{-# LANGUAGE CPP #-}
{-# LANGUAGE TypeInType #-}
module Optics.At.Core
(
Index
, IxValue
, Ixed(..)
, ixAt
, At(..)
, at'
, sans
, Contains(..)
) where
import qualified Data.Array.IArray as Array
import Data.Array.Unboxed (UArray)
import Data.Complex (Complex (..))
import Data.Ix (Ix (..))
import Data.Functor.Identity (Identity (..))
import Data.Kind (Type)
import Data.List.NonEmpty (NonEmpty (..))
import Data.Tree (Tree (..))
import Data.IntMap (IntMap)
import qualified Data.IntMap as IntMap
import Data.IntSet (IntSet)
import qualified Data.IntSet as IntSet
import Data.Map (Map)
import qualified Data.Map as Map
import Data.Sequence (Seq)
import qualified Data.Sequence as Seq
import Data.Set (Set)
import qualified Data.Set as Set
import Data.Maybe.Optics
import Optics.AffineTraversal
import Optics.Iso
import Optics.Lens
import Optics.Optic
import Optics.Setter
type family Index (s :: Type) :: Type
type instance Index (e -> a) = e
type instance Index IntSet = Int
type instance Index (Set a) = a
type instance Index [a] = Int
type instance Index (NonEmpty a) = Int
type instance Index (Seq a) = Int
type instance Index (a,b) = Int
type instance Index (a,b,c) = Int
type instance Index (a,b,c,d) = Int
type instance Index (a,b,c,d,e) = Int
type instance Index (a,b,c,d,e,f) = Int
type instance Index (a,b,c,d,e,f,g) = Int
type instance Index (a,b,c,d,e,f,g,h) = Int
type instance Index (a,b,c,d,e,f,g,h,i) = Int
type instance Index (IntMap a) = Int
type instance Index (Map k a) = k
type instance Index (Array.Array i e) = i
type instance Index (UArray i e) = i
type instance Index (Complex a) = Int
type instance Index (Identity a) = ()
type instance Index (Maybe a) = ()
type instance Index (Tree a) = [Int]
class Contains m where
contains :: Index m -> Lens' m Bool
instance Contains IntSet where
contains :: Index IntSet -> Lens' IntSet Bool
contains Index IntSet
k = LensVL IntSet IntSet Bool Bool -> Lens' IntSet Bool
forall s t a b. LensVL s t a b -> Lens s t a b
lensVL (LensVL IntSet IntSet Bool Bool -> Lens' IntSet Bool)
-> LensVL IntSet IntSet Bool Bool -> Lens' IntSet Bool
forall a b. (a -> b) -> a -> b
$ \Bool -> f Bool
f IntSet
s -> Bool -> f Bool
f (Key -> IntSet -> Bool
IntSet.member Key
Index IntSet
k IntSet
s) f Bool -> (Bool -> IntSet) -> f IntSet
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \Bool
b ->
if Bool
b then Key -> IntSet -> IntSet
IntSet.insert Key
Index IntSet
k IntSet
s else Key -> IntSet -> IntSet
IntSet.delete Key
Index IntSet
k IntSet
s
{-# INLINE contains #-}
instance Ord a => Contains (Set a) where
contains :: Index (Set a) -> Lens' (Set a) Bool
contains Index (Set a)
k = LensVL (Set a) (Set a) Bool Bool -> Lens' (Set a) Bool
forall s t a b. LensVL s t a b -> Lens s t a b
lensVL (LensVL (Set a) (Set a) Bool Bool -> Lens' (Set a) Bool)
-> LensVL (Set a) (Set a) Bool Bool -> Lens' (Set a) Bool
forall a b. (a -> b) -> a -> b
$ \Bool -> f Bool
f Set a
s -> Bool -> f Bool
f (a -> Set a -> Bool
forall a. Ord a => a -> Set a -> Bool
Set.member a
Index (Set a)
k Set a
s) f Bool -> (Bool -> Set a) -> f (Set a)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \Bool
b ->
if Bool
b then a -> Set a -> Set a
forall a. Ord a => a -> Set a -> Set a
Set.insert a
Index (Set a)
k Set a
s else a -> Set a -> Set a
forall a. Ord a => a -> Set a -> Set a
Set.delete a
Index (Set a)
k Set a
s
{-# INLINE contains #-}
type family IxValue (m :: Type) :: Type
class Ixed m where
type IxKind (m :: Type) :: OpticKind
type IxKind m = An_AffineTraversal
ix :: Index m -> Optic' (IxKind m) NoIx m (IxValue m)
default ix :: (At m, IxKind m ~ An_AffineTraversal) => Index m -> Optic' (IxKind m) NoIx m (IxValue m)
ix = Index m -> Optic' (IxKind m) NoIx m (IxValue m)
forall m. At m => Index m -> AffineTraversal' m (IxValue m)
ixAt
{-# INLINE ix #-}
ixAt :: At m => Index m -> AffineTraversal' m (IxValue m)
ixAt :: Index m -> AffineTraversal' m (IxValue m)
ixAt = \Index m
i -> Index m -> Lens' m (Maybe (IxValue m))
forall m. At m => Index m -> Lens' m (Maybe (IxValue m))
at Index m
i Lens' m (Maybe (IxValue m))
-> Optic
A_Prism
NoIx
(Maybe (IxValue m))
(Maybe (IxValue m))
(IxValue m)
(IxValue m)
-> AffineTraversal' m (IxValue m)
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Optic
A_Prism
NoIx
(Maybe (IxValue m))
(Maybe (IxValue m))
(IxValue m)
(IxValue m)
forall a b. Prism (Maybe a) (Maybe b) a b
_Just
{-# INLINE ixAt #-}
type instance IxValue (e -> a) = a
instance Eq e => Ixed (e -> a) where
type IxKind (e -> a) = A_Lens
ix :: Index (e -> a)
-> Optic' (IxKind (e -> a)) NoIx (e -> a) (IxValue (e -> a))
ix Index (e -> a)
e = LensVL (e -> a) (e -> a) a a -> Lens (e -> a) (e -> a) a a
forall s t a b. LensVL s t a b -> Lens s t a b
lensVL (LensVL (e -> a) (e -> a) a a -> Lens (e -> a) (e -> a) a a)
-> LensVL (e -> a) (e -> a) a a -> Lens (e -> a) (e -> a) a a
forall a b. (a -> b) -> a -> b
$ \a -> f a
p e -> a
f -> a -> f a
p (e -> a
f e
Index (e -> a)
e) f a -> (a -> e -> a) -> f (e -> a)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a
a e
e' -> if e
Index (e -> a)
e e -> e -> Bool
forall a. Eq a => a -> a -> Bool
== e
e' then a
a else e -> a
f e
e'
{-# INLINE ix #-}
type instance IxValue (Maybe a) = a
instance Ixed (Maybe a) where
ix :: Index (Maybe a)
-> Optic' (IxKind (Maybe a)) NoIx (Maybe a) (IxValue (Maybe a))
ix () = Optic A_Prism NoIx (Maybe a) (Maybe a) a a
-> Optic An_AffineTraversal NoIx (Maybe a) (Maybe a) a a
forall destKind srcKind (is :: IxList) s t a b.
Is srcKind destKind =>
Optic srcKind is s t a b -> Optic destKind is s t a b
castOptic @An_AffineTraversal Optic A_Prism NoIx (Maybe a) (Maybe a) a a
forall a b. Prism (Maybe a) (Maybe b) a b
_Just
{-# INLINE ix #-}
type instance IxValue [a] = a
instance Ixed [a] where
ix :: Index [a] -> Optic' (IxKind [a]) NoIx [a] (IxValue [a])
ix Index [a]
k = AffineTraversalVL [a] [a] a a -> AffineTraversal [a] [a] a a
forall s t a b.
