpticType (OpticSa [TyVarBndr]
_ Cxt
_ OpticType
c Type
_ Type
_) = OpticType
c
stabToOptic :: OpticStab -> Name
stabToOptic :: OpticStab -> Name
stabToOptic (OpticStab Bool
_ OpticType
c Type
_ Type
_ Type
_ Type
_) = Bool -> OpticType -> Name
opticTypeName Bool
True OpticType
c
stabToOptic (OpticSa [TyVarBndr]
_ Cxt
_ OpticType
c Type
_ Type
_) = Bool -> OpticType -> Name
opticTypeName Bool
False OpticType
c
stabToS :: OpticStab -> Type
stabToS :: OpticStab -> Type
stabToS (OpticStab Bool
_ OpticType
_ Type
s Type
_ Type
_ Type
_) = Type
s
stabToS (OpticSa [TyVarBndr]
_ Cxt
_ OpticType
_ Type
s Type
_) = Type
s
stabToA :: OpticStab -> Type
stabToA :: OpticStab -> Type
stabToA (OpticStab Bool
_ OpticType
_ Type
_ Type
_ Type
a Type
_) = Type
a
stabToA (OpticSa [TyVarBndr]
_ Cxt
_ OpticType
_ Type
_ Type
a) = Type
a
buildTab :: Bool -> Type -> [Either Type Type] -> Q (Type,Type,Type,Bool)
buildTab :: Bool -> Type -> [Either Type Type] -> Q (Type, Type, Type, Bool)
buildTab Bool
forClassInstance Type
s [Either Type Type]
categorizedFields = do
(Set Name
unfixedTypeVars, Bool
tvsCovered) <- Q (Set Name, Bool)
mkUnfixedTypeVars
Map Name Name
sub <- Map Name (Q Name) -> Q (Map Name Name)
forall (t :: * -> *) (f :: * -> *) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
T.sequenceA (Map Name (Q Name) -> Q (Map Name Name))
-> Map Name (Q Name) -> Q (Map Name Name)
forall a b. (a -> b) -> a -> b
$ (Name -> Q Name) -> Set Name -> Map Name (Q Name)
forall k a. (k -> a) -> Set k -> Map k a
M.fromSet (String -> Q Name
newName (String -> Q Name) -> (Name -> String) -> Name -> Q Name
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Name -> String
nameBase) Set Name
unfixedTypeVars
let (Type
t, Type
b) = Optic A_Traversal (WithIx Int) (Type, Type) (Type, Type) Type Type
-> (Type -> Type) -> (Type, Type) -> (Type, Type)
forall k (is :: IxList) s t a b.
Is k A_Setter =>
Optic k is s t a b -> (a -> b) -> s -> t
over Optic A_Traversal (WithIx Int) (Type, Type) (Type, Type) Type Type
forall i s t a b. Each i s t a b => IxTraversal i s t a b
each (Map Name Name -> Type -> Type
forall t. HasTypeVars t => Map Name Name -> t -> t
substTypeVars Map Name Name
sub) (Type
s, Type
a)
(Type, Type, Type, Bool) -> Q (Type, Type, Type, Bool)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Type
t, Type
a, Type
b, Bool
tvsCovered)
where
a :: Type
a = Type -> Maybe Type -> Type
forall a. a -> Maybe a -> a
fromMaybe
(String -> Type
forall a. HasCallStack => String -> a
error String
"buildStab: unexpected empty list of fields")
(Optic' An_AffineTraversal '[] Cxt Type -> Cxt -> Maybe Type
forall k (is :: IxList) s a.
Is k An_AffineFold =>
Optic' k is s a -> s -> Maybe a
preview Optic' An_AffineTraversal '[] Cxt Type
forall s a. Cons s s a a => AffineTraversal' s a
_head Cxt
targetFields)
phantomTypeVars :: Set Name
phantomTypeVars =
let allTypeVars :: Optic
A_Fold
'[Either () ()]
[Either Type Type]
[Either Type Type]
Name
Name
allTypeVars = Fold [Either Type Type] (Either Type Type)
forall (f :: * -> *) a. Foldable f => Fold (f a) a
folded Fold [Either Type Type] (Either Type Type)
-> Optic
A_Lens
'[Either () ()]
(Either Type Type)
(Either Type Type)
Type
Type
-> Optic
A_Fold
'[Either () ()]
[Either Type Type]
[Either Type Type]
Type
Type
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic
A_Lens
'[Either () ()]
(Either Type Type)
(Either Type Type)
Type
Type
forall a b. IxLens (Either () ()) (Either a a) (Either b b) a b
chosen Optic
A_Fold
'[Either () ()]
[Either Type Type]
[Either Type Type]
Type
Type
-> Optic' A_Traversal '[] Type Name
-> Optic
A_Fold
'[Either () ()]
[Either Type Type]
[Either Type Type]
Name
Name
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic' A_Traversal '[] Type Name
forall t. HasTypeVars t => Traversal' t Name
typeVars
in Optic' A_Traversal '[] Type Name -> Type -> Set Name
forall k a (is :: IxList) s.
(Is k A_Fold, Ord a) =>
Optic' k is s a -> s -> Set a
setOf Optic' A_Traversal '[] Type Name
forall t. HasTypeVars t => Traversal' t Name
typeVars Type
s Set Name -> Set Name -> Set Name
forall a. Ord a => Set a -> Set a -> Set a
S.\\ Optic
A_Fold
'[Either () ()]
[Either Type Type]
[Either Type Type]
Name
Name
-> [Either Type Type] -> Set Name
forall k a (is :: IxList) s.
(Is k A_Fold, Ord a) =>
Optic' k is s a -> s -> Set a
setOf Optic
A_Fold
'[Either () ()]
[Either Type Type]
[Either Type Type]
Name
Name
allTypeVars [Either Type Type]
categorizedFields
(Cxt
fixedFields, Cxt
targetFields) = [Either Type Type] -> (Cxt, Cxt)
forall a b. [Either a b] -> ([a], [b])
partitionEithers [Either Type Type]
categorizedFields
mkUnfixedTypeVars :: Q (Set Name, Bool)
mkUnfixedTypeVars
| Set Name -> Bool
forall a. Set a -> Bool
S.null Set Name
freeTypeVars =
(Set Name, Bool) -> Q (Set Name, Bool)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Set Name
forall a. Set a
S.empty, Bool
True)
| Bool
forClassInstance = do
Set Name
ambiguousTypeVars <- Q (Set Name)
getAmbiguousTypeFamilyTypeVars
(Set Name, Bool) -> Q (Set Name, Bool)
forall (f :: * -> *) a. Applicative f => a -> f a
pure ( Set Name
freeTypeVars Set Name -> Set Name -> Set Name
forall a. Ord a => Set a -> Set a -> Set a
S.\\ Set Name
fixedTypeVars
, Set Name -> Bool
forall a. Set a -> Bool
S.null Set Name
phantomTypeVars Bool -> Bool -> Bool
&& Set Name -> Bool
forall a. Set a -> Bool
S.null Set Name
ambiguousTypeVars
)
| Bool
otherwise = (Set Name, Bool) -> Q (Set Name, Bool)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Set Name
freeTypeVars Set Name -> Set Name -> Set Name
forall a. Ord a => Set a -> Set a -> Set a
S.\\ Set Name
fixedTypeVars, Bool
True)
where
freeTypeVars :: Set Name
freeTypeVars = Optic' A_Traversal '[] Type Name -> Type -> Set Name
forall k a (is :: IxList) s.
(Is k A_Fold, Ord a) =>
Optic' k is s a -> s -> Set a
setOf Optic' A_Traversal '[] Type Name
forall t. HasTypeVars t => Traversal' t Name
typeVars Type
s
fixedTypeVars :: Set Name
fixedTypeVars = Optic' A_Traversal '[] Cxt Name -> Cxt -> Set Name
forall k a (is :: IxList) s.
(Is k A_Fold, Ord a) =>
Optic' k is s a -> s -> Set a
setOf Optic' A_Traversal '[] Cxt Name
forall t. HasTypeVars t => Traversal' t Name
typeVars Cxt
fixedFields
getAmbiguousTypeFamilyTypeVars :: Q (Set Name)
getAmbiguousTypeFamilyTypeVars = do
Type
a' <- Type -> Q Type
D.resolveTypeSynonyms Type
a
StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
-> Set Name -> Q (Set Name)
forall (m :: * -> *) s a. Monad m => StateT s m a -> s -> m s
execStateT (Type -> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
go Type
a') (Set Name -> Q (Set Name)) -> Set Name -> Q (Set Name)
forall a b. (a -> b) -> a -> b
$ Optic' A_Traversal '[] Type Name -> Type -> Set Name
forall k a (is :: IxList) s.
