Safe Haskell | None |
---|---|
Language | Haskell2010 |
This module defines general functionality for indexed optics. See the
"Indexed optics" section of the overview documentation in the Optics
module
of the main optics
package for more details.
Unlike Optics.Indexed.Core, this includes the definitions from modules for
specific indexed optic flavours such as Optics.IxTraversal, and includes
additional instances for FunctorWithIndex
and similar classes.
Synopsis
- class IxOptic k s t a b where
- conjoined :: forall (is :: IxList) i k s t a b. HasSingleIndex is i => Optic k NoIx s t a b -> Optic k is s t a b -> Optic k is s t a b
- (<%>) :: forall k l m s t a b (is :: IxList) i (js :: IxList) j u v. (JoinKinds k l m, IxOptic m s t a b, HasSingleIndex is i, HasSingleIndex js j) => Optic k is s t u v -> Optic l js u v a b -> Optic m (WithIx (i, j)) s t a b
- (%>) :: forall k l m s t u v (is :: IxList) (js :: IxList) a b. (JoinKinds k l m, IxOptic k s t u v, NonEmptyIndices is) => Optic k is s t u v -> Optic l js u v a b -> Optic m js s t a b
- (<%) :: forall k l m u v a b (js :: IxList) (is :: IxList) s t. (JoinKinds k l m, IxOptic l u v a b, NonEmptyIndices js) => Optic k is s t u v -> Optic l js u v a b -> Optic m is s t a b
- reindexed :: forall (is :: IxList) i j k s t a b. HasSingleIndex is i => (i -> j) -> Optic k is s t a b -> Optic k (WithIx j) s t a b
- icompose :: (i -> j -> ix) -> Optic k '[i, j] s t a b -> Optic k (WithIx ix) s t a b
- icompose3 :: (i1 -> i2 -> i3 -> ix) -> Optic k '[i1, i2, i3] s t a b -> Optic k (WithIx ix) s t a b
- icompose4 :: (i1 -> i2 -> i3 -> i4 -> ix) -> Optic k '[i1, i2, i3, i4] s t a b -> Optic k (WithIx ix) s t a b
- icompose5 :: (i1 -> i2 -> i3 -> i4 -> i5 -> ix) -> Optic k '[i1, i2, i3, i4, i5] s t a b -> Optic k (WithIx ix) s t a b
- icomposeN :: forall k i (is :: IxList) s t a b. (CurryCompose is, NonEmptyIndices is) => Curry is i -> Optic k is s t a b -> Optic k (WithIx i) s t a b
- module Optics.IxAffineFold
- module Optics.IxAffineTraversal
- module Optics.IxFold
- module Optics.IxGetter
- module Optics.IxLens
- module Optics.IxSetter
- module Optics.IxTraversal
- class Functor f => FunctorWithIndex i (f :: Type -> Type) | f -> i where
- imap :: (i -> a -> b) -> f a -> f b
- class Foldable f => FoldableWithIndex i (f :: Type -> Type) | f -> i where
- itraverse_ :: (FoldableWithIndex i t, Applicative f) => (i -> a -> f b) -> t a -> f ()
- ifor_ :: (FoldableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f ()
- itoList :: FoldableWithIndex i f => f a -> [(i, a)]
- class (FunctorWithIndex i t, FoldableWithIndex i t, Traversable t) => TraversableWithIndex i (t :: Type -> Type) | t -> i where
- itraverse :: Applicative f => (i -> a -> f b) -> t a -> f (t b)
- ifor :: (TraversableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f (t b)
Class for optic kinds that can be indexed
class IxOptic k s t a b where #
Class for optic kinds that can have indices.
noIx :: forall (is :: IxList). NonEmptyIndices is => Optic k is s t a b -> Optic k NoIx s t a b #
Convert an indexed optic to its unindexed equivalent.