AffineTraversalVL s t a b -> AffineTraversal s t a b
atraversalVL (Key -> AffineTraversalVL [a] [a] a a
forall a. Key -> AffineTraversalVL' [a] a
ixListVL Key
Index [a]
k)
{-# INLINE ix #-}
type instance IxValue (NonEmpty a) = a
instance Ixed (NonEmpty a) where
ix :: Index (NonEmpty a)
-> Optic'
(IxKind (NonEmpty a)) NoIx (NonEmpty a) (IxValue (NonEmpty a))
ix Index (NonEmpty a)
k = AffineTraversalVL (NonEmpty a) (NonEmpty a) a a
-> AffineTraversal (NonEmpty a) (NonEmpty a) a a
forall s t a b.
AffineTraversalVL s t a b -> AffineTraversal s t a b
atraversalVL (AffineTraversalVL (NonEmpty a) (NonEmpty a) a a
-> AffineTraversal (NonEmpty a) (NonEmpty a) a a)
-> AffineTraversalVL (NonEmpty a) (NonEmpty a) a a
-> AffineTraversal (NonEmpty a) (NonEmpty a) a a
forall a b. (a -> b) -> a -> b
$ \forall r. r -> f r
point a -> f a
f NonEmpty a
xs0 ->
if Key
Index (NonEmpty a)
k Key -> Key -> Bool
forall a. Ord a => a -> a -> Bool
< Key
0
then NonEmpty a -> f (NonEmpty a)
forall r. r -> f r
point NonEmpty a
xs0
else let go :: NonEmpty a -> Key -> f (NonEmpty a)
go (a
a:|[a]
as) Key
0 = a -> f a
f a
a f a -> (a -> NonEmpty a) -> f (NonEmpty a)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> (a -> [a] -> NonEmpty a
forall a. a -> [a] -> NonEmpty a
:|[a]
as)
go (a
a:|[a]
as) Key
i = (a
aa -> [a] -> NonEmpty a
forall a. a -> [a] -> NonEmpty a
:|) ([a] -> NonEmpty a) -> f [a] -> f (NonEmpty a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key -> (forall r. r -> f r) -> (a -> f a) -> [a] -> f [a]
forall a. Key -> AffineTraversalVL' [a] a
ixListVL (Key
i Key -> Key -> Key
forall a. Num a => a -> a -> a
- Key
1) forall r. r -> f r
point a -> f a
f [a]
as
in NonEmpty a -> Key -> f (NonEmpty a)
go NonEmpty a
xs0 Key
Index (NonEmpty a)
k
{-# INLINE ix #-}
type instance IxValue (Identity a) = a
instance Ixed (Identity a) where
type IxKind (Identity a) = An_Iso
ix :: Index (Identity a)
-> Optic'
(IxKind (Identity a)) NoIx (Identity a) (IxValue (Identity a))
ix () = Optic'
(IxKind (Identity a)) NoIx (Identity a) (IxValue (Identity a))
forall s a t b. (Coercible s a, Coercible t b) => Iso s t a b
coerced
{-# INLINE ix #-}
type instance IxValue (Tree a) = a
instance Ixed (Tree a) where
ix :: Index (Tree a)
-> Optic' (IxKind (Tree a)) NoIx (Tree a) (IxValue (Tree a))
ix Index (Tree a)
xs0 = AffineTraversalVL (Tree a) (Tree a) a a
-> AffineTraversal (Tree a) (Tree a) a a
forall s t a b.
AffineTraversalVL s t a b -> AffineTraversal s t a b
atraversalVL (AffineTraversalVL (Tree a) (Tree a) a a
-> AffineTraversal (Tree a) (Tree a) a a)
-> AffineTraversalVL (Tree a) (Tree a) a a
-> AffineTraversal (Tree a) (Tree a) a a
forall a b. (a -> b) -> a -> b
$ \forall r. r -> f r
point a -> f a
f ->
let go :: [Key] -> Tree a -> f (Tree a)
go [] (Node a
a Forest a
as) = a -> f a
f a
a f a -> (a -> Tree a) -> f (Tree a)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a
a' -> a -> Forest a -> Tree a
forall a. a -> Forest a -> Tree a
Node a
a' Forest a
as
go (Key
i:[Key]
is) t :: Tree a
t@(Node a
a Forest a
as)
| Key
i Key -> Key -> Bool
forall a. Ord a => a -> a -> Bool
< Key
0 = Tree a -> f (Tree a)
forall r. r -> f r
point Tree a
t
| Bool
otherwise = a -> Forest a -> Tree a
forall a. a -> Forest a -> Tree a
Node a
a (Forest a -> Tree a) -> f (Forest a) -> f (Tree a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key
-> (forall r. r -> f r)
-> (Tree a -> f (Tree a))
-> Forest a
-> f (Forest a)
forall a. Key -> AffineTraversalVL' [a] a
ixListVL Key
i forall r. r -> f r
point ([Key] -> Tree a -> f (Tree a)
go [Key]
is) Forest a
as
in [Key] -> Tree a -> f (Tree a)
go [Key]
Index (Tree a)
xs0
{-# INLINE ix #-}
type instance IxValue (Seq a) = a
instance Ixed (Seq a) where
ix :: Index (Seq a)
-> Optic' (IxKind (Seq a)) NoIx (Seq a) (IxValue (Seq a))
ix Index (Seq a)
i = AffineTraversalVL (Seq a) (Seq a) a a
-> AffineTraversal (Seq a) (Seq a) a a
forall s t a b.
AffineTraversalVL s t a b -> AffineTraversal s t a b
atraversalVL (AffineTraversalVL (Seq a) (Seq a) a a
-> AffineTraversal (Seq a) (Seq a) a a)
-> AffineTraversalVL (Seq a) (Seq a) a a
-> AffineTraversal (Seq a) (Seq a) a a
forall a b. (a -> b) -> a -> b
$ \forall r. r -> f r
point a -> f a
f Seq a
m ->
if Key
0 Key -> Key -> Bool
forall a. Ord a => a -> a -> Bool
<= Key
Index (Seq a)
i Bool -> Bool -> Bool
&& Key
Index (Seq a)
i Key -> Key -> Bool
forall a. Ord a => a -> a -> Bool
< Seq a -> Key
forall a. Seq a -> Key
Seq.length Seq a
m
then a -> f a
f (Seq a -> Key -> a
forall a. Seq a -> Key -> a
Seq.index Seq a
m Key
Index (Seq a)
i) f a -> (a -> Seq a) -> f (Seq a)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a
a -> Key -> a -> Seq a -> Seq a
forall a. Key -> a -> Seq a -> Seq a
Seq.update Key
Index (Seq a)
i a
a Seq a
m
else Seq a -> f (Seq a)
forall r. r -> f r
point Seq a
m
{-# INLINE ix #-}
type instance IxValue (IntMap a) = a
instance Ixed (IntMap a)
type instance IxValue (Map k a) = a
instance Ord k => Ixed (Map k a)
type instance IxValue (Set k) = ()
instance Ord k => Ixed (Set k) where
ix :: Index (Set k)
-> Optic' (IxKind (Set k)) NoIx (Set k) (IxValue (Set k))
ix Index (Set k)
k = AffineTraversalVL (Set k) (Set k) () ()
-> AffineTraversal (Set k) (Set k) () ()
forall s t a b.