(Is k A_Fold, Ord a) =>
Optic' k is s a -> s -> Set a
setOf Optic' A_Traversal '[] Type Name
forall t. HasTypeVars t => Traversal' t Name
typeVars Type
a'
where
go :: Type -> StateT (S.Set Name) Q (Maybe (Int, TypeFamilyHead, [Type]))
go :: Type -> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
go (ForallT [TyVarBndr]
_ Cxt
_ Type
ty) = Type -> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
go Type
ty
go (ParensT Type
ty) = Type -> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
go Type
ty
go (SigT Type
ty Type
kind) = Type -> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
go Type
ty StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
-> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
-> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> Type -> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
go Type
kind
go (InfixT Type
ty1 Name
nm Type
ty2) = Type -> Name -> Type -> StateT (Set Name) Q ()
procInfix Type
ty1 Name
nm Type
ty2 StateT (Set Name) Q ()
-> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
-> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> Maybe (Int, TypeFamilyHead, Cxt)
-> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe (Int, TypeFamilyHead, Cxt)
forall a. Maybe a
Nothing
go (UInfixT Type
ty1 Name
nm Type
ty2) = Type -> Name -> Type -> StateT (Set Name) Q ()
procInfix Type
ty1 Name
nm Type
ty2 StateT (Set Name) Q ()
-> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
-> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> Maybe (Int, TypeFamilyHead, Cxt)
-> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe (Int, TypeFamilyHead, Cxt)
forall a. Maybe a
Nothing
go (VarT Name
n) = (Set Name -> Set Name) -> StateT (Set Name) Q ()
forall s (m :: * -> *). MonadState s m => (s -> s) -> m ()
modify' (Name -> Set Name -> Set Name
forall a. Ord a => a -> Set a -> Set a
S.delete Name
n) StateT (Set Name) Q ()
-> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
-> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> Maybe (Int, TypeFamilyHead, Cxt)
-> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe (Int, TypeFamilyHead, Cxt)
forall a. Maybe a
Nothing
go (ConT Name
nm) = do
let getVarLen :: AffineFold TypeFamilyHead (Int, TypeFamilyHead, [a])
getVarLen = (TypeFamilyHead -> Maybe (Int, TypeFamilyHead, [a]))
-> AffineFold TypeFamilyHead (Int, TypeFamilyHead, [a])
forall s a. (s -> Maybe a) -> AffineFold s a
afolding ((TypeFamilyHead -> Maybe (Int, TypeFamilyHead, [a]))
-> AffineFold TypeFamilyHead (Int, TypeFamilyHead, [a]))
-> (TypeFamilyHead -> Maybe (Int, TypeFamilyHead, [a]))
-> AffineFold TypeFamilyHead (Int, TypeFamilyHead, [a])
forall a b. (a -> b) -> a -> b
$ \tf :: TypeFamilyHead
tf@(TypeFamilyHead Name
_ [TyVarBndr]
varBndrs FamilyResultSig
_ Maybe InjectivityAnn
_) ->
if [TyVarBndr] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TyVarBndr]
varBndrs then Maybe (Int, TypeFamilyHead, [a])
forall a. Maybe a
Nothing else (Int, TypeFamilyHead, [a]) -> Maybe (Int, TypeFamilyHead, [a])
forall a. a -> Maybe a
Just ([TyVarBndr] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [TyVarBndr]
varBndrs, TypeFamilyHead
tf, [])
(Info -> Maybe (Int, TypeFamilyHead, Cxt))
-> Name -> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
forall a.
(Info -> Maybe a) -> Name -> StateT (Set Name) Q (Maybe a)
tryReify (Optic' An_AffineFold '[] Info (Int, TypeFamilyHead, Cxt)
-> Info -> Maybe (Int, TypeFamilyHead, Cxt)
forall k (is :: IxList) s a.
Is k An_AffineFold =>
Optic' k is s a -> s -> Maybe a
preview (Optic' An_AffineFold '[] Info (Int, TypeFamilyHead, Cxt)
-> Info -> Maybe (Int, TypeFamilyHead, Cxt))
-> Optic' An_AffineFold '[] Info (Int, TypeFamilyHead, Cxt)
-> Info
-> Maybe (Int, TypeFamilyHead, Cxt)
forall a b. (a -> b) -> a -> b
$ Prism' Info (Dec, [Dec])
_FamilyI Prism' Info (Dec, [Dec])
-> Optic A_Lens '[] (Dec, [Dec]) (Dec, [Dec]) Dec Dec
-> Optic An_AffineTraversal '[] Info Info Dec Dec
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic A_Lens '[] (Dec, [Dec]) (Dec, [Dec]) Dec Dec
forall s t a b. Field1 s t a b => Lens s t a b
_1 Optic An_AffineTraversal '[] Info Info Dec Dec
-> Optic An_AffineFold '[] Dec Dec TypeFamilyHead TypeFamilyHead
-> Optic An_AffineFold '[] Info Info TypeFamilyHead TypeFamilyHead
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic An_AffineFold '[] Dec Dec TypeFamilyHead TypeFamilyHead
typeFamilyHead Optic An_AffineFold '[] Info Info TypeFamilyHead TypeFamilyHead
-> Optic
An_AffineFold
'[]
TypeFamilyHead
TypeFamilyHead
(Int, TypeFamilyHead, Cxt)
(Int, TypeFamilyHead, Cxt)
-> Optic' An_AffineFold '[] Info (Int, TypeFamilyHead, Cxt)
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic
An_AffineFold
'[]
TypeFamilyHead
TypeFamilyHead
(Int, TypeFamilyHead, Cxt)
(Int, TypeFamilyHead, Cxt)
forall a. AffineFold TypeFamilyHead (Int, TypeFamilyHead, [a])
getVarLen) Name
nm
go (AppT Type
ty1 Type
ty2) = Type -> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
go Type
ty1 StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
-> (Maybe (Int, TypeFamilyHead, Cxt)
-> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt)))
-> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
Just (Int
n, TypeFamilyHead
tf, !Cxt
args)
| Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
1 -> Maybe (Int, TypeFamilyHead, Cxt)
-> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe (Int, TypeFamilyHead, Cxt)
-> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt)))
-> Maybe (Int, TypeFamilyHead, Cxt)
-> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
forall a b. (a -> b) -> a -> b
$ (Int, TypeFamilyHead, Cxt) -> Maybe (Int, TypeFamilyHead, Cxt)
forall a. a -> Maybe a
Just (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1, TypeFamilyHead
tf, Type
ty2 Type -> Cxt -> Cxt
forall a. a -> [a] -> [a]
: Cxt
args)
| Int
n Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
1 -> TypeFamilyHead -> Cxt -> StateT (Set Name) Q ()
procTF TypeFamilyHead
tf (Cxt -> Cxt
forall a. [a] -> [a]
reverse (Cxt -> Cxt) -> Cxt -> Cxt
forall a b. (a -> b) -> a -> b
$ Type
ty2 Type -> Cxt -> Cxt
forall a. a -> [a] -> [a]
: Cxt
args) StateT (Set Name) Q ()
-> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
-> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> Maybe (Int, TypeFamilyHead, Cxt)
-> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe (Int, TypeFamilyHead, Cxt)
forall a. Maybe a
Nothing
| Bool
otherwise -> String -> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
forall a. HasCallStack => String -> a
error String
"go: unreachable"
Maybe (Int, TypeFamilyHead, Cxt)
Nothing -> Type -> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
go Type
ty2
go Type
_ = Maybe (Int, TypeFamilyHead, Cxt)
-> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe (Int, TypeFamilyHead, Cxt)
forall a. Maybe a
Nothing
procInfix :: Type -> Name -> Type -> StateT (Set Name) Q ()
procInfix Type
ty1 Name
nm Type
ty2 = do
Maybe TypeFamilyHead
mtf <- (Info -> Maybe TypeFamilyHead)
-> Name -> StateT (Set Name) Q (Maybe TypeFamilyHead)
forall a.
(Info -> Maybe a) -> Name -> StateT (Set Name) Q (Maybe a)
tryReify (Optic An_AffineFold '[] Info Info TypeFamilyHead TypeFamilyHead
-> Info -> Maybe TypeFamilyHead
forall k (is :: IxList) s a.