Instances
IxOptic A_Lens s t a b | |
Defined in Optics.Indexed.Core | |
IxOptic An_AffineTraversal s t a b | |
Defined in Optics.Indexed.Core noIx :: forall (is :: IxList). NonEmptyIndices is => Optic An_AffineTraversal is s t a b -> Optic An_AffineTraversal NoIx s t a b # | |
IxOptic A_Traversal s t a b | |
Defined in Optics.Indexed.Core noIx :: forall (is :: IxList). NonEmptyIndices is => Optic A_Traversal is s t a b -> Optic A_Traversal NoIx s t a b # | |
IxOptic A_Setter s t a b | |
Defined in Optics.Indexed.Core | |
(s ~ t, a ~ b) => IxOptic A_Getter s t a b | |
Defined in Optics.Indexed.Core | |
(s ~ t, a ~ b) => IxOptic An_AffineFold s t a b | |
Defined in Optics.Indexed.Core noIx :: forall (is :: IxList). NonEmptyIndices is => Optic An_AffineFold is s t a b -> Optic An_AffineFold NoIx s t a b # | |
(s ~ t, a ~ b) => IxOptic A_Fold s t a b | |
Defined in Optics.Indexed.Core |
conjoined :: forall (is :: IxList) i k s t a b. HasSingleIndex is i => Optic k NoIx s t a b -> Optic k is s t a b -> Optic k is s t a b #
Composition of indexed optics
(<%>) :: forall k l m s t a b (is :: IxList) i (js :: IxList) j u v. (JoinKinds k l m, IxOptic m s t a b, HasSingleIndex is i, HasSingleIndex js j) => Optic k is s t u v -> Optic l js u v a b -> Optic m (WithIx (i, j)) s t a b infixl 9 #
Compose two indexed optics. Their indices are composed as a pair.
>>>
itoListOf (ifolded <%> ifolded) ["foo", "bar"]
[((0,0),'f'),((0,1),'o'),((0,2),'o'),((1,0),'b'),((1,1),'a'),((1,2),'r')]
(%>) :: forall k l m s t u v (is :: IxList) (js :: IxList) a b. (JoinKinds k l m, IxOptic k s t u v, NonEmptyIndices is) => Optic k is s t u v -> Optic l js u v a b -> Optic m js s t a b infixl 9 #
Compose two indexed optics and drop indices of the left one. (If you want
to compose a non-indexed and an indexed optic, you can just use (%
).)
>>>
itoListOf (ifolded %> ifolded) ["foo", "bar"]
[(0,'f'),(1,'o'),(2,'o'),(0,'b'),(1,'a'),(2,'r')]
(<%) :: forall k l m u v a b (js :: IxList) (is :: IxList) s t. (JoinKinds k l m, IxOptic l u v a b, NonEmptyIndices js) => Optic k is s t u v -> Optic l js u v a b -> Optic m is s t a b infixl 9 #
Compose two indexed optics and drop indices of the right one. (If you want
to compose an indexed and a non-indexed optic, you can just use (%
).)
>>>
itoListOf (ifolded <% ifolded) ["foo", "bar"]
[(0,'f'),(0,'o'),(0,'o'),(1,'b'),(1,'a'),(1,'r')]
reindexed :: forall (is :: IxList) i j k s t a b. HasSingleIndex is i => (i -> j) -> Optic k is s t a b -> Optic k (WithIx j) s t a b #
Remap the index.
>>>
itoListOf (reindexed succ ifolded) "foo"
[(1,'f'),(2,'o'),(3,'o')]
>>>
itoListOf (ifolded %& reindexed succ) "foo"
[(1,'f'),(2,'o'),(3,'o')]
icompose :: (i -> j -> ix) -> Optic k '[i, j] s t a b -> Optic k (WithIx ix) s t a b #
Flatten indices obtained from two indexed optics.
>>>
itoListOf (ifolded % ifolded %& icompose (,)) ["foo","bar"]
[((0,0),'f'),((0,1),'o'),((0,2),'o'),((1,0),'b'),((1,1),'a'),((1,2),'r')]
icompose3 :: (i1 -> i2 -> i3 -> ix) -> Optic k '[i1, i2, i3] s t a b -> Optic k (WithIx ix) s t a b #
Flatten indices obtained from three indexed optics.
>>>
itoListOf (ifolded % ifolded % ifolded %& icompose3 (,,)) [["foo","bar"],["xyz"]]
[((0,0,0),'f'),((0,0,1),'o'),((0,0,2),'o'),((0,1,0),'b'),((0,1,1),'a'),((0,1,2),'r'),((1,0,0),'x'),((1,0,1),'y'),((1,0,2),'z')]
icompose4 :: (i1 -> i2 -> i3 -> i4 -> ix) -> Optic k '[i1, i2, i3, i4] s t a b -> Optic k (WithIx ix) s t a b #
Flatten indices obtained from four indexed optics.
icompose5 :: (i1 -> i2 -> i3 -> i4 -> i5 -> ix) -> Optic k '[i1, i2, i3, i4, i5] s t a b -> Optic k (WithIx ix) s t a b #
Flatten indices obtained from five indexed optics.
icomposeN :: forall k i (is :: IxList) s t a b. (CurryCompose is, NonEmptyIndices is) => Curry is i -> Optic k is s t a b -> Optic k (WithIx i) s t a b #
Flatten indices obtained from arbitrary number of indexed optics.