AffineTraversalVL s t a b -> AffineTraversal s t a b
atraversalVL (AffineTraversalVL (Set k) (Set k) () ()
-> AffineTraversal (Set k) (Set k) () ())
-> AffineTraversalVL (Set k) (Set k) () ()
-> AffineTraversal (Set k) (Set k) () ()
forall a b. (a -> b) -> a -> b
$ \forall r. r -> f r
point () -> f ()
f Set k
m ->
if k -> Set k -> Bool
forall a. Ord a => a -> Set a -> Bool
Set.member k
Index (Set k)
k Set k
m
then () -> f ()
f () f () -> (() -> Set k) -> f (Set k)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \() -> k -> Set k -> Set k
forall a. Ord a => a -> Set a -> Set a
Set.insert k
Index (Set k)
k Set k
m
else Set k -> f (Set k)
forall r. r -> f r
point Set k
m
{-# INLINE ix #-}
type instance IxValue IntSet = ()
instance Ixed IntSet where
ix :: Index IntSet -> Optic' (IxKind IntSet) NoIx IntSet (IxValue IntSet)
ix Index IntSet
k = AffineTraversalVL IntSet IntSet () ()
-> AffineTraversal IntSet IntSet () ()
forall s t a b.
AffineTraversalVL s t a b -> AffineTraversal s t a b
atraversalVL (AffineTraversalVL IntSet IntSet () ()
-> AffineTraversal IntSet IntSet () ())
-> AffineTraversalVL IntSet IntSet () ()
-> AffineTraversal IntSet IntSet () ()
forall a b. (a -> b) -> a -> b
$ \forall r. r -> f r
point () -> f ()
f IntSet
m ->
if Key -> IntSet -> Bool
IntSet.member Key
Index IntSet
k IntSet
m
then () -> f ()
f () f () -> (() -> IntSet) -> f IntSet
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \() -> Key -> IntSet -> IntSet
IntSet.insert Key
Index IntSet
k IntSet
m
else IntSet -> f IntSet
forall r. r -> f r
point IntSet
m
{-# INLINE ix #-}
type instance IxValue (Array.Array i e) = e
instance Ix i => Ixed (Array.Array i e) where
ix :: Index (Array i e)
-> Optic'
(IxKind (Array i e)) NoIx (Array i e) (IxValue (Array i e))
ix Index (Array i e)
i = AffineTraversalVL (Array i e) (Array i e) e e
-> AffineTraversal (Array i e) (Array i e) e e
forall s t a b.
AffineTraversalVL s t a b -> AffineTraversal s t a b
atraversalVL (AffineTraversalVL (Array i e) (Array i e) e e
-> AffineTraversal (Array i e) (Array i e) e e)
-> AffineTraversalVL (Array i e) (Array i e) e e
-> AffineTraversal (Array i e) (Array i e) e e
forall a b. (a -> b) -> a -> b
$ \forall r. r -> f r
point e -> f e
f Array i e
arr ->
if (i, i) -> i -> Bool
forall a. Ix a => (a, a) -> a -> Bool
inRange (Array i e -> (i, i)
forall (a :: * -> * -> *) e i.
(IArray a e, Ix i) =>
a i e -> (i, i)
Array.bounds Array i e
arr) i
Index (Array i e)
i
then e -> f e
f (Array i e
arr Array i e -> i -> e
forall (a :: * -> * -> *) e i.
(IArray a e, Ix i) =>
a i e -> i -> e
Array.! i
Index (Array i e)
i) f e -> (e -> Array i e) -> f (Array i e)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e
e -> Array i e
arr Array i e -> [(i, e)] -> Array i e
forall (a :: * -> * -> *) e i.
(IArray a e, Ix i) =>
a i e -> [(i, e)] -> a i e
Array.// [(i
Index (Array i e)
i,e
e)]
else Array i e -> f (Array i e)
forall r. r -> f r
point Array i e
arr
{-# INLINE ix #-}
type instance IxValue (UArray i e) = e
instance (Array.IArray UArray e, Ix i) => Ixed (UArray i e) where
ix :: Index (UArray i e)
-> Optic'
(IxKind (UArray i e)) NoIx (UArray i e) (IxValue (UArray i e))
ix Index (UArray i e)
i = AffineTraversalVL (UArray i e) (UArray i e) e e
-> AffineTraversal (UArray i e) (UArray i e) e e
forall s t a b.
AffineTraversalVL s t a b -> AffineTraversal s t a b
atraversalVL (AffineTraversalVL (UArray i e) (UArray i e) e e
-> AffineTraversal (UArray i e) (UArray i e) e e)
-> AffineTraversalVL (UArray i e) (UArray i e) e e
-> AffineTraversal (UArray i e) (UArray i e) e e
forall a b. (a -> b) -> a -> b
$ \forall r. r -> f r
point e -> f e
f UArray i e
arr ->
if (i, i) -> i -> Bool
forall a. Ix a => (a, a) -> a -> Bool
inRange (UArray i e -> (i, i)
forall (a :: * -> * -> *) e i.
(IArray a e, Ix i) =>
a i e -> (i, i)
Array.bounds UArray i e
arr) i
Index (UArray i e)
i
then e -> f e
f (UArray i e
arr UArray i e -> i -> e
forall (a :: * -> * -> *) e i.
(IArray a e, Ix i) =>
a i e -> i -> e
Array.! i
Index (UArray i e)
i) f e -> (e -> UArray i e) -> f (UArray i e)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e
e -> UArray i e
arr UArray i e -> [(i, e)] -> UArray i e
forall (a :: * -> * -> *) e i.
(IArray a e, Ix i) =>
a i e -> [(i, e)] -> a i e
Array.// [(i
Index (UArray i e)
i,e
e)]
else UArray i e -> f (UArray i e)
forall r. r -> f r
point UArray i e
arr
{-# INLINE ix #-}
type instance IxValue (a0, a2) = a0
instance (a0 ~ a1) => Ixed (a0, a1) where
ix :: Index (a0, a1)
-> Optic' (IxKind (a0, a1)) NoIx (a0, a1) (IxValue (a0, a1))
ix Index (a0, a1)
i = AffineTraversalVL (a0, a1) (a0, a1) a1 a1
-> AffineTraversal (a0, a1) (a0, a1) a1 a1
forall s t a b.
AffineTraversalVL s t a b -> AffineTraversal s t a b
atraversalVL (AffineTraversalVL (a0, a1) (a0, a1) a1 a1
-> AffineTraversal (a0, a1) (a0, a1) a1 a1)
-> AffineTraversalVL (a0, a1) (a0, a1) a1 a1
-> AffineTraversal (a0, a1) (a0, a1) a1 a1
forall a b. (a -> b) -> a -> b
$ \forall r. r -> f r
point a1 -> f a1
f ~s :: (a0, a1)
s@(a0, a1) ->
case Index (a0, a1)
i of
Index (a0, a1)
0 -> (,a1
a1) (a1 -> (a1, a1)) -> f a1 -> f (a1, a1)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a1 -> f a1
f a1
a0
Index (a0, a1)
1 -> (a1
a0,) (a1 -> (a1, a1)) -> f a1 -> f (a1, a1)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a1 -> f a1
f a1
a1
Index (a0, a1)
_ -> (a0, a1) -> f (a0, a1)
forall r. r -> f r
point (a0, a1)
s
type instance IxValue (a0, a1, a2) = a0
instance (a0 ~ a1, a0 ~ a2) => Ixed (a0, a1, a2) where
ix :: Index (a0, a1, a2)
-> Optic'
(IxKind (a0, a1, a2)) NoIx (a0, a1, a2) (IxValue (a0, a1, a2))
ix Index (a0, a1, a2)
i = AffineTraversalVL (a0, a1, a2) (a0, a1, a2) a2 a2
-> AffineTraversal (a0, a1, a2) (a0, a1, a2) a2 a2
forall s t a b.