Is k An_AffineFold =>
Optic' k is s a -> s -> Maybe a
preview (Optic An_AffineFold '[] Info Info TypeFamilyHead TypeFamilyHead
-> Info -> Maybe TypeFamilyHead)
-> Optic An_AffineFold '[] Info Info TypeFamilyHead TypeFamilyHead
-> Info
-> Maybe TypeFamilyHead
forall a b. (a -> b) -> a -> b
$ Prism' Info (Dec, [Dec])
_FamilyI Prism' Info (Dec, [Dec])
-> Optic A_Lens '[] (Dec, [Dec]) (Dec, [Dec]) Dec Dec
-> Optic An_AffineTraversal '[] Info Info Dec Dec
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic A_Lens '[] (Dec, [Dec]) (Dec, [Dec]) Dec Dec
forall s t a b. Field1 s t a b => Lens s t a b
_1 Optic An_AffineTraversal '[] Info Info Dec Dec
-> Optic An_AffineFold '[] Dec Dec TypeFamilyHead TypeFamilyHead
-> Optic An_AffineFold '[] Info Info TypeFamilyHead TypeFamilyHead
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic An_AffineFold '[] Dec Dec TypeFamilyHead TypeFamilyHead
typeFamilyHead) Name
nm
case Maybe TypeFamilyHead
mtf of
Just TypeFamilyHead
tf -> TypeFamilyHead -> Cxt -> StateT (Set Name) Q ()
procTF TypeFamilyHead
tf [Type
ty1, Type
ty2]
Maybe TypeFamilyHead
Nothing -> Type -> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
go Type
ty1 StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
-> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
-> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> Type -> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
go Type
ty2 StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
-> StateT (Set Name) Q () -> StateT (Set Name) Q ()
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> () -> StateT (Set Name) Q ()
forall (f :: * -> *) a. Applicative f => a -> f a
pure ()
tryReify :: (Info -> Maybe a) -> Name -> StateT (S.Set Name) Q (Maybe a)
tryReify :: (Info -> Maybe a) -> Name -> StateT (Set Name) Q (Maybe a)
tryReify Info -> Maybe a
f Name
nm = Q (Maybe a) -> StateT (Set Name) Q (Maybe a)
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (Q (Maybe a) -> StateT (Set Name) Q (Maybe a))
-> Q (Maybe a) -> StateT (Set Name) Q (Maybe a)
forall a b. (a -> b) -> a -> b
$ Q (Maybe a) -> Q (Maybe a) -> Q (Maybe a)
forall a. Q a -> Q a -> Q a
recover (Maybe a -> Q (Maybe a)
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe a
forall a. Maybe a
Nothing) (Info -> Maybe a
f (Info -> Maybe a) -> Q Info -> Q (Maybe a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Name -> Q Info
reify Name
nm)
procTF :: TypeFamilyHead -> [Type] -> StateT (S.Set Name) Q ()
procTF :: TypeFamilyHead -> Cxt -> StateT (Set Name) Q ()
procTF TypeFamilyHead
tf Cxt
args = case TypeFamilyHead
tf of
TypeFamilyHead Name
_ [TyVarBndr]
varBndrs FamilyResultSig
_ (Just (InjectivityAnn Name
_ [Name]
ins)) -> do
let insSet :: Set Name
insSet = [Name] -> Set Name
forall a. Ord a => [a] -> Set a
S.fromList [Name]
ins
vars :: [Name]
vars = (TyVarBndr -> Name) -> [TyVarBndr] -> [Name]
forall a b. (a -> b) -> [a] -> [b]
map TyVarBndr -> Name
forall flag. TyVarBndr -> Name
D.tvName [TyVarBndr]
varBndrs
[(Name, Type)]
-> ((Name, Type) -> StateT (Set Name) Q ())
-> StateT (Set Name) Q ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ ([Name] -> Cxt -> [(Name, Type)]
forall a b. [a] -> [b] -> [(a, b)]
sameLenZip [Name]
vars Cxt
args) (((Name, Type) -> StateT (Set Name) Q ())
-> StateT (Set Name) Q ())
-> ((Name, Type) -> StateT (Set Name) Q ())
-> StateT (Set Name) Q ()
forall a b. (a -> b) -> a -> b
$ \(Name
var, Type
arg) ->
Bool -> StateT (Set Name) Q () -> StateT (Set Name) Q ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Name
var Name -> Set Name -> Bool
forall a. Ord a => a -> Set a -> Bool
`S.member` Set Name
insSet) (StateT (Set Name) Q () -> StateT (Set Name) Q ())
-> (StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
-> StateT (Set Name) Q ())
-> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
-> StateT (Set Name) Q ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
-> StateT (Set Name) Q ()
forall (f :: * -> *) a. Functor f => f a -> f ()
void (StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
-> StateT (Set Name) Q ())
-> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
-> StateT (Set Name) Q ()
forall a b. (a -> b) -> a -> b
$ Type -> StateT (Set Name) Q (Maybe (Int, TypeFamilyHead, Cxt))
go Type
arg
TypeFamilyHead
_ -> () -> StateT (Set Name) Q ()
forall (f :: * -> *) a. Applicative f => a -> f a
pure ()
where
sameLenZip :: [a] -> [b] -> [(a, b)]
sameLenZip (a
x : [a]
xs) (b
y : [b]
ys) = (a
x, b
y) (a, b) -> [(a, b)] -> [(a, b)]
forall a. a -> [a] -> [a]
: [a] -> [b] -> [(a, b)]
sameLenZip [a]
xs [b]
ys
sameLenZip [] [] = []
sameLenZip [a]
_ [b]
_ = String -> [(a, b)]
forall a. HasCallStack => String -> a
error String
"sameLenZip: different lengths"
makeFieldOptic ::
LensRules ->
(DefName, (OpticStab, [(Name, Int, [Int])])) ->
HasFieldClasses [Dec]
makeFieldOptic :: LensRules
-> (DefName, (OpticStab, [(Name, Int, [Int])]))
-> StateT (Set Name) Q [Dec]
makeFieldOptic LensRules
rules (DefName
defName, (OpticStab
defType, [(Name, Int, [Int])]
cons)) = do
Set Name
locals <- StateT (Set Name) Q (Set Name)
forall s (m :: * -> *). MonadState s m => m s
get
StateT (Set Name) Q ()
addName
DecsQ -> StateT (Set Name) Q [Dec]
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (DecsQ -> StateT (Set Name) Q [Dec])
-> DecsQ -> StateT (Set Name) Q [Dec]
forall a b. (a -> b) -> a -> b
$ do [Q Dec]
cls <- Set Name -> Q [Q Dec]
mkCls Set Name
locals
[Q Dec] -> DecsQ
forall (t :: * -> *) (f :: * -> *) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
T.sequenceA ([Q Dec]
cls [Q Dec] -> [Q Dec] -> [Q Dec]
forall a. [a] -> [a] -> [a]
++ [Q Dec]
sig [Q Dec] -> [Q Dec] -> [Q Dec]
forall a. [a] -> [a] -> [a]
++ [Q Dec]
def)
where
mkCls :: Set Name -> Q [Q Dec]
mkCls Set Name
locals = case DefName
defName of
MethodName Name
c Name
n | LensRules -> Bool
_generateClasses LensRules
rules ->
do Bool
classExists <- Maybe Name -> Bool
forall a. Maybe a -> Bool
isJust (Maybe Name -> Bool) -> Q (Maybe Name) -> Q Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> String -> Q (Maybe Name)
lookupTypeName (Name -> String
forall a. Show a => a -> String
show Name
c)
[Q Dec] -> Q [Q Dec]
forall (m :: * -> *) a. Monad m => a -> m a
return (if Bool
classExists Bool -> Bool -> Bool
|| Name -> Set Name -> Bool
forall a. Ord a => a -> Set a -> Bool
S.member Name
c Set Name
locals then [] else [OpticStab -> Name -> Name -> Q Dec
makeFieldClass OpticStab
defType Name
c Name
n])
DefName
_ -> [Q Dec] -> Q [Q Dec]
forall (m :: * -> *) a. Monad m => a -> m a
return []
addName :: StateT (Set Name) Q ()
addName = case DefName
defName of
MethodName Name
c Name
_ -> Name -> StateT (Set Name) Q ()
addFieldClassName Name
c
DefName
_ -> () -> StateT (Set Name) Q ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
sig :: [Q Dec]
sig = case DefName
defName of
DefName
_ | Bool -> Bool
not (LensRules -> Bool
_generateSigs LensRules
rules) -> []
TopName Name
n -> [Name -> Q Type -> Q Dec
sigD Name
n (Type -> Q Type
forall (m :: * -> *) a. Monad m => a -> m a
return (OpticStab -> Type
stabToType OpticStab
defType))]
MethodName{} -> []
fun :: Name -> [Q Dec]
fun Name
n = Name -> [ClauseQ] -> Q Dec
funD Name
n [ClauseQ
funDef] Q Dec -> [Q Dec] -> [Q Dec]
forall a. a -> [a] -> [a]
: Name -> [Q Dec]
inlinePragma Name
n
def :: [Q Dec]
def = case DefName
defName of
TopName Name
n -> Name -> [Q Dec]
fun Name
n
MethodName Name
c Name
n -> [OpticStab -> Name -> [Q Dec] -> Q Dec
makeFieldInstance OpticStab
defType Name
c (Name -> [Q Dec]
fun Name
n)]
funDef :: ClauseQ
funDef = LensRules -> OpticType -> [(Name, Int, [Int])] -> ClauseQ
makeFieldClause LensRules
rules (OpticStab -> OpticType
stabToOpticType OpticStab
defType) [(Name, Int, [Int])]
cons
makeClassyDriver ::
LensRules ->
Name ->
Name ->
Type ->
[(DefName, (OpticStab, [(Name, Int, [Int])]))] ->
HasFieldClasses [Dec]
makeClassyDriver :: LensRules
-> Name
-> Name
-> Type
-> [(DefName, (OpticStab, [(Name, Int, [Int])]))]
-> StateT (Set Name) Q [Dec]
makeClassyDriver LensRules
rules Name
className Name
methodName Type
s [(DefName, (OpticStab, [(Name, Int, [Int])]))]
defs = [StateT (Set Name) Q Dec] -> StateT (Set Name) Q [Dec]
forall (t :: * -> *) (f :: * -> *) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
T.sequenceA ([StateT (Set Name) Q Dec]
cls [StateT (Set Name) Q Dec]
-> [StateT (Set Name) Q Dec] -> [StateT (Set Name) Q Dec]
forall a. [a] -> [a] -> [a]
++ [StateT (Set Name) Q Dec]
inst)
where
cls :: [StateT (Set Name) Q Dec]
cls | LensRules -> Bool
_generateClasses LensRules
rules = [Q Dec -> StateT (Set Name) Q Dec
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (Q Dec -> StateT (Set Name) Q Dec)
-> Q Dec -> StateT (Set Name) Q Dec
forall a b. (a -> b) -> a -> b
$ Name
-> Name
-> Type
-> [(DefName, (OpticStab, [(Name, Int, [Int])]))]
-> Q Dec
makeClassyClass Name
className Name
methodName Type
s [(DefName, (OpticStab, [(Name, Int, [Int])]))]
defs]
| Bool
otherwise = []
inst :: [StateT (Set Name) Q Dec]
inst = [LensRules
-> Name
-> Name
-> Type
-> [(DefName, (OpticStab, [(Name, Int, [Int])]))]
-> StateT (Set Name) Q Dec
makeClassyInstance LensRules
rules Name
className Name
methodName Type
s [(DefName, (OpticStab, [(Name, Int, [Int])]))]
defs]
makeClassyClass ::
Name ->
Name ->
Type ->
[(DefName, (OpticStab, [(Name, Int, [Int])]))] ->
DecQ
makeClassyClass :: Name
-> Name
-> Type
-> [(DefName, (OpticStab, [(Name, Int, [Int])]))]
-> Q Dec
makeClassyClass Name
className Name
methodName Type
s [(DefName, (OpticStab, [(Name, Int, [Int])]))]
defs = do
Name
c <- String -> Q Name
newName String
"c"
let vars :: [Name]
vars = Optic' A_Traversal '[] Type Name -> Type -> [Name]
forall k (is :: IxList) s a.
