-- | -- Module: Optics.ReversedLens -- Description: A backwards 'Optics.Lens.Lens'. -- -- A 'ReversedLens' is a backwards 'Optics.Lens.Lens', i.e. a @'ReversedLens' s t -- a b@ is equivalent to a @'Optics.Lens.Lens' b a t s@. These are typically -- produced by calling 'Optics.Re.re' on a 'Optics.Lens.Lens'. They are -- distinguished from a 'Optics.Review.Review' so that @'Optics.Re.re' -- . 'Optics.Re.re'@ on a 'Optics.Lens.Lens' returns a 'Optics.Lens.Lens'. -- module Optics.ReversedLens ( -- * Formation ReversedLens , ReversedLens' -- * Introduction -- | -- -- There is no canonical introduction form for 'ReversedLens', but you can use -- 'Optics.Re.re' to construct one from a 'Optics.Lens.Lens': -- -- @ -- (\\ f g -> 'Optics.Re.re' ('Optics.Lens.lens' f g)) :: (b -> t) -> (b -> s -> a) -> 'ReversedLens' s t a b -- @ -- * Elimination -- | -- -- A 'ReversedLens' is a 'Optics.Review.Review', so you can specialise types to obtain: -- -- @ -- 'Optics.Review.review' :: 'ReversedLens'' s a -> a -> s -- @ -- -- There is no corresponding optic kind for a backwards -- 'Optics.Setter.Setter', but a reversed 'Optics.Setter.set' is definable -- using 'Optics.Re.re': -- -- @ -- 'Optics.Setter.set' . 'Optics.Re.re' :: 'ReversedLens' s t a b -> s -> b -> a -- @ -- * Computation -- | -- -- @ -- 'Optics.Review.review' $ 'Optics.Re.re' ('Optics.Lens.lens' f g) ≡ f -- 'Optics.Setter.set' . 'Optics.Re.re' $ 'Optics.Re.re' ('Optics.Lens.lens' f g) ≡ g -- @ -- * Subtyping , A_ReversedLens -- | <<diagrams/ReversedLens.png ReversedLens in the optics hierarchy>> ) where import Optics.Internal.Optic -- | Type synonym for a type-modifying reversed lens. type ReversedLens s t a b = Optic A_ReversedLens NoIx s t a b -- | Type synonym for a type-preserving reversed lens. type ReversedLens' t b = Optic' A_ReversedLens NoIx t b