AffineTraversalVL s t a b -> AffineTraversal s t a b
atraversalVL (AffineTraversalVL (a0, a1, a2) (a0, a1, a2) a2 a2
-> AffineTraversal (a0, a1, a2) (a0, a1, a2) a2 a2)
-> AffineTraversalVL (a0, a1, a2) (a0, a1, a2) a2 a2
-> AffineTraversal (a0, a1, a2) (a0, a1, a2) a2 a2
forall a b. (a -> b) -> a -> b
$ \forall r. r -> f r
point a2 -> f a2
f ~s :: (a0, a1, a2)
s@(a0, a1, a2) ->
case Index (a0, a1, a2)
i of
Index (a0, a1, a2)
0 -> (,a2
a1,a2
a2) (a2 -> (a2, a2, a2)) -> f a2 -> f (a2, a2, a2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a2 -> f a2
f a2
a0
Index (a0, a1, a2)
1 -> (a2
a0,,a2
a2) (a2 -> (a2, a2, a2)) -> f a2 -> f (a2, a2, a2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a2 -> f a2
f a2
a1
Index (a0, a1, a2)
2 -> (a2
a0,a2
a1,) (a2 -> (a2, a2, a2)) -> f a2 -> f (a2, a2, a2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a2 -> f a2
f a2
a2
Index (a0, a1, a2)
_ -> (a0, a1, a2) -> f (a0, a1, a2)
forall r. r -> f r
point (a0, a1, a2)
s
type instance IxValue (a0, a1, a2, a3) = a0
instance (a0 ~ a1, a0 ~ a2, a0 ~ a3) => Ixed (a0, a1, a2, a3) where
ix :: Index (a0, a1, a2, a3)
-> Optic'
(IxKind (a0, a1, a2, a3))
NoIx
(a0, a1, a2, a3)
(IxValue (a0, a1, a2, a3))
ix Index (a0, a1, a2, a3)
i = AffineTraversalVL (a0, a1, a2, a3) (a0, a1, a2, a3) a3 a3
-> AffineTraversal (a0, a1, a2, a3) (a0, a1, a2, a3) a3 a3
forall s t a b.
AffineTraversalVL s t a b -> AffineTraversal s t a b
atraversalVL (AffineTraversalVL (a0, a1, a2, a3) (a0, a1, a2, a3) a3 a3
-> AffineTraversal (a0, a1, a2, a3) (a0, a1, a2, a3) a3 a3)
-> AffineTraversalVL (a0, a1, a2, a3) (a0, a1, a2, a3) a3 a3
-> AffineTraversal (a0, a1, a2, a3) (a0, a1, a2, a3) a3 a3
forall a b. (a -> b) -> a -> b
$ \forall r. r -> f r
point a3 -> f a3
f ~s :: (a0, a1, a2, a3)
s@(a0, a1, a2, a3) ->
case Index (a0, a1, a2, a3)
i of
Index (a0, a1, a2, a3)
0 -> (,a3
a1,a3
a2,a3
a3) (a3 -> (a3, a3, a3, a3)) -> f a3 -> f (a3, a3, a3, a3)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a3 -> f a3
f a3
a0
Index (a0, a1, a2, a3)
1 -> (a3
a0,,a3
a2,a3
a3) (a3 -> (a3, a3, a3, a3)) -> f a3 -> f (a3, a3, a3, a3)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a3 -> f a3
f a3
a1
Index (a0, a1, a2, a3)
2 -> (a3
a0,a3
a1,,a3
a3) (a3 -> (a3, a3, a3, a3)) -> f a3 -> f (a3, a3, a3, a3)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a3 -> f a3
f a3
a2
Index (a0, a1, a2, a3)
3 -> (a3
a0,a3
a1,a3
a2,) (a3 -> (a3, a3, a3, a3)) -> f a3 -> f (a3, a3, a3, a3)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a3 -> f a3
f a3
a3
Index (a0, a1, a2, a3)
_ -> (a0, a1, a2, a3) -> f (a0, a1, a2, a3)
forall r. r -> f r
point (a0, a1, a2, a3)
s
type instance IxValue (a0, a1, a2, a3, a4) = a0
instance (a0 ~ a1, a0 ~ a2, a0 ~ a3, a0 ~ a4) => Ixed (a0, a1, a2, a3, a4) where
ix :: Index (a0, a1, a2, a3, a4)
-> Optic'
(IxKind (a0, a1, a2, a3, a4))
NoIx
(a0, a1, a2, a3, a4)
(IxValue (a0, a1, a2, a3, a4))
ix Index (a0, a1, a2, a3, a4)
i = AffineTraversalVL (a0, a1, a2, a3, a4) (a0, a1, a2, a3, a4) a4 a4
-> AffineTraversal (a0, a1, a2, a3, a4) (a0, a1, a2, a3, a4) a4 a4
forall s t a b.
AffineTraversalVL s t a b -> AffineTraversal s t a b
atraversalVL (AffineTraversalVL (a0, a1, a2, a3, a4) (a0, a1, a2, a3, a4) a4 a4
-> AffineTraversal (a0, a1, a2, a3, a4) (a0, a1, a2, a3, a4) a4 a4)
-> AffineTraversalVL
(a0, a1, a2, a3, a4) (a0, a1, a2, a3, a4) a4 a4
-> AffineTraversal (a0, a1, a2, a3, a4) (a0, a1, a2, a3, a4) a4 a4
forall a b. (a -> b) -> a -> b
$ \forall r. r -> f r
point a4 -> f a4
f ~s :: (a0, a1, a2, a3, a4)
s@(a0, a1, a2, a3, a4) ->
case Index (a0, a1, a2, a3, a4)
i of
Index (a0, a1, a2, a3, a4)
0 -> (,a4
a1,a4
a2,a4
a3,a4
a4) (a4 -> (a4, a4, a4, a4, a4)) -> f a4 -> f (a4, a4, a4, a4, a4)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a4 -> f a4
f a4
a0
Index (a0, a1, a2, a3, a4)
1 -> (a4
a0,,a4
a2,a4
a3,a4
a4) (a4 -> (a4, a4, a4, a4, a4)) -> f a4 -> f (a4, a4, a4, a4, a4)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a4 -> f a4
f a4
a1
Index (a0, a1, a2, a3, a4)
2 -> (a4
a0,a4
a1,,a4
a3,a4
a4) (a4 -> (a4, a4, a4, a4, a4)) -> f a4 -> f (a4, a4, a4, a4, a4)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a4 -> f a4
f a4
a2
Index (a0, a1, a2, a3, a4)
3 -> (a4
a0,a4
a1,a4
a2,,a4
a4) (a4 -> (a4, a4, a4, a4, a4)) -> f a4 -> f (a4, a4, a4, a4, a4)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a4 -> f a4
f a4
a3
Index (a0, a1, a2, a3, a4)
4 -> (a4
a0,a4
a1,a4
a2,a4
a3,) (a4 -> (a4, a4, a4, a4, a4)) -> f a4 -> f (a4, a4, a4, a4, a4)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a4 -> f a4
f a4
a4
Index (a0, a1, a2, a3, a4)
_ -> (a0, a1, a2, a3, a4) -> f (a0, a1, a2, a3, a4)
forall r. r -> f r
point (a0, a1, a2, a3, a4)
s
type instance IxValue (a0, a1, a2, a3, a4, a5) = a0
instance
(a0 ~ a1, a0 ~ a2, a0 ~ a3, a0 ~ a4, a0 ~ a5
) => Ixed (a0, a1, a2, a3, a4, a5) where
ix :: Index (a0, a1, a2, a3, a4, a5)
-> Optic'
(IxKind (a0, a1, a2, a3, a4, a5))
NoIx
(a0, a1, a2, a3, a4, a5)
(IxValue (a0, a1, a2, a3, a4, a5))
ix Index (a0, a1, a2, a3, a4, a5)
i = AffineTraversalVL
(a0, a1, a2, a3, a4, a5) (a0, a1, a2, a3, a4, a5) a5 a5
-> AffineTraversal
(a0, a1, a2, a3, a4, a5) (a0, a1, a2, a3, a4, a5) a5 a5
forall s t a b.