Is k A_Fold =>
Optic' k is s a -> s -> [a]
toListOf Optic' A_Traversal '[] Type Name
forall t. HasTypeVars t => Traversal' t Name
typeVars Type
s
fd :: [FunDep]
fd | [Name] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Name]
vars = []
| Bool
otherwise = [[Name] -> [Name] -> FunDep
FunDep [Name
c] [Name]
vars]
Q Cxt -> Name -> [TyVarBndr] -> [FunDep] -> [Q Dec] -> Q Dec
classD ([Q Type] -> Q Cxt
cxt[]) Name
className ((Name -> TyVarBndr) -> [Name] -> [TyVarBndr]
forall a b. (a -> b) -> [a] -> [b]
map Name -> TyVarBndr
plainTV (Name
cName -> [Name] -> [Name]
forall a. a -> [a] -> [a]
:[Name]
vars)) [FunDep]
fd
([Q Dec] -> Q Dec) -> [Q Dec] -> Q Dec
forall a b. (a -> b) -> a -> b
$ Name -> Q Type -> Q Dec
sigD Name
methodName (Type -> Q Type
forall (m :: * -> *) a. Monad m => a -> m a
return (''Lens' Name -> Cxt -> Type
`conAppsT` [Name -> Type
VarT Name
c, Type
s]))
Q Dec -> [Q Dec] -> [Q Dec]
forall a. a -> [a] -> [a]
: [[Q Dec]] -> [Q Dec]
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat
[ [Name -> Q Type -> Q Dec
sigD Name
defName (Type -> Q Type
forall (m :: * -> *) a. Monad m => a -> m a
return Type
ty)
,PatQ -> BodyQ -> [Q Dec] -> Q Dec
valD (Name -> PatQ
varP Name
defName) (ExpQ -> BodyQ
normalB ExpQ
body) []
] [Q Dec] -> [Q Dec] -> [Q Dec]
forall a. [a] -> [a] -> [a]
++
Name -> [Q Dec]
inlinePragma Name
defName
| (TopName Name
defName, (OpticStab
stab, [(Name, Int, [Int])]
_)) <- [(DefName, (OpticStab, [(Name, Int, [Int])]))]
defs
, let body :: ExpQ
body = ExpQ -> ExpQ -> ExpQ -> ExpQ
infixApp (Name -> ExpQ
varE Name
methodName) (Name -> ExpQ
varE '(%)) (Name -> ExpQ
varE Name
defName)
, let ty :: Type
ty = Set Name -> [TyVarBndr] -> Cxt -> Type -> Type
quantifyType' ([Name] -> Set Name
forall a. Ord a => [a] -> Set a
S.fromList (Name
cName -> [Name] -> [Name]
forall a. a -> [a] -> [a]
:[Name]
vars))
[]
(OpticStab -> Cxt
stabToContext OpticStab
stab)
(Type -> Type) -> Type -> Type
forall a b. (a -> b) -> a -> b
$ OpticStab -> Name
stabToOptic OpticStab
stab Name -> Cxt -> Type
`conAppsT`
[Name -> Type
VarT Name
c, OpticStab -> Type
stabToA OpticStab
stab]
]
makeClassyInstance ::
LensRules ->
Name ->
Name ->
Type ->
[(DefName, (OpticStab, [(Name, Int, [Int])]))] ->
HasFieldClasses Dec
makeClassyInstance :: LensRules
-> Name
-> Name
-> Type
-> [(DefName, (OpticStab, [(Name, Int, [Int])]))]
-> StateT (Set Name) Q Dec
makeClassyInstance LensRules
rules Name
className Name
methodName Type
s [(DefName, (OpticStab, [(Name, Int, [Int])]))]
defs = do
[[Dec]]
methodss <- ((DefName, (OpticStab, [(Name, Int, [Int])]))
-> StateT (Set Name) Q [Dec])
-> [(DefName, (OpticStab, [(Name, Int, [Int])]))]
-> StateT (Set Name) Q [[Dec]]
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (LensRules
-> (DefName, (OpticStab, [(Name, Int, [Int])]))
-> StateT (Set Name) Q [Dec]
makeFieldOptic LensRules
rules') [(DefName, (OpticStab, [(Name, Int, [Int])]))]
defs
Q Dec -> StateT (Set Name) Q Dec
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (Q Dec -> StateT (Set Name) Q Dec)
-> Q Dec -> StateT (Set Name) Q Dec
forall a b. (a -> b) -> a -> b
$ Q Cxt -> Q Type -> [Q Dec] -> Q Dec
instanceD ([Q Type] -> Q Cxt
cxt[]) (Type -> Q Type
forall (m :: * -> *) a. Monad m => a -> m a
return Type
instanceHead)
([Q Dec] -> Q Dec) -> [Q Dec] -> Q Dec
forall a b. (a -> b) -> a -> b
$ PatQ -> BodyQ -> [Q Dec] -> Q Dec
valD (Name -> PatQ
varP Name
methodName) (ExpQ -> BodyQ
normalB (Name -> ExpQ
varE 'lensVL ExpQ -> ExpQ -> ExpQ
`appE` Name -> ExpQ
varE 'id)) []
Q Dec -> [Q Dec] -> [Q Dec]
forall a. a -> [a] -> [a]
: (Dec -> Q Dec) -> [Dec] -> [Q Dec]
forall a b. (a -> b) -> [a] -> [b]
map Dec -> Q Dec
forall (m :: * -> *) a. Monad m => a -> m a
return ([[Dec]] -> [Dec]
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat [[Dec]]
methodss)
where
instanceHead :: Type
instanceHead = Name
className Name -> Cxt -> Type
`conAppsT` (Type
s Type -> Cxt -> Cxt
forall a. a -> [a] -> [a]
: (Name -> Type) -> [Name] -> Cxt
forall a b. (a -> b) -> [a] -> [b]
map Name -> Type
VarT [Name]
vars)
vars :: [Name]
vars = Optic' A_Traversal '[] Type Name -> Type -> [Name]
forall k (is :: IxList) s a.
Is k A_Fold =>
Optic' k is s a -> s -> [a]
toListOf Optic' A_Traversal '[] Type Name
forall t. HasTypeVars t => Traversal' t Name
typeVars Type
s
rules' :: LensRules
rules' = LensRules
rules { _generateSigs :: Bool
_generateSigs = Bool
False
, _generateClasses :: Bool
_generateClasses = Bool
False
}
makeFieldClass :: OpticStab -> Name -> Name -> DecQ
makeFieldClass :: OpticStab -> Name -> Name -> Q Dec
makeFieldClass OpticStab
defType Name
className Name
methodName =
Q Cxt -> Name -> [TyVarBndr] -> [FunDep] -> [Q Dec] -> Q Dec
classD ([Q Type] -> Q Cxt
cxt []) Name
className [Name -> TyVarBndr
plainTV Name
s, Name -> TyVarBndr
plainTV Name
a] [[Name] -> [Name] -> FunDep
FunDep [Name
s] [Name
a]]
[Name -> Q Type -> Q Dec
sigD Name
methodName (Type -> Q Type
forall (m :: * -> *) a. Monad m => a -> m a
return Type
methodType)]
where
methodType :: Type
methodType = Set Name -> [TyVarBndr] -> Cxt -> Type -> Type
quantifyType' ([Name] -> Set Name
forall a. Ord a => [a] -> Set a
S.fromList [Name
s,Name
a])
[]
(OpticStab -> Cxt
stabToContext OpticStab
defType)
(Type -> Type) -> Type -> Type
forall a b. (a -> b) -> a -> b
$ OpticStab -> Name
stabToOptic OpticStab
defType Name -> Cxt -> Type
`conAppsT` [Name -> Type
VarT Name
s,Name -> Type
VarT Name
a]
s :: Name
s = String -> Name
mkName String
"s"
a :: Name
a = String -> Name
mkName String
"a"
makeFieldInstance :: OpticStab -> Name -> [DecQ] -> DecQ
makeFieldInstance :: OpticStab -> Name -> [Q Dec] -> Q Dec
makeFieldInstance OpticStab
defType Name
className [Q Dec]
decs =
Type -> Q Bool
containsTypeFamilies Type
a Q Bool -> (Bool -> Q Dec) -> Q Dec
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= Bool -> Q Dec
pickInstanceDec
where
s :: Type
s = OpticStab -> Type
stabToS OpticStab
defType
a :: Type
a = OpticStab -> Type
stabToA OpticStab
defType
containsTypeFamilies :: Type -> Q Bool
containsTypeFamilies = Type -> Q Bool
go (Type -> Q Bool) -> (Type -> Q Type) -> Type -> Q Bool
forall (m :: * -> *) b c a.