Indexed optic flavours
module Optics.IxAffineFold
module Optics.IxAffineTraversal
module Optics.IxFold
module Optics.IxGetter
module Optics.IxLens
module Optics.IxSetter
module Optics.IxTraversal
Functors with index
class Functor f => FunctorWithIndex i (f :: Type -> Type) | f -> i where #
A Functor
with an additional index.
Instances must satisfy a modified form of the Functor
laws:
imap
f.
imap
g ≡imap
(\i -> f i.
g i)imap
(\_ a -> a) ≡id
Nothing
Instances
Foldable with index
class Foldable f => FoldableWithIndex i (f :: Type -> Type) | f -> i where #
A container that supports folding with an additional index.
Nothing
ifoldMap :: Monoid m => (i -> a -> m) -> f a -> m #
Fold a container by mapping value to an arbitrary Monoid
with access to the index i
.
When you don't need access to the index then foldMap
is more flexible in what it accepts.
foldMap
≡ifoldMap
.
const
ifoldMap' :: Monoid m => (i -> a -> m) -> f a -> m #
A variant of ifoldMap
that is strict in the accumulator.
When you don't need access to the index then foldMap'
is more flexible in what it accepts.
foldMap'
≡ifoldMap'
.
const
ifoldr :: (i -> a -> b -> b) -> b -> f a -> b #
Right-associative fold of an indexed container with access to the index i
.
When you don't need access to the index then foldr
is more flexible in what it accepts.
foldr
≡ifoldr
.
const
ifoldl :: (i -> b -> a -> b) -> b -> f a -> b #
Left-associative fold of an indexed container with access to the index i
.
When you don't need access to the index then foldl
is more flexible in what it accepts.
foldl
≡ifoldl
.
const
Instances
FoldableWithIndex Int [] | |
FoldableWithIndex Int ZipList | |
Defined in WithIndex | |
FoldableWithIndex Int NonEmpty | |
Defined in WithIndex | |
FoldableWithIndex Int IntMap | |
Defined in WithIndex | |
FoldableWithIndex Int Seq | |
FoldableWithIndex () Maybe | |
FoldableWithIndex () Par1 | |
FoldableWithIndex () Identity | |
Defined in WithIndex | |
FoldableWithIndex k (Map k) | |
FoldableWithIndex k ((,) k) | |
Ix i => FoldableWithIndex i (Array i) | |
FoldableWithIndex Void (V1 :: Type -> Type) | |
FoldableWithIndex Void (U1 :: Type -> Type) | |
FoldableWithIndex Void (Proxy :: Type -> Type) | |
Defined in WithIndex | |
FoldableWithIndex i f => FoldableWithIndex i (Reverse f) | |
Defined in WithIndex | |
FoldableWithIndex i f => FoldableWithIndex i (Rec1 f) | |
FoldableWithIndex i m => FoldableWithIndex i (IdentityT m) | |
Defined in WithIndex ifoldMap :: Monoid m0 => (i -> a -> m0) -> IdentityT m a -> m0 # ifoldMap' :: Monoid m0 => (i -> a -> m0) -> IdentityT m a -> m0 # ifoldr :: (i -> a -> b -> b) -> b -> IdentityT m a -> b # ifoldl :: (i -> b -> a -> b) -> b -> IdentityT m a -> b # | |
FoldableWithIndex i f => FoldableWithIndex i (Backwards f) | |
Defined in WithIndex | |
FoldableWithIndex Void (Const e :: Type -> Type) | |
Defined in WithIndex | |
FoldableWithIndex Void (Constant e :: Type -> Type) | |
Defined in WithIndex ifoldMap :: Monoid m => (Void -> a -> m) -> Constant e a -> m # ifoldMap' :: Monoid m => (Void -> a -> m) -> Constant e a -> m # ifoldr :: (Void -> a -> b -> b) -> b -> Constant e a -> b # ifoldl :: (Void -> b -> a -> b) -> b -> Constant e a -> b # ifoldr' :: (Void -> a -> b -> b) -> b -> Constant e a -> b # ifoldl' :: (Void -> b -> a -> b) -> b -> Constant e a -> b # | |
FoldableWithIndex Void (K1 i c :: Type -> Type) | |
Defined in WithIndex | |
FoldableWithIndex [Int] Tree | |
Defined in WithIndex | |
(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (Either i j) (Sum f g) | |
Defined in WithIndex ifoldMap :: Monoid m => (Either i j -> a -> m) -> Sum f g a -> m # ifoldMap' :: Monoid m => (Either i j -> a -> m) -> Sum f g a -> m # ifoldr :: (Either i j -> a -> b -> b) -> b -> Sum f g a -> b # ifoldl :: (Either i j -> b -> a -> b) -> b -> Sum f g a -> b # ifoldr' :: (Either i j -> a -> b -> b) -> b -> Sum f g a -> b # ifoldl' :: (Either i j -> b -> a -> b) -> b -> Sum f g a -> b # | |