AffineTraversalVL s t a b -> AffineTraversal s t a b
atraversalVL (AffineTraversalVL
(a0, a1, a2, a3, a4, a5) (a0, a1, a2, a3, a4, a5) a5 a5
-> AffineTraversal
(a0, a1, a2, a3, a4, a5) (a0, a1, a2, a3, a4, a5) a5 a5)
-> AffineTraversalVL
(a0, a1, a2, a3, a4, a5) (a0, a1, a2, a3, a4, a5) a5 a5
-> AffineTraversal
(a0, a1, a2, a3, a4, a5) (a0, a1, a2, a3, a4, a5) a5 a5
forall a b. (a -> b) -> a -> b
$ \forall r. r -> f r
point a5 -> f a5
f ~s :: (a0, a1, a2, a3, a4, a5)
s@(a0, a1, a2, a3, a4, a5) ->
case Index (a0, a1, a2, a3, a4, a5)
i of
Index (a0, a1, a2, a3, a4, a5)
0 -> (,a5
a1,a5
a2,a5
a3,a5
a4,a5
a5) (a5 -> (a5, a5, a5, a5, a5, a5))
-> f a5 -> f (a5, a5, a5, a5, a5, a5)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a5 -> f a5
f a5
a0
Index (a0, a1, a2, a3, a4, a5)
1 -> (a5
a0,,a5
a2,a5
a3,a5
a4,a5
a5) (a5 -> (a5, a5, a5, a5, a5, a5))
-> f a5 -> f (a5, a5, a5, a5, a5, a5)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a5 -> f a5
f a5
a1
Index (a0, a1, a2, a3, a4, a5)
2 -> (a5
a0,a5
a1,,a5
a3,a5
a4,a5
a5) (a5 -> (a5, a5, a5, a5, a5, a5))
-> f a5 -> f (a5, a5, a5, a5, a5, a5)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a5 -> f a5
f a5
a2
Index (a0, a1, a2, a3, a4, a5)
3 -> (a5
a0,a5
a1,a5
a2,,a5
a4,a5
a5) (a5 -> (a5, a5, a5, a5, a5, a5))
-> f a5 -> f (a5, a5, a5, a5, a5, a5)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a5 -> f a5
f a5
a3
Index (a0, a1, a2, a3, a4, a5)
4 -> (a5
a0,a5
a1,a5
a2,a5
a3,,a5
a5) (a5 -> (a5, a5, a5, a5, a5, a5))
-> f a5 -> f (a5, a5, a5, a5, a5, a5)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a5 -> f a5
f a5
a4
Index (a0, a1, a2, a3, a4, a5)
5 -> (a5
a0,a5
a1,a5
a2,a5
a3,a5
a4,) (a5 -> (a5, a5, a5, a5, a5, a5))
-> f a5 -> f (a5, a5, a5, a5, a5, a5)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a5 -> f a5
f a5
a5
Index (a0, a1, a2, a3, a4, a5)
_ -> (a0, a1, a2, a3, a4, a5) -> f (a0, a1, a2, a3, a4, a5)
forall r. r -> f r
point (a0, a1, a2, a3, a4, a5)
s
type instance IxValue (a0, a1, a2, a3, a4, a5, a6) = a0
instance
(a0 ~ a1, a0 ~ a2, a0 ~ a3, a0 ~ a4, a0 ~ a5, a0 ~ a6
) => Ixed (a0, a1, a2, a3, a4, a5, a6) where
ix :: Index (a0, a1, a2, a3, a4, a5, a6)
-> Optic'
(IxKind (a0, a1, a2, a3, a4, a5, a6))
NoIx
(a0, a1, a2, a3, a4, a5, a6)
(IxValue (a0, a1, a2, a3, a4, a5, a6))
ix Index (a0, a1, a2, a3, a4, a5, a6)
i = AffineTraversalVL
(a0, a1, a2, a3, a4, a5, a6) (a0, a1, a2, a3, a4, a5, a6) a6 a6
-> AffineTraversal
(a0, a1, a2, a3, a4, a5, a6) (a0, a1, a2, a3, a4, a5, a6) a6 a6
forall s t a b.
AffineTraversalVL s t a b -> AffineTraversal s t a b
atraversalVL (AffineTraversalVL
(a0, a1, a2, a3, a4, a5, a6) (a0, a1, a2, a3, a4, a5, a6) a6 a6
-> AffineTraversal
(a0, a1, a2, a3, a4, a5, a6) (a0, a1, a2, a3, a4, a5, a6) a6 a6)
-> AffineTraversalVL
(a0, a1, a2, a3, a4, a5, a6) (a0, a1, a2, a3, a4, a5, a6) a6 a6
-> AffineTraversal
(a0, a1, a2, a3, a4, a5, a6) (a0, a1, a2, a3, a4, a5, a6) a6 a6
forall a b. (a -> b) -> a -> b
$ \forall r. r -> f r
point a6 -> f a6
f ~s :: (a0, a1, a2, a3, a4, a5, a6)
s@(a0, a1, a2, a3, a4, a5, a6) ->
case Index (a0, a1, a2, a3, a4, a5, a6)
i of
Index (a0, a1, a2, a3, a4, a5, a6)
0 -> (,a6
a1,a6
a2,a6
a3,a6
a4,a6
a5,a6
a6) (a6 -> (a6, a6, a6, a6, a6, a6, a6))
-> f a6 -> f (a6, a6, a6, a6, a6, a6, a6)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a6 -> f a6
f a6
a0
Index (a0, a1, a2, a3, a4, a5, a6)
1 -> (a6
a0,,a6
a2,a6
a3,a6
a4,a6
a5,a6
a6) (a6 -> (a6, a6, a6, a6, a6, a6, a6))
-> f a6 -> f (a6, a6, a6, a6, a6, a6, a6)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a6 -> f a6
f a6
a1
Index (a0, a1, a2, a3, a4, a5, a6)
2 -> (a6
a0,a6
a1,,a6
a3,a6
a4,a6
a5,a6
a6) (a6 -> (a6, a6, a6, a6, a6, a6, a6))
-> f a6 -> f (a6, a6, a6, a6, a6, a6, a6)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a6 -> f a6
f a6
a2
Index (a0, a1, a2, a3, a4, a5, a6)
3 -> (a6
a0,a6
a1,a6
a2,,a6
a4,a6
a5,a6
a6) (a6 -> (a6, a6, a6, a6, a6, a6, a6))
-> f a6 -> f (a6, a6, a6, a6, a6, a6, a6)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a6 -> f a6
f a6
a3
Index (a0, a1, a2, a3, a4, a5, a6)
4 -> (a6
a0,a6
a1,a6
a2,a6
a3,,a6
a5,a6
a6) (a6 -> (a6, a6, a6, a6, a6, a6, a6))
-> f a6 -> f (a6, a6, a6, a6, a6, a6, a6)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a6 -> f a6
f a6
a4
Index (a0, a1, a2, a3, a4, a5, a6)
5 -> (a6
a0,a6
a1,a6
a2,a6
a3,a6
a4,,a6
a6) (a6 -> (a6, a6, a6, a6, a6, a6, a6))
-> f a6 -> f (a6, a6, a6, a6, a6, a6, a6)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a6 -> f a6
f a6
a5
Index (a0, a1, a2, a3, a4, a5, a6)
6 -> (a6
a0,a6
a1,a6
a2,a6
a3,a6
a4,a6
a5,) (a6 -> (a6, a6, a6, a6, a6, a6, a6))
-> f a6 -> f (a6, a6, a6, a6, a6, a6, a6)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a6 -> f a6
f a6
a6
Index (a0, a1, a2, a3, a4, a5, a6)
_ -> (a0, a1, a2, a3, a4, a5, a6) -> f (a0, a1, a2, a3, a4, a5, a6)
forall r. r -> f r
point (a0, a1, a2, a3, a4, a5, a6)
s
type instance IxValue (a0, a1, a2, a3, a4, a5, a6, a7) = a0
instance
(a0 ~ a1, a0 ~ a2, a0 ~ a3, a0 ~ a4, a0 ~ a5, a0 ~ a6, a0 ~ a7
) => Ixed (a0, a1, a2, a3, a4, a5, a6, a7) where
ix :: Index (a0, a1, a2, a3, a4, a5, a6, a7)
-> Optic'
(IxKind (a0, a1, a2, a3, a4, a5, a6, a7))
NoIx
(a0, a1, a2, a3, a4, a5, a6, a7)
(IxValue (a0, a1, a2, a3, a4, a5, a6, a7))
ix Index (a0, a1, a2, a3, a4, a5, a6, a7)
i = AffineTraversalVL
(a0, a1, a2, a3, a4, a5, a6, a7)
(a0, a1, a2, a3, a4, a5, a6, a7)
a7
a7
-> AffineTraversal
(a0, a1, a2, a3, a4, a5, a6, a7)
(a0, a1, a2, a3, a4, a5, a6, a7)
a7
a7
forall s t a b.