Monad m =>
(b -> m c) -> (a -> m b) -> a -> m c
<=< Type -> Q Type
D.resolveTypeSynonyms
where
go :: Type -> Q Bool
go (ConT Name
nm) = Optic An_AffineFold '[] Info Info TypeFamilyHead TypeFamilyHead
-> Info -> Bool
forall k (is :: IxList) s a.
Is k A_Fold =>
Optic' k is s a -> s -> Bool
has (Prism' Info (Dec, [Dec])
_FamilyI Prism' Info (Dec, [Dec])
-> Optic A_Lens '[] (Dec, [Dec]) (Dec, [Dec]) Dec Dec
-> Optic An_AffineTraversal '[] Info Info Dec Dec
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic A_Lens '[] (Dec, [Dec]) (Dec, [Dec]) Dec Dec
forall s t a b. Field1 s t a b => Lens s t a b
_1 Optic An_AffineTraversal '[] Info Info Dec Dec
-> Optic An_AffineFold '[] Dec Dec TypeFamilyHead TypeFamilyHead
-> Optic An_AffineFold '[] Info Info TypeFamilyHead TypeFamilyHead
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic An_AffineFold '[] Dec Dec TypeFamilyHead TypeFamilyHead
typeFamilyHead) (Info -> Bool) -> Q Info -> Q Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Name -> Q Info
reify Name
nm
go Type
ty = [Bool] -> Bool
forall (t :: * -> *). Foldable t => t Bool -> Bool
or ([Bool] -> Bool) -> Q [Bool] -> Q Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Type -> Q Bool) -> Cxt -> Q [Bool]
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse Type -> Q Bool
go (Traversal' Type Type -> Type -> Cxt
forall k (is :: IxList) s a.
Is k A_Fold =>
Optic' k is s a -> s -> [a]
toListOf Traversal' Type Type
typeSelf Type
ty)
pickInstanceDec :: Bool -> Q Dec
pickInstanceDec Bool
hasFamilies
| Bool
hasFamilies = do
Type
placeholder <- Name -> Type
VarT (Name -> Type) -> Q Name -> Q Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> String -> Q Name
newName String
"a"
[Q Type] -> Cxt -> Q Dec
mkInstanceDec
[Type -> Q Type
forall (m :: * -> *) a. Monad m => a -> m a
return (Type -> Type -> Type
D.equalPred Type
placeholder Type
a)]
[Type
s, Type
placeholder]
| Bool
otherwise = [Q Type] -> Cxt -> Q Dec
mkInstanceDec [] [Type
s, Type
a]
mkInstanceDec :: [Q Type] -> Cxt -> Q Dec
mkInstanceDec [Q Type]
context Cxt
headTys =
Q Cxt -> Q Type -> [Q Dec] -> Q Dec
instanceD ([Q Type] -> Q Cxt
cxt [Q Type]
context) (Type -> Q Type
forall (m :: * -> *) a. Monad m => a -> m a
return (Name
className Name -> Cxt -> Type
`conAppsT` Cxt
headTys)) [Q Dec]
decs
makeFieldClause :: LensRules -> OpticType -> [(Name, Int, [Int])] -> ClauseQ
makeFieldClause :: LensRules -> OpticType -> [(Name, Int, [Int])] -> ClauseQ
makeFieldClause LensRules
rules OpticType
opticType [(Name, Int, [Int])]
cons =
case OpticType
opticType of
OpticType
AffineFoldType -> [(Name, Int, [Int])] -> ClauseQ
makeAffineFoldClause [(Name, Int, [Int])]
cons
OpticType
AffineTraversalType -> [(Name, Int, [Int])] -> Bool -> ClauseQ
makeAffineTraversalClause [(Name, Int, [Int])]
cons Bool
irref
OpticType
FoldType -> [(Name, Int, [Int])] -> ClauseQ
makeFoldClause [(Name, Int, [Int])]
cons
OpticType
IsoType -> [(Name, Int, [Int])] -> Bool -> ClauseQ
makeIsoClause [(Name, Int, [Int])]
cons Bool
irref
OpticType
GetterType -> [(Name, Int, [Int])] -> ClauseQ
makeGetterClause [(Name, Int, [Int])]
cons
OpticType
LensType -> [(Name, Int, [Int])] -> Bool -> ClauseQ
makeLensClause [(Name, Int, [Int])]
cons Bool
irref
OpticType
TraversalType -> [(Name, Int, [Int])] -> Bool -> ClauseQ
makeTraversalClause [(Name, Int, [Int])]
cons Bool
irref
where
irref :: Bool
irref = LensRules -> Bool
_lazyPatterns LensRules
rules Bool -> Bool -> Bool
&& [(Name, Int, [Int])] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [(Name, Int, [Int])]
cons Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
1
makeAffineFoldClause :: [(Name, Int, [Int])] -> ClauseQ
makeAffineFoldClause :: [(Name, Int, [Int])] -> ClauseQ
makeAffineFoldClause [(Name, Int, [Int])]
cons = do
Name
s <- String -> Q Name
newName String
"s"
[PatQ] -> BodyQ -> [Q Dec] -> ClauseQ
clause
[]
(ExpQ -> BodyQ
normalB (ExpQ -> BodyQ) -> ExpQ -> BodyQ
forall a b. (a -> b) -> a -> b
$ [ExpQ] -> ExpQ
appsE
[ Name -> ExpQ
varE 'afolding
, [PatQ] -> ExpQ -> ExpQ
lamE [Name -> PatQ
varP Name
s] (ExpQ -> ExpQ) -> ExpQ -> ExpQ
forall a b. (a -> b) -> a -> b
$ ExpQ -> [MatchQ] -> ExpQ
caseE (Name -> ExpQ
varE Name
s)
[ Name -> Int -> [Int] -> MatchQ
makeAffineFoldMatch Name
conName Int
fieldCount [Int]
fields
| (Name
conName, Int
fieldCount, [Int]
fields) <- [(Name, Int, [Int])]
cons
]
])
[]
where
makeAffineFoldMatch :: Name -> Int -> [Int] -> MatchQ
makeAffineFoldMatch Name
conName Int
fieldCount [Int]
fields = do
[Name]
xs <- String -> Int -> Q [Name]
newNames String
"x" (Int -> Q [Name]) -> Int -> Q [Name]
forall a b. (a -> b) -> a -> b
$ [Int] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Int]
fields
let args :: [PatQ]
args = ((Int, Name) -> [PatQ] -> [PatQ])
-> [PatQ] -> [(Int, Name)] -> [PatQ]
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr (\(Int
i, Name
x) -> Optic An_AffineTraversal '[] [PatQ] [PatQ] PatQ PatQ
-> PatQ -> [PatQ] -> [PatQ]
forall k (is :: IxList) s t a b.
Is k A_Setter =>
Optic k is s t a b -> b -> s -> t
set (Index [PatQ] -> Optic' (IxKind [PatQ]) '[] [PatQ] (IxValue [PatQ])
forall m. Ixed m => Index m -> Optic' (IxKind m) '[] m (IxValue m)
ix Int
Index [PatQ]
i) (Name -> PatQ
varP Name
x))
(Int -> PatQ -> [PatQ]
forall a. Int -> a -> [a]
replicate Int
fieldCount PatQ
wildP)
([Int] -> [Name] -> [(Int, Name)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Int]
fields [Name]
xs)
body :: ExpQ
body = case [Name]
xs of
[] -> Name -> ExpQ
conE 'Nothing
[Name
x] -> Name -> ExpQ
conE 'Just ExpQ -> ExpQ -> ExpQ
`appE` Name -> ExpQ
varE Name
x
[Name]
_ -> String -> ExpQ
forall a. HasCallStack => String -> a
error String
"AffineFold focuses on at most one field"
PatQ -> BodyQ -> [Q Dec] -> MatchQ
match (Name -> [PatQ] -> PatQ
conP Name
conName [PatQ]
args)
(ExpQ -> BodyQ
normalB ExpQ
body)
[]
makeFoldClause :: [(Name, Int, [Int])] -> ClauseQ
makeFoldClause :: [(Name, Int, [Int])] -> ClauseQ
makeFoldClause [(Name, Int, [Int])]
cons = do
Name
f <- String -> Q Name
newName String
"f"
Name
s <- String -> Q Name
newName String
"s"
[PatQ] -> BodyQ -> [Q Dec] -> ClauseQ
clause
[]
(ExpQ -> BodyQ
normalB (ExpQ -> BodyQ) -> ExpQ -> BodyQ
forall a b. (a -> b) -> a -> b
$ [ExpQ] -> ExpQ
appsE
[ Name -> ExpQ
varE 'foldVL
, [PatQ] -> ExpQ -> ExpQ
lamE [Name -> PatQ
varP Name
f, Name -> PatQ
varP Name
s] (ExpQ -> ExpQ) -> ExpQ -> ExpQ
forall a b. (a -> b) -> a -> b
$ ExpQ -> [MatchQ] -> ExpQ
caseE (Name -> ExpQ
varE Name
s)
[ Name -> Name -> Int -> [Int] -> MatchQ
makeFoldMatch Name
f Name
conName Int
fieldCount [Int]
fields
| (Name
conName, Int
fieldCount, [Int]
fields) <- [(Name, Int, [Int])]
cons
]
])
[]
where
makeFoldMatch :: Name -> Name -> Int -> [Int] -> MatchQ
makeFoldMatch Name
f Name
conName Int
fieldCount [Int]
fields = do
[Name]
xs <- String -> Int -> Q [Name]
newNames String
"x" (Int -> Q [Name]) -> Int -> Q [Name]
forall a b. (a -> b) -> a -> b
$ [Int] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Int]
fields
let args :: [PatQ]
args = ((Int, Name) -> [PatQ] -> [PatQ])
-> [PatQ] -> [(Int, Name)] -> [PatQ]
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr (\(Int
i, Name
x) -> Optic An_AffineTraversal '[] [PatQ] [PatQ] PatQ PatQ
-> PatQ -> [PatQ] -> [PatQ]
forall k (is :: IxList) s t a b.