(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (Either i j) (Product f g) | |
Defined in WithIndex ifoldMap :: Monoid m => (Either i j -> a -> m) -> Product f g a -> m # ifoldMap' :: Monoid m => (Either i j -> a -> m) -> Product f g a -> m # ifoldr :: (Either i j -> a -> b -> b) -> b -> Product f g a -> b # ifoldl :: (Either i j -> b -> a -> b) -> b -> Product f g a -> b # ifoldr' :: (Either i j -> a -> b -> b) -> b -> Product f g a -> b # ifoldl' :: (Either i j -> b -> a -> b) -> b -> Product f g a -> b # | |
(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (Either i j) (f :+: g) | |
Defined in WithIndex ifoldMap :: Monoid m => (Either i j -> a -> m) -> (f :+: g) a -> m # ifoldMap' :: Monoid m => (Either i j -> a -> m) -> (f :+: g) a -> m # ifoldr :: (Either i j -> a -> b -> b) -> b -> (f :+: g) a -> b # ifoldl :: (Either i j -> b -> a -> b) -> b -> (f :+: g) a -> b # ifoldr' :: (Either i j -> a -> b -> b) -> b -> (f :+: g) a -> b # ifoldl' :: (Either i j -> b -> a -> b) -> b -> (f :+: g) a -> b # | |
(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (Either i j) (f :*: g) | |
Defined in WithIndex ifoldMap :: Monoid m => (Either i j -> a -> m) -> (f :*: g) a -> m # ifoldMap' :: Monoid m => (Either i j -> a -> m) -> (f :*: g) a -> m # ifoldr :: (Either i j -> a -> b -> b) -> b -> (f :*: g) a -> b # ifoldl :: (Either i j -> b -> a -> b) -> b -> (f :*: g) a -> b # ifoldr' :: (Either i j -> a -> b -> b) -> b -> (f :*: g) a -> b # ifoldl' :: (Either i j -> b -> a -> b) -> b -> (f :*: g) a -> b # | |
(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (i, j) (Compose f g) | |
Defined in WithIndex ifoldMap :: Monoid m => ((i, j) -> a -> m) -> Compose f g a -> m # ifoldMap' :: Monoid m => ((i, j) -> a -> m) -> Compose f g a -> m # ifoldr :: ((i, j) -> a -> b -> b) -> b -> Compose f g a -> b # ifoldl :: ((i, j) -> b -> a -> b) -> b -> Compose f g a -> b # ifoldr' :: ((i, j) -> a -> b -> b) -> b -> Compose f g a -> b # ifoldl' :: ((i, j) -> b -> a -> b) -> b -> Compose f g a -> b # | |
(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (i, j) (f :.: g) | |
Defined in WithIndex ifoldMap :: Monoid m => ((i, j) -> a -> m) -> (f :.: g) a -> m # ifoldMap' :: Monoid m => ((i, j) -> a -> m) -> (f :.: g) a -> m # ifoldr :: ((i, j) -> a -> b -> b) -> b -> (f :.: g) a -> b # ifoldl :: ((i, j) -> b -> a -> b) -> b -> (f :.: g) a -> b # ifoldr' :: ((i, j) -> a -> b -> b) -> b -> (f :.: g) a -> b # ifoldl' :: ((i, j) -> b -> a -> b) -> b -> (f :.: g) a -> b # |
itraverse_ :: (FoldableWithIndex i t, Applicative f) => (i -> a -> f b) -> t a -> f () #
ifor_ :: (FoldableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f () #
Traverse elements with access to the index i
, discarding the results (with the arguments flipped).
ifor_
≡flip
itraverse_
When you don't need access to the index then for_
is more flexible in what it accepts.
for_
a ≡ifor_
a.
const
itoList :: FoldableWithIndex i f => f a -> [(i, a)] #
Traversable with index
class (FunctorWithIndex i t, FoldableWithIndex i t, Traversable t) => TraversableWithIndex i (t :: Type -> Type) | t -> i where #
A Traversable
with an additional index.
An instance must satisfy a (modified) form of the Traversable
laws:
itraverse
(const
Identity
) ≡Identity
fmap
(itraverse
f).
itraverse
g ≡getCompose
.
itraverse
(\i ->Compose
.
fmap
(f i).
g i)
Nothing
itraverse :: Applicative f => (i -> a -> f b) -> t a -> f (t b) #
Traverse an indexed container.
itraverse
≡itraverseOf
itraversed
Instances
ifor :: (TraversableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f (t b) #