AffineTraversalVL s t a b -> AffineTraversal s t a b
atraversalVL (AffineTraversalVL
(a0, a1, a2, a3, a4, a5, a6, a7)
(a0, a1, a2, a3, a4, a5, a6, a7)
a7
a7
-> AffineTraversal
(a0, a1, a2, a3, a4, a5, a6, a7)
(a0, a1, a2, a3, a4, a5, a6, a7)
a7
a7)
-> AffineTraversalVL
(a0, a1, a2, a3, a4, a5, a6, a7)
(a0, a1, a2, a3, a4, a5, a6, a7)
a7
a7
-> AffineTraversal
(a0, a1, a2, a3, a4, a5, a6, a7)
(a0, a1, a2, a3, a4, a5, a6, a7)
a7
a7
forall a b. (a -> b) -> a -> b
$ \forall r. r -> f r
point a7 -> f a7
f ~s :: (a0, a1, a2, a3, a4, a5, a6, a7)
s@(a0, a1, a2, a3, a4, a5, a6, a7) ->
case Index (a0, a1, a2, a3, a4, a5, a6, a7)
i of
Index (a0, a1, a2, a3, a4, a5, a6, a7)
0 -> (,a7
a1,a7
a2,a7
a3,a7
a4,a7
a5,a7
a6,a7
a7) (a7 -> (a7, a7, a7, a7, a7, a7, a7, a7))
-> f a7 -> f (a7, a7, a7, a7, a7, a7, a7, a7)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a7 -> f a7
f a7
a0
Index (a0, a1, a2, a3, a4, a5, a6, a7)
1 -> (a7
a0,,a7
a2,a7
a3,a7
a4,a7
a5,a7
a6,a7
a7) (a7 -> (a7, a7, a7, a7, a7, a7, a7, a7))
-> f a7 -> f (a7, a7, a7, a7, a7, a7, a7, a7)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a7 -> f a7
f a7
a1
Index (a0, a1, a2, a3, a4, a5, a6, a7)
2 -> (a7
a0,a7
a1,,a7
a3,a7
a4,a7
a5,a7
a6,a7
a7) (a7 -> (a7, a7, a7, a7, a7, a7, a7, a7))
-> f a7 -> f (a7, a7, a7, a7, a7, a7, a7, a7)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a7 -> f a7
f a7
a2
Index (a0, a1, a2, a3, a4, a5, a6, a7)
3 -> (a7
a0,a7
a1,a7
a2,,a7
a4,a7
a5,a7
a6,a7
a7) (a7 -> (a7, a7, a7, a7, a7, a7, a7, a7))
-> f a7 -> f (a7, a7, a7, a7, a7, a7, a7, a7)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a7 -> f a7
f a7
a3
Index (a0, a1, a2, a3, a4, a5, a6, a7)
4 -> (a7
a0,a7
a1,a7
a2,a7
a3,,a7
a5,a7
a6,a7
a7) (a7 -> (a7, a7, a7, a7, a7, a7, a7, a7))
-> f a7 -> f (a7, a7, a7, a7, a7, a7, a7, a7)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a7 -> f a7
f a7
a4
Index (a0, a1, a2, a3, a4, a5, a6, a7)
5 -> (a7
a0,a7
a1,a7
a2,a7
a3,a7
a4,,a7
a6,a7
a7) (a7 -> (a7, a7, a7, a7, a7, a7, a7, a7))
-> f a7 -> f (a7, a7, a7, a7, a7, a7, a7, a7)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a7 -> f a7
f a7
a5
Index (a0, a1, a2, a3, a4, a5, a6, a7)
6 -> (a7
a0,a7
a1,a7
a2,a7
a3,a7
a4,a7
a5,,a7
a7) (a7 -> (a7, a7, a7, a7, a7, a7, a7, a7))
-> f a7 -> f (a7, a7, a7, a7, a7, a7, a7, a7)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a7 -> f a7
f a7
a6
Index (a0, a1, a2, a3, a4, a5, a6, a7)
7 -> (a7
a0,a7
a1,a7
a2,a7
a3,a7
a4,a7
a5,a7
a6,) (a7 -> (a7, a7, a7, a7, a7, a7, a7, a7))
-> f a7 -> f (a7, a7, a7, a7, a7, a7, a7, a7)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a7 -> f a7
f a7
a7
Index (a0, a1, a2, a3, a4, a5, a6, a7)
_ -> (a0, a1, a2, a3, a4, a5, a6, a7)
-> f (a0, a1, a2, a3, a4, a5, a6, a7)
forall r. r -> f r
point (a0, a1, a2, a3, a4, a5, a6, a7)
s
type instance IxValue (a0, a1, a2, a3, a4, a5, a6, a7, a8) = a0
instance
(a0 ~ a1, a0 ~ a2, a0 ~ a3, a0 ~ a4, a0 ~ a5, a0 ~ a6, a0 ~ a7, a0 ~ a8
) => Ixed (a0, a1, a2, a3, a4, a5, a6, a7, a8) where
ix :: Index (a0, a1, a2, a3, a4, a5, a6, a7, a8)
-> Optic'
(IxKind (a0, a1, a2, a3, a4, a5, a6, a7, a8))
NoIx
(a0, a1, a2, a3, a4, a5, a6, a7, a8)
(IxValue (a0, a1, a2, a3, a4, a5, a6, a7, a8))
ix Index (a0, a1, a2, a3, a4, a5, a6, a7, a8)
i = AffineTraversalVL
(a0, a1, a2, a3, a4, a5, a6, a7, a8)
(a0, a1, a2, a3, a4, a5, a6, a7, a8)
a8
a8
-> AffineTraversal
(a0, a1, a2, a3, a4, a5, a6, a7, a8)
(a0, a1, a2, a3, a4, a5, a6, a7, a8)
a8
a8
forall s t a b.