Is k A_Setter =>
Optic k is s t a b -> b -> s -> t
set (Index [PatQ] -> Optic' (IxKind [PatQ]) '[] [PatQ] (IxValue [PatQ])
forall m. Ixed m => Index m -> Optic' (IxKind m) '[] m (IxValue m)
ix Int
Index [PatQ]
i) (Name -> PatQ
varP Name
x))
(Int -> PatQ -> [PatQ]
forall a. Int -> a -> [a]
replicate Int
fieldCount PatQ
wildP)
([Int] -> [Name] -> [(Int, Name)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Int]
fields [Name]
xs)
fxs :: [ExpQ]
fxs = case [Name]
xs of
[] -> [Name -> ExpQ
varE 'pure ExpQ -> ExpQ -> ExpQ
`appE` Name -> ExpQ
conE '()]
[Name]
_ -> (Name -> ExpQ) -> [Name] -> [ExpQ]
forall a b. (a -> b) -> [a] -> [b]
map (\Name
x -> Name -> ExpQ
varE Name
f ExpQ -> ExpQ -> ExpQ
`appE` Name -> ExpQ
varE Name
x) [Name]
xs
body :: ExpQ
body = [ExpQ] -> ExpQ
appsE
[ (ExpQ -> ExpQ -> ExpQ) -> [ExpQ] -> ExpQ
forall (t :: * -> *) a. Foldable t => (a -> a -> a) -> t a -> a
foldr1 (\ExpQ
fx -> ExpQ -> ExpQ -> ExpQ -> ExpQ
infixApp ExpQ
fx (Name -> ExpQ
varE '(*>))) [ExpQ]
fxs
]
PatQ -> BodyQ -> [Q Dec] -> MatchQ
match (Name -> [PatQ] -> PatQ
conP Name
conName [PatQ]
args)
(ExpQ -> BodyQ
normalB ExpQ
body)
[]
makeGetterClause :: [(Name, Int, [Int])] -> ClauseQ
makeGetterClause :: [(Name, Int, [Int])] -> ClauseQ
makeGetterClause [(Name, Int, [Int])]
cons = do
Name
s <- String -> Q Name
newName String
"s"
[PatQ] -> BodyQ -> [Q Dec] -> ClauseQ
clause
[]
(ExpQ -> BodyQ
normalB (ExpQ -> BodyQ) -> ExpQ -> BodyQ
forall a b. (a -> b) -> a -> b
$ [ExpQ] -> ExpQ
appsE
[ Name -> ExpQ
varE 'to
, [PatQ] -> ExpQ -> ExpQ
lamE [Name -> PatQ
varP Name
s] (ExpQ -> ExpQ) -> ExpQ -> ExpQ
forall a b. (a -> b) -> a -> b
$ ExpQ -> [MatchQ] -> ExpQ
caseE (Name -> ExpQ
varE Name
s)
[ Name -> Int -> [Int] -> MatchQ
makeGetterMatch Name
conName Int
fieldCount [Int]
fields
| (Name
conName, Int
fieldCount, [Int]
fields) <- [(Name, Int, [Int])]
cons
]
])
[]
where
makeGetterMatch :: Name -> Int -> [Int] -> MatchQ
makeGetterMatch Name
conName Int
fieldCount = \case
[Int
field] -> do
Name
x <- String -> Q Name
newName String
"x"
PatQ -> BodyQ -> [Q Dec] -> MatchQ
match (Name -> [PatQ] -> PatQ
conP Name
conName ([PatQ] -> PatQ) -> ([PatQ] -> [PatQ]) -> [PatQ] -> PatQ
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Optic An_AffineTraversal '[] [PatQ] [PatQ] PatQ PatQ
-> PatQ -> [PatQ] -> [PatQ]
forall k (is :: IxList) s t a b.
Is k A_Setter =>
Optic k is s t a b -> b -> s -> t
set (Index [PatQ] -> Optic' (IxKind [PatQ]) '[] [PatQ] (IxValue [PatQ])
forall m. Ixed m => Index m -> Optic' (IxKind m) '[] m (IxValue m)
ix Int
Index [PatQ]
field) (Name -> PatQ
varP Name
x) ([PatQ] -> PatQ) -> [PatQ] -> PatQ
forall a b. (a -> b) -> a -> b
$ Int -> PatQ -> [PatQ]
forall a. Int -> a -> [a]
replicate Int
fieldCount PatQ
wildP)
(ExpQ -> BodyQ
normalB (ExpQ -> BodyQ) -> ExpQ -> BodyQ
forall a b. (a -> b) -> a -> b
$ Name -> ExpQ
varE Name
x)
[]
[Int]
_ -> String -> MatchQ
forall a. HasCallStack => String -> a
error String
"Getter focuses on exactly one field"
makeIsoClause :: [(Name, Int, [Int])] -> Bool -> ClauseQ
makeIsoClause :: [(Name, Int, [Int])] -> Bool -> ClauseQ
makeIsoClause [(Name, Int, [Int])]
fields Bool
irref = case [(Name, Int, [Int])]
fields of
[(Name
conName, Int
1, [Int
0])] -> do
Name
x <- String -> Q Name
newName String
"x"
[PatQ] -> BodyQ -> [Q Dec] -> ClauseQ
clause []
(ExpQ -> BodyQ
normalB (ExpQ -> BodyQ) -> ExpQ -> BodyQ
forall a b. (a -> b) -> a -> b
$ [ExpQ] -> ExpQ
appsE
[ Name -> ExpQ
varE 'iso
, [PatQ] -> ExpQ -> ExpQ
lamE [PatQ -> PatQ
irrefP (PatQ -> PatQ) -> PatQ -> PatQ
forall a b. (a -> b) -> a -> b
$ Name -> [PatQ] -> PatQ
conP Name
conName [Name -> PatQ
varP Name
x]] (Name -> ExpQ
varE Name
x)
, Name -> ExpQ
conE Name
conName
])
[]
[(Name, Int, [Int])]
_ -> String -> ClauseQ
forall a. HasCallStack => String -> a
error String
"Iso works only for types with one constructor and one field"
where
irrefP :: PatQ -> PatQ
irrefP = if Bool
irref then PatQ -> PatQ
tildeP else PatQ -> PatQ
forall a. a -> a
id
makeLensClause :: [(Name, Int, [Int])] -> Bool -> ClauseQ
makeLensClause :: [(Name, Int, [Int])] -> Bool -> ClauseQ
makeLensClause [(Name, Int, [Int])]
cons Bool
irref = do
Name
f <- String -> Q Name
newName String
"f"
Name
s <- String -> Q Name
newName String
"s"
[PatQ] -> BodyQ -> [Q Dec] -> ClauseQ
clause
[]
(ExpQ -> BodyQ
normalB (ExpQ -> BodyQ) -> ExpQ -> BodyQ
forall a b. (a -> b) -> a -> b
$ [ExpQ] -> ExpQ
appsE
[ Name -> ExpQ
varE 'lensVL
, [PatQ] -> ExpQ -> ExpQ
lamE [Name -> PatQ
varP Name
f, Name -> PatQ
varP Name
s] (ExpQ -> ExpQ) -> ExpQ -> ExpQ
forall a b. (a -> b) -> a -> b
$ ExpQ -> [MatchQ] -> ExpQ
caseE (Name -> ExpQ
varE Name
s)
[ (PatQ -> PatQ) -> Name -> Name -> Int -> [Int] -> MatchQ
makeLensMatch PatQ -> PatQ
irrefP Name
f Name
conName Int
fieldCount [Int]
fields
| (Name
conName, Int
fieldCount, [Int]
fields) <- [(Name, Int, [Int])]
cons
]
])
[]
where
irrefP :: PatQ -> PatQ
irrefP = if Bool
irref then PatQ -> PatQ
tildeP else PatQ -> PatQ
forall a. a -> a
id
makeLensMatch :: (PatQ -> PatQ) -> Name -> Name -> Int -> [Int] -> Q Match
makeLensMatch :: (PatQ -> PatQ) -> Name -> Name -> Int -> [Int] -> MatchQ
makeLensMatch PatQ -> PatQ
irrefP Name
f Name
conName Int
fieldCount = \case
[Int
field] -> do
[Name]
xs <- String -> Int -> Q [Name]
newNames String
"x" Int
fieldCount
Name
y <- String -> Q Name
newName String
"y"
let body :: ExpQ
body = [ExpQ] -> ExpQ
appsE
[ Name -> ExpQ
varE 'fmap
, [PatQ] -> ExpQ -> ExpQ
lamE [Name -> PatQ
varP Name
y] (ExpQ -> ExpQ) -> ([ExpQ] -> ExpQ) -> [ExpQ] -> ExpQ
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [ExpQ] -> ExpQ
appsE ([ExpQ] -> ExpQ) -> [ExpQ] -> ExpQ
forall a b. (a -> b) -> a -> b
$
Name -> ExpQ
conE Name
conName ExpQ -> [ExpQ] -> [ExpQ]
forall a. a -> [a] -> [a]
: (Name -> ExpQ) -> [Name] -> [ExpQ]
forall a b. (a -> b) -> [a] -> [b]
map Name -> ExpQ
varE (Optic An_AffineTraversal '[] [Name] [Name] Name Name
-> Name -> [Name] -> [Name]
forall k (is :: IxList) s t a b.