AffineTraversalVL s t a b -> AffineTraversal s t a b
atraversalVL (AffineTraversalVL
(a0, a1, a2, a3, a4, a5, a6, a7, a8)
(a0, a1, a2, a3, a4, a5, a6, a7, a8)
a8
a8
-> AffineTraversal
(a0, a1, a2, a3, a4, a5, a6, a7, a8)
(a0, a1, a2, a3, a4, a5, a6, a7, a8)
a8
a8)
-> AffineTraversalVL
(a0, a1, a2, a3, a4, a5, a6, a7, a8)
(a0, a1, a2, a3, a4, a5, a6, a7, a8)
a8
a8
-> AffineTraversal
(a0, a1, a2, a3, a4, a5, a6, a7, a8)
(a0, a1, a2, a3, a4, a5, a6, a7, a8)
a8
a8
forall a b. (a -> b) -> a -> b
$ \forall r. r -> f r
point a8 -> f a8
f ~s :: (a0, a1, a2, a3, a4, a5, a6, a7, a8)
s@(a0, a1, a2, a3, a4, a5, a6, a7, a8) ->
case Index (a0, a1, a2, a3, a4, a5, a6, a7, a8)
i of
Index (a0, a1, a2, a3, a4, a5, a6, a7, a8)
0 -> (,a8
a1,a8
a2,a8
a3,a8
a4,a8
a5,a8
a6,a8
a7,a8
a8) (a8 -> (a8, a8, a8, a8, a8, a8, a8, a8, a8))
-> f a8 -> f (a8, a8, a8, a8, a8, a8, a8, a8, a8)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a8 -> f a8
f a8
a0
Index (a0, a1, a2, a3, a4, a5, a6, a7, a8)
1 -> (a8
a0,,a8
a2,a8
a3,a8
a4,a8
a5,a8
a6,a8
a7,a8
a8) (a8 -> (a8, a8, a8, a8, a8, a8, a8, a8, a8))
-> f a8 -> f (a8, a8, a8, a8, a8, a8, a8, a8, a8)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a8 -> f a8
f a8
a1
Index (a0, a1, a2, a3, a4, a5, a6, a7, a8)
2 -> (a8
a0,a8
a1,,a8
a3,a8
a4,a8
a5,a8
a6,a8
a7,a8
a8) (a8 -> (a8, a8, a8, a8, a8, a8, a8, a8, a8))
-> f a8 -> f (a8, a8, a8, a8, a8, a8, a8, a8, a8)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a8 -> f a8
f a8
a2
Index (a0, a1, a2, a3, a4, a5, a6, a7, a8)
3 -> (a8
a0,a8
a1,a8
a2,,a8
a4,a8
a5,a8
a6,a8
a7,a8
a8) (a8 -> (a8, a8, a8, a8, a8, a8, a8, a8, a8))
-> f a8 -> f (a8, a8, a8, a8, a8, a8, a8, a8, a8)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a8 -> f a8
f a8
a3
Index (a0, a1, a2, a3, a4, a5, a6, a7, a8)
4 -> (a8
a0,a8
a1,a8
a2,a8
a3,,a8
a5,a8
a6,a8
a7,a8
a8) (a8 -> (a8, a8, a8, a8, a8, a8, a8, a8, a8))
-> f a8 -> f (a8, a8, a8, a8, a8, a8, a8, a8, a8)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a8 -> f a8
f a8
a4
Index (a0, a1, a2, a3, a4, a5, a6, a7, a8)
5 -> (a8
a0,a8
a1,a8
a2,a8
a3,a8
a4,,a8
a6,a8
a7,a8
a8) (a8 -> (a8, a8, a8, a8, a8, a8, a8, a8, a8))
-> f a8 -> f (a8, a8, a8, a8, a8, a8, a8, a8, a8)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a8 -> f a8
f a8
a5
Index (a0, a1, a2, a3, a4, a5, a6, a7, a8)
6 -> (a8
a0,a8
a1,a8
a2,a8
a3,a8
a4,a8
a5,,a8
a7,a8
a8) (a8 -> (a8, a8, a8, a8, a8, a8, a8, a8, a8))
-> f a8 -> f (a8, a8, a8, a8, a8, a8, a8, a8, a8)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a8 -> f a8
f a8
a6
Index (a0, a1, a2, a3, a4, a5, a6, a7, a8)
7 -> (a8
a0,a8
a1,a8
a2,a8
a3,a8
a4,a8
a5,a8
a6,,a8
a8) (a8 -> (a8, a8, a8, a8, a8, a8, a8, a8, a8))
-> f a8 -> f (a8, a8, a8, a8, a8, a8, a8, a8, a8)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a8 -> f a8
f a8
a7
Index (a0, a1, a2, a3, a4, a5, a6, a7, a8)
8 -> (a8
a0,a8
a1,a8
a2,a8
a3,a8
a4,a8
a5,a8
a6,a8
a7,) (a8 -> (a8, a8, a8, a8, a8, a8, a8, a8, a8))
-> f a8 -> f (a8, a8, a8, a8, a8, a8, a8, a8, a8)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a8 -> f a8
f a8
a8
Index (a0, a1, a2, a3, a4, a5, a6, a7, a8)
_ -> (a0, a1, a2, a3, a4, a5, a6, a7, a8)
-> f (a0, a1, a2, a3, a4, a5, a6, a7, a8)
forall r. r -> f r
point (a0, a1, a2, a3, a4, a5, a6, a7, a8)
s
class (Ixed m, IxKind m ~ An_AffineTraversal) => At m where
at :: Index m -> Lens' m (Maybe (IxValue m))
at' :: At m => Index m -> Lens' m (Maybe (IxValue m))
at' :: Index m -> Lens' m (Maybe (IxValue m))
at' Index m
k = Index m -> Lens' m (Maybe (IxValue m))
forall m. At m => Index m -> Lens' m (Maybe (IxValue m))
at Index m
k Lens' m (Maybe (IxValue m))
-> Optic
An_Iso
NoIx
(Maybe (IxValue m))
(Maybe (IxValue m))
(Maybe (IxValue m))
(Maybe (IxValue m))
-> Lens' m (Maybe (IxValue m))
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% (Maybe (IxValue m) -> Maybe (IxValue m))
-> (Maybe (IxValue m) -> Maybe (IxValue m))
-> Optic
An_Iso
NoIx
(Maybe (IxValue m))
(Maybe (IxValue m))
(Maybe (IxValue m))
(Maybe (IxValue m))
forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso Maybe (IxValue m) -> Maybe (IxValue m)
forall a. Maybe a -> Maybe a
f Maybe (IxValue m) -> Maybe (IxValue m)
forall a. Maybe a -> Maybe a
f
where
f :: Maybe a -> Maybe a
f = \case
Just !a
x -> a -> Maybe a
forall a. a -> Maybe a
Just a
x
Maybe a
Nothing -> Maybe a
forall a. Maybe a
Nothing
{-# INLINE at' #-}
sans :: At m => Index m -> m -> m
sans :: Index m -> m -> m
sans Index m
k = Optic A_Lens NoIx m m (Maybe (IxValue m)) (Maybe (IxValue m))
-> Maybe (IxValue m) -> m -> m
forall k (is :: IxList) s t a b.