Is k A_Setter =>
Optic k is s t a b -> b -> s -> t
set (Index [Name] -> Optic' (IxKind [Name]) '[] [Name] (IxValue [Name])
forall m. Ixed m => Index m -> Optic' (IxKind m) '[] m (IxValue m)
ix Int
Index [Name]
field) Name
y [Name]
xs)
, ExpQ -> ExpQ -> ExpQ
appE (Name -> ExpQ
varE Name
f) (ExpQ -> ExpQ) -> (Name -> ExpQ) -> Name -> ExpQ
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Name -> ExpQ
varE (Name -> ExpQ) -> Name -> ExpQ
forall a b. (a -> b) -> a -> b
$ [Name]
xs [Name] -> Int -> Name
forall a. [a] -> Int -> a
!! Int
field
]
PatQ -> BodyQ -> [Q Dec] -> MatchQ
match (PatQ -> PatQ
irrefP (PatQ -> PatQ) -> ([PatQ] -> PatQ) -> [PatQ] -> PatQ
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Name -> [PatQ] -> PatQ
conP Name
conName ([PatQ] -> PatQ) -> [PatQ] -> PatQ
forall a b. (a -> b) -> a -> b
$ (Name -> PatQ) -> [Name] -> [PatQ]
forall a b. (a -> b) -> [a] -> [b]
map Name -> PatQ
varP [Name]
xs)
(ExpQ -> BodyQ
normalB ExpQ
body)
[]
[Int]
_ -> String -> MatchQ
forall a. HasCallStack => String -> a
error String
"Lens focuses on exactly one field"
makeAffineTraversalClause :: [(Name, Int, [Int])] -> Bool -> ClauseQ
makeAffineTraversalClause :: [(Name, Int, [Int])] -> Bool -> ClauseQ
makeAffineTraversalClause [(Name, Int, [Int])]
cons Bool
irref = do
Name
point <- String -> Q Name
newName String
"point"
Name
f <- String -> Q Name
newName String
"f"
Name
s <- String -> Q Name
newName String
"s"
[PatQ] -> BodyQ -> [Q Dec] -> ClauseQ
clause
[]
(ExpQ -> BodyQ
normalB (ExpQ -> BodyQ) -> ExpQ -> BodyQ
forall a b. (a -> b) -> a -> b
$ [ExpQ] -> ExpQ
appsE
[ Name -> ExpQ
varE 'atraversalVL
, [PatQ] -> ExpQ -> ExpQ
lamE [Name -> PatQ
varP Name
point, Name -> PatQ
varP Name
f, Name -> PatQ
varP Name
s] (ExpQ -> ExpQ) -> ExpQ -> ExpQ
forall a b. (a -> b) -> a -> b
$ ExpQ -> [MatchQ] -> ExpQ
caseE (Name -> ExpQ
varE Name
s)
[ Name -> Name -> Name -> Int -> [Int] -> MatchQ
makeAffineTraversalMatch Name
point Name
f Name
conName Int
fieldCount [Int]
fields
| (Name
conName, Int
fieldCount, [Int]
fields) <- [(Name, Int, [Int])]
cons
]
])
[]
where
irrefP :: PatQ -> PatQ
irrefP = if Bool
irref then PatQ -> PatQ
tildeP else PatQ -> PatQ
forall a. a -> a
id
makeAffineTraversalMatch :: Name -> Name -> Name -> Int -> [Int] -> MatchQ
makeAffineTraversalMatch Name
point Name
f Name
conName Int
fieldCount = \case
[] -> do
[Name]
xs <- String -> Int -> Q [Name]
newNames String
"x" Int
fieldCount
PatQ -> BodyQ -> [Q Dec] -> MatchQ
match (PatQ -> PatQ
irrefP (PatQ -> PatQ) -> ([PatQ] -> PatQ) -> [PatQ] -> PatQ
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Name -> [PatQ] -> PatQ
conP Name
conName ([PatQ] -> PatQ) -> [PatQ] -> PatQ
forall a b. (a -> b) -> a -> b
$ (Name -> PatQ) -> [Name] -> [PatQ]
forall a b. (a -> b) -> [a] -> [b]
map Name -> PatQ
varP [Name]
xs)
(ExpQ -> BodyQ
normalB (ExpQ -> BodyQ) -> ExpQ -> BodyQ
forall a b. (a -> b) -> a -> b
$ Name -> ExpQ
varE Name
point ExpQ -> ExpQ -> ExpQ
`appE` [ExpQ] -> ExpQ
appsE (Name -> ExpQ
conE Name
conName ExpQ -> [ExpQ] -> [ExpQ]
forall a. a -> [a] -> [a]
: (Name -> ExpQ) -> [Name] -> [ExpQ]
forall a b. (a -> b) -> [a] -> [b]
map Name -> ExpQ
varE [Name]
xs))
[]
[Int
field] -> (PatQ -> PatQ) -> Name -> Name -> Int -> [Int] -> MatchQ
makeLensMatch PatQ -> PatQ
irrefP Name
f Name
conName Int
fieldCount [Int
field]
[Int]
_ -> String -> MatchQ
forall a. HasCallStack => String -> a
error String
"Affine traversal focuses on at most one field"
makeTraversalClause :: [(Name, Int, [Int])] -> Bool -> ClauseQ
makeTraversalClause :: [(Name, Int, [Int])] -> Bool -> ClauseQ
makeTraversalClause [(Name, Int, [Int])]
cons Bool
irref = do
Name
f <- String -> Q Name
newName String
"f"
Name
s <- String -> Q Name
newName String
"s"
[PatQ] -> BodyQ -> [Q Dec] -> ClauseQ
clause
[]
(ExpQ -> BodyQ
normalB (ExpQ -> BodyQ) -> ExpQ -> BodyQ
forall a b. (a -> b) -> a -> b
$ [ExpQ] -> ExpQ
appsE
[ Name -> ExpQ
varE 'traversalVL
, [PatQ] -> ExpQ -> ExpQ
lamE [Name -> PatQ
varP Name
f, Name -> PatQ
varP Name
s] (ExpQ -> ExpQ) -> ExpQ -> ExpQ
forall a b. (a -> b) -> a -> b
$ ExpQ -> [MatchQ] -> ExpQ
caseE (Name -> ExpQ
varE Name
s)
[ Name -> Name -> Int -> [Int] -> MatchQ
makeTraversalMatch Name
f Name
conName Int
fieldCount [Int]
fields
| (Name
conName, Int
fieldCount, [Int]
fields) <- [(Name, Int, [Int])]
cons
]
])
[]
where
irrefP :: PatQ -> PatQ
irrefP = if Bool
irref then PatQ -> PatQ
tildeP else PatQ -> PatQ
forall a. a -> a
id
makeTraversalMatch :: Name -> Name -> Int -> [Int] -> MatchQ
makeTraversalMatch Name
f Name
conName Int
fieldCount [Int]
fields = do
[Name]
xs <- String -> Int -> Q [Name]
newNames String
"x" Int
fieldCount
case [Int]
fields of
[] ->
PatQ -> BodyQ -> [Q Dec] -> MatchQ
match (PatQ -> PatQ
irrefP (PatQ -> PatQ) -> ([PatQ] -> PatQ) -> [PatQ] -> PatQ
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Name -> [PatQ] -> PatQ
conP Name
conName ([PatQ] -> PatQ) -> [PatQ] -> PatQ
forall a b. (a -> b) -> a -> b
$ (Name -> PatQ) -> [Name] -> [PatQ]
forall a b. (a -> b) -> [a] -> [b]
map Name -> PatQ
varP [Name]
xs)
(ExpQ -> BodyQ
normalB (ExpQ -> BodyQ) -> ExpQ -> BodyQ
forall a b. (a -> b) -> a -> b
$ Name -> ExpQ
varE 'pure ExpQ -> ExpQ -> ExpQ
`appE` [ExpQ] -> ExpQ
appsE (Name -> ExpQ
conE Name
conName ExpQ -> [ExpQ] -> [ExpQ]
forall a. a -> [a] -> [a]
: (Name -> ExpQ) -> [Name] -> [ExpQ]
forall a b. (a -> b) -> [a] -> [b]
map Name -> ExpQ
varE [Name]
xs))
[]
[Int]
_ -> do
[Name]
ys <- String -> Int -> Q [Name]
newNames String
"y" (Int -> Q [Name]) -> Int -> Q [Name]
forall a b. (a -> b) -> a -> b
$ [Int] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Int]
fields
let xs' :: [Name]
xs' = ((Int, Name) -> [Name] -> [Name])
-> [Name] -> [(Int, Name)] -> [Name]
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr (\(Int
i, Name
x) -> Optic An_AffineTraversal '[] [Name] [Name] Name Name
-> Name -> [Name] -> [Name]
forall k (is :: IxList) s t a b.