Is k A_Setter =>
Optic k is s t a b -> b -> s -> t
set (Index m
-> Optic A_Lens NoIx m m (Maybe (IxValue m)) (Maybe (IxValue m))
forall m. At m => Index m -> Lens' m (Maybe (IxValue m))
at Index m
k) Maybe (IxValue m)
forall a. Maybe a
Nothing
{-# INLINE sans #-}
instance At (Maybe a) where
at :: Index (Maybe a) -> Lens' (Maybe a) (Maybe (IxValue (Maybe a)))
at () = LensVL (Maybe a) (Maybe a) (Maybe a) (Maybe a)
-> Lens (Maybe a) (Maybe a) (Maybe a) (Maybe a)
forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a. a -> a
LensVL (Maybe a) (Maybe a) (Maybe a) (Maybe a)
id
{-# INLINE at #-}
instance At (IntMap a) where
at :: Index (IntMap a) -> Lens' (IntMap a) (Maybe (IxValue (IntMap a)))
at Index (IntMap a)
k = LensVL (IntMap a) (IntMap a) (Maybe a) (Maybe a)
-> Lens (IntMap a) (IntMap a) (Maybe a) (Maybe a)
forall s t a b. LensVL s t a b -> Lens s t a b
lensVL (LensVL (IntMap a) (IntMap a) (Maybe a) (Maybe a)
-> Lens (IntMap a) (IntMap a) (Maybe a) (Maybe a))
-> LensVL (IntMap a) (IntMap a) (Maybe a) (Maybe a)
-> Lens (IntMap a) (IntMap a) (Maybe a) (Maybe a)
forall a b. (a -> b) -> a -> b
$ \Maybe a -> f (Maybe a)
f -> (Maybe a -> f (Maybe a)) -> Key -> IntMap a -> f (IntMap a)
forall (f :: * -> *) a.
Functor f =>
(Maybe a -> f (Maybe a)) -> Key -> IntMap a -> f (IntMap a)
IntMap.alterF Maybe a -> f (Maybe a)
f Key
Index (IntMap a)
k
{-# INLINE at #-}
instance Ord k => At (Map k a) where
at :: Index (Map k a) -> Lens' (Map k a) (Maybe (IxValue (Map k a)))
at Index (Map k a)
k = LensVL (Map k a) (Map k a) (Maybe a) (Maybe a)
-> Lens (Map k a) (Map k a) (Maybe a) (Maybe a)
forall s t a b. LensVL s t a b -> Lens s t a b
lensVL (LensVL (Map k a) (Map k a) (Maybe a) (Maybe a)
-> Lens (Map k a) (Map k a) (Maybe a) (Maybe a))
-> LensVL (Map k a) (Map k a) (Maybe a) (Maybe a)
-> Lens (Map k a) (Map k a) (Maybe a) (Maybe a)
forall a b. (a -> b) -> a -> b
$ \Maybe a -> f (Maybe a)
f -> (Maybe a -> f (Maybe a)) -> k -> Map k a -> f (Map k a)
forall (f :: * -> *) k a.
(Functor f, Ord k) =>
(Maybe a -> f (Maybe a)) -> k -> Map k a -> f (Map k a)
Map.alterF Maybe a -> f (Maybe a)
f k
Index (Map k a)
k
{-# INLINE at #-}
instance At IntSet where
at :: Index IntSet -> Lens' IntSet (Maybe (IxValue IntSet))
at Index IntSet
k = LensVL IntSet IntSet (Maybe ()) (Maybe ())
-> Lens IntSet IntSet (Maybe ()) (Maybe ())
forall s t a b. LensVL s t a b -> Lens s t a b
lensVL (LensVL IntSet IntSet (Maybe ()) (Maybe ())
-> Lens IntSet IntSet (Maybe ()) (Maybe ()))
-> LensVL IntSet IntSet (Maybe ()) (Maybe ())
-> Lens IntSet IntSet (Maybe ()) (Maybe ())
forall a b. (a -> b) -> a -> b
$ \Maybe () -> f (Maybe ())
f IntSet
m ->
let mv :: Maybe ()
mv = if Key -> IntSet -> Bool
IntSet.member Key
Index IntSet
k IntSet
m
then () -> Maybe ()
forall a. a -> Maybe a
Just ()
else Maybe ()
forall a. Maybe a
Nothing
in Maybe () -> f (Maybe ())
f Maybe ()
mv f (Maybe ()) -> (Maybe () -> IntSet) -> f IntSet
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \Maybe ()
r -> case Maybe ()
r of
Maybe ()
Nothing -> IntSet -> (() -> IntSet) -> Maybe () -> IntSet
forall b a. b -> (a -> b) -> Maybe a -> b
maybe IntSet
m (IntSet -> () -> IntSet
forall a b. a -> b -> a
const (Key -> IntSet -> IntSet
IntSet.delete Key
Index IntSet
k IntSet
m)) Maybe ()
mv
Just () -> Key -> IntSet -> IntSet
IntSet.insert Key
Index IntSet
k IntSet
m
{-# INLINE at #-}
instance Ord k => At (Set k) where
at :: Index (Set k) -> Lens' (Set k) (Maybe (IxValue (Set k)))
at Index (Set k)
k = LensVL (Set k) (Set k) (Maybe ()) (Maybe ())
-> Lens (Set k) (Set k) (Maybe ()) (Maybe ())
forall s t a b. LensVL s t a b -> Lens s t a b
lensVL (LensVL (Set k) (Set k) (Maybe ()) (Maybe ())
-> Lens (Set k) (Set k) (Maybe ()) (Maybe ()))
-> LensVL (Set k) (Set k) (Maybe ()) (Maybe ())
-> Lens (Set k) (Set k) (Maybe ()) (Maybe ())
forall a b. (a -> b) -> a -> b
$ \Maybe () -> f (Maybe ())
f Set k
m ->
let mv :: Maybe ()
mv = if k -> Set k -> Bool
forall a. Ord a => a -> Set a -> Bool
Set.member k
Index (Set k)
k Set k
m
then () -> Maybe ()
forall a. a -> Maybe a
Just ()
else Maybe ()
forall a. Maybe a
Nothing
in Maybe () -> f (Maybe ())
f Maybe ()
mv f (Maybe ()) -> (Maybe () -> Set k) -> f (Set k)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \Maybe ()
r -> case Maybe ()
r of
Maybe ()
Nothing -> Set k -> (() -> Set k) -> Maybe () -> Set k
forall b a. b -> (a -> b) -> Maybe a -> b
maybe Set k
m (Set k -> () -> Set k
forall a b. a -> b -> a
const (k -> Set k -> Set k
forall a. Ord a => a -> Set a -> Set a
Set.delete k
Index (Set k)
k Set k
m)) Maybe ()
mv
Just () -> k -> Set k -> Set k
forall a. Ord a => a -> Set a -> Set a
Set.insert k
Index (Set k)
k Set k
m
{-# INLINE at #-}
ixListVL :: Int -> AffineTraversalVL' [a] a
ixListVL :: Key -> AffineTraversalVL' [a] a
ixListVL Key
k forall r. r -> f r
point a -> f a
f [a]
xs0 =
if Key
k Key -> Key -> Bool
forall a. Ord a => a -> a -> Bool
< Key
0
then [a] -> f [a]
forall r. r -> f r
point [a]
xs0
else let go :: [a] -> Key -> f [a]
go [] Key
_ = [a] -> f [a]
forall r. r -> f r
point []
go (a
a:[a]
as) Key
0 = a -> f a
f a
a f a -> (a -> [a]) -> f [a]
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> (a -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
as)
go (a
a:[a]
as) Key
i = (a
aa -> [a] -> [a]
forall a. a -> [a] -> [a]
:) ([a] -> [a]) -> f [a] -> f [a]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ([a] -> Key -> f [a]
go [a]
as (Key -> f [a]) -> Key -> f [a]
forall a b. (a -> b) -> a -> b
$! Key
i Key -> Key -> Key
forall a. Num a => a -> a -> a
- Key
1)
in [a] -> Key -> f [a]
go [a]
xs0 Key
k
{-# INLINE ixListVL #-}