Is k A_Setter =>
Optic k is s t a b -> b -> s -> t
set (Index [Name] -> Optic' (IxKind [Name]) '[] [Name] (IxValue [Name])
forall m. Ixed m => Index m -> Optic' (IxKind m) '[] m (IxValue m)
ix Int
Index [Name]
i) Name
x) [Name]
xs ([Int] -> [Name] -> [(Int, Name)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Int]
fields [Name]
ys)
mkFx :: Int -> ExpQ
mkFx Int
i = Name -> ExpQ
varE Name
f ExpQ -> ExpQ -> ExpQ
`appE` Name -> ExpQ
varE ([Name]
xs [Name] -> Int -> Name
forall a. [a] -> Int -> a
!! Int
i)
body0 :: ExpQ
body0 = [ExpQ] -> ExpQ
appsE
[ Name -> ExpQ
varE 'pure
, [PatQ] -> ExpQ -> ExpQ
lamE ((Name -> PatQ) -> [Name] -> [PatQ]
forall a b. (a -> b) -> [a] -> [b]
map Name -> PatQ
varP [Name]
ys) (ExpQ -> ExpQ) -> ExpQ -> ExpQ
forall a b. (a -> b) -> a -> b
$ [ExpQ] -> ExpQ
appsE ([ExpQ] -> ExpQ) -> [ExpQ] -> ExpQ
forall a b. (a -> b) -> a -> b
$ Name -> ExpQ
conE Name
conName ExpQ -> [ExpQ] -> [ExpQ]
forall a. a -> [a] -> [a]
: (Name -> ExpQ) -> [Name] -> [ExpQ]
forall a b. (a -> b) -> [a] -> [b]
map Name -> ExpQ
varE [Name]
xs'
]
body :: ExpQ
body = (ExpQ -> Int -> ExpQ) -> ExpQ -> [Int] -> ExpQ
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl (\ExpQ
acc Int
i -> ExpQ -> ExpQ -> ExpQ -> ExpQ
infixApp ExpQ
acc (Name -> ExpQ
varE '(<*>)) (ExpQ -> ExpQ) -> ExpQ -> ExpQ
forall a b. (a -> b) -> a -> b
$ Int -> ExpQ
mkFx Int
i)
ExpQ
body0
[Int]
fields
PatQ -> BodyQ -> [Q Dec] -> MatchQ
match (PatQ -> PatQ
irrefP (PatQ -> PatQ) -> ([PatQ] -> PatQ) -> [PatQ] -> PatQ
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Name -> [PatQ] -> PatQ
conP Name
conName ([PatQ] -> PatQ) -> [PatQ] -> PatQ
forall a b. (a -> b) -> a -> b
$ (Name -> PatQ) -> [Name] -> [PatQ]
forall a b. (a -> b) -> [a] -> [b]
map Name -> PatQ
varP [Name]
xs)
(ExpQ -> BodyQ
normalB ExpQ
body)
[]
data LensRules = LensRules
{ LensRules -> Bool
_simpleLenses :: Bool
, LensRules -> Bool
_generateSigs :: Bool
, LensRules -> Bool
_generateClasses :: Bool
, LensRules -> Bool
_allowIsos :: Bool
, LensRules -> Bool
_allowUpdates :: Bool
, LensRules -> Bool
_lazyPatterns :: Bool
, LensRules -> FieldNamer
_fieldToDef :: FieldNamer
, LensRules -> ClassyNamer
_classyLenses :: ClassyNamer
}
type FieldNamer = Name
-> [Name]
-> Name
-> [DefName]
data DefName
= TopName Name
| MethodName Name Name
deriving (Int -> DefName -> String -> String
[DefName] -> String -> String
DefName -> String
(Int -> DefName -> String -> String)
-> (DefName -> String)
-> ([DefName] -> String -> String)
-> Show DefName
forall a.
(Int -> a -> String -> String)
-> (a -> String) -> ([a] -> String -> String) -> Show a
showList :: [DefName] -> String -> String
$cshowList :: [DefName] -> String -> String
show :: DefName -> String
$cshow :: DefName -> String
showsPrec :: Int -> DefName -> String -> String
$cshowsPrec :: Int -> DefName -> String -> String
Show, DefName -> DefName -> Bool
(DefName -> DefName -> Bool)
-> (DefName -> DefName -> Bool) -> Eq DefName
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: DefName -> DefName -> Bool
$c/= :: DefName -> DefName -> Bool
== :: DefName -> DefName -> Bool
$c== :: DefName -> DefName -> Bool
Eq, Eq DefName
Eq DefName
-> (DefName -> DefName -> Ordering)
-> (DefName -> DefName -> Bool)
-> (DefName -> DefName -> Bool)
-> (DefName -> DefName -> Bool)
-> (DefName -> DefName -> Bool)
-> (DefName -> DefName -> DefName)
-> (DefName -> DefName -> DefName)
-> Ord DefName
DefName -> DefName -> Bool
DefName -> DefName -> Ordering
DefName -> DefName -> DefName
forall a.
Eq a
-> (a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
min :: DefName -> DefName -> DefName
$cmin :: DefName -> DefName -> DefName
max :: DefName -> DefName -> DefName
$cmax :: DefName -> DefName -> DefName
>= :: DefName -> DefName -> Bool
$c>= :: DefName -> DefName -> Bool
> :: DefName -> DefName -> Bool
$c> :: DefName -> DefName -> Bool
<= :: DefName -> DefName -> Bool
$c<= :: DefName -> DefName -> Bool
< :: DefName -> DefName -> Bool
$c< :: DefName -> DefName -> Bool
compare :: DefName -> DefName -> Ordering
$ccompare :: DefName -> DefName -> Ordering
$cp1Ord :: Eq DefName
Ord)
_MethodName :: Prism' DefName (Name, Name)
_MethodName :: Optic A_Prism '[] DefName DefName (Name, Name) (Name, Name)
_MethodName = ((Name, Name) -> DefName)
-> (DefName -> Maybe (Name, Name))
-> Optic A_Prism '[] DefName DefName (Name, Name) (Name, Name)
forall b s a. (b -> s) -> (s -> Maybe a) -> Prism s s a b
prism' ((Name -> Name -> DefName) -> (Name, Name) -> DefName
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry Name -> Name -> DefName
MethodName) ((DefName -> Maybe (Name, Name))
-> Optic A_Prism '[] DefName DefName (Name, Name) (Name, Name))
-> (DefName -> Maybe (Name, Name))
-> Optic A_Prism '[] DefName DefName (Name, Name) (Name, Name)
forall a b. (a -> b) -> a -> b
$ \case
TopName{} -> Maybe (Name, Name)
forall a. Maybe a
Nothing
MethodName Name
c Name
n -> (Name, Name) -> Maybe (Name, Name)
forall a. a -> Maybe a
Just (Name
c, Name
n)
type ClassyNamer = Name
-> Maybe (Name, Name)
type HasFieldClasses = StateT (S.Set Name) Q
addFieldClassName :: Name -> HasFieldClasses ()
addFieldClassName :: Name -> StateT (Set Name) Q ()
addFieldClassName Name
n = (Set Name -> Set Name) -> StateT (Set Name) Q ()
forall s (m :: * -> *). MonadState s m => (s -> s) -> m ()
modify ((Set Name -> Set Name) -> StateT (Set Name) Q ())
-> (Set Name -> Set Name) -> StateT (Set Name) Q ()
forall a b. (a -> b) -> a -> b
$ Name -> Set Name -> Set Name
forall a. Ord a => a -> Set a -> Set a
S.insert Name
n
typeFamilyHead :: AffineFold Dec TypeFamilyHead
typeFamilyHead :: Optic An_AffineFold '[] Dec Dec TypeFamilyHead TypeFamilyHead
typeFamilyHead = Prism' Dec TypeFamilyHead
_OpenTypeFamilyD Prism' Dec TypeFamilyHead
-> Optic' An_AffineTraversal '[] Dec TypeFamilyHead
-> Optic An_AffineFold '[] Dec Dec TypeFamilyHead TypeFamilyHead
forall k l (is :: IxList) s a (js :: IxList).
(Is k An_AffineFold, Is l An_AffineFold) =>
Optic' k is s a -> Optic' l js s a -> AffineFold s a
`afailing` Prism' Dec (TypeFamilyHead, [TySynEqn])
_ClosedTypeFamilyD Prism' Dec (TypeFamilyHead, [TySynEqn])
-> Optic
A_Lens
'[]
(TypeFamilyHead, [TySynEqn])
(TypeFamilyHead, [TySynEqn])
TypeFamilyHead
TypeFamilyHead
-> Optic' An_AffineTraversal '[] Dec TypeFamilyHead
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic
A_Lens
'[]
(TypeFamilyHead, [TySynEqn])
(TypeFamilyHead, [TySynEqn])
TypeFamilyHead
TypeFamilyHead
forall s t a b. Field1 s t a b => Lens s t a b
_1