{-# LANGUAGE CPP #-}
module Optics.Empty.Core
( AsEmpty(..)
, pattern Empty
) where
import Control.Applicative (ZipList(..))
import Data.Maybe (isNothing)
import Data.Monoid (Any (..), All (..), Product (..), Sum (..), Last (..), First (..), Dual (..))
import Data.Set (Set)
import qualified Data.Set as Set
import Data.IntMap (IntMap)
import qualified Data.IntMap as IntMap
import Data.IntSet (IntSet)
import qualified Data.IntSet as IntSet
import Data.Map (Map)
import qualified Data.Map as Map
import qualified Data.Sequence as Seq
import Data.Profunctor.Indexed
import Data.Maybe.Optics
import Optics.AffineTraversal
import Optics.Fold
import Optics.Iso
import Optics.Optic
import Optics.Prism
import Optics.Review
#if !defined(mingw32_HOST_OS) && !defined(ghcjs_HOST_OS)
import GHC.Event (Event)
#endif
class AsEmpty a where
_Empty :: Prism' a ()
default _Empty :: (Monoid a, Eq a) => Prism' a ()
_Empty = forall a. Eq a => a -> Prism' a ()
only forall a. Monoid a => a
mempty
{-# INLINE _Empty #-}
pattern Empty :: forall a. AsEmpty a => a
pattern $bEmpty :: forall a. AsEmpty a => a
$mEmpty :: forall {r} {a}. AsEmpty a => a -> ((# #) -> r) -> ((# #) -> r) -> r
Empty <- (has _Empty -> True) where
Empty = forall k (is :: IxList) t b.
Is k A_Review =>
Optic' k is t b -> b -> t
review forall a. AsEmpty a => Prism' a ()
_Empty ()
instance AsEmpty Ordering
instance AsEmpty ()
instance AsEmpty Any
instance AsEmpty All
#if !defined(mingw32_HOST_OS) && !defined(ghcjs_HOST_OS)
instance AsEmpty Event
#endif
instance (Eq a, Num a) => AsEmpty (Product a)
instance (Eq a, Num a) => AsEmpty (Sum a)
instance AsEmpty (Maybe a) where
_Empty :: Prism' (Maybe a) ()
_Empty = forall a. Prism' (Maybe a) ()
_Nothing
{-# INLINE _Empty #-}
instance AsEmpty (Last a) where
_Empty :: Prism' (Last a) ()
_Empty = forall a. a -> (a -> Bool) -> Prism' a ()
nearly (forall a. Maybe a -> Last a
Last forall a. Maybe a
Nothing) (forall a. Maybe a -> Bool
isNothing forall a b c. Coercible a b => (b -> c) -> (a -> b) -> a -> c
.# forall a. Last a -> Maybe a
getLast)
{-# INLINE _Empty #-}
instance AsEmpty (First a) where
_Empty :: Prism' (First a) ()
_Empty = forall a. a -> (a -> Bool) -> Prism' a ()
nearly (forall a. Maybe a -> First a
First forall a. Maybe a
Nothing) (forall a. Maybe a -> Bool
isNothing forall a b c. Coercible a b => (b -> c) -> (a -> b) -> a -> c
.# forall a. First a -> Maybe a
getFirst)
{-# INLINE _Empty #-}
instance AsEmpty a => AsEmpty (Dual a) where
_Empty :: Prism' (Dual a) ()
_Empty = forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso forall a. Dual a -> a
getDual forall a. a -> Dual a
Dual forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% forall a. AsEmpty a => Prism' a ()
_Empty
{-# INLINE _Empty #-}
instance (AsEmpty a, AsEmpty b) => AsEmpty (a, b) where
_Empty :: Prism' (a, b) ()
_Empty = forall b s a. (b -> s) -> (s -> Maybe a) -> Prism s s a b
prism'
(\() -> (forall k (is :: IxList) t b.
Is k A_Review =>
Optic' k is t b -> b -> t
review forall a. AsEmpty a => Prism' a ()
_Empty (), forall k (is :: IxList) t b.
Is k A_Review =>
Optic' k is t b -> b -> t
review forall a. AsEmpty a => Prism' a ()
_Empty ()))
(\(a
s, b
s') -> case forall k (is :: IxList) s t a b.
Is k An_AffineTraversal =>
Optic k is s t a b -> s -> Either t a
matching forall a. AsEmpty a => Prism' a ()
_Empty a
s of
Right () -> case forall k (is :: IxList) s t a b.
Is k An_AffineTraversal =>
Optic k is s t a b -> s -> Either t a
matching forall a. AsEmpty a => Prism' a ()
_Empty b
s' of
Right () -> forall a. a -> Maybe a
Just ()
Left b
_ -> forall a. Maybe a
Nothing
Left a
_ -> forall a. Maybe a
Nothing)
{-# INLINE _Empty #-}
instance (AsEmpty a, AsEmpty b, AsEmpty c) => AsEmpty (a, b, c) where
_Empty :: Prism' (a, b, c) ()
_Empty = forall b s a. (b -> s) -> (s -> Maybe a) -> Prism s s a b
prism'
(\() -> (forall k (is :: IxList) t b.
Is k A_Review =>
Optic' k is t b -> b -> t
review forall a. AsEmpty a => Prism' a ()
_Empty (), forall k (is :: IxList) t b.
Is k A_Review =>
Optic' k is t b -> b -> t
review forall a. AsEmpty a => Prism' a ()
_Empty (), forall k (is :: IxList) t b.
Is k A_Review =>
Optic' k is t b -> b -> t
review forall a. AsEmpty a => Prism' a ()
_Empty ()))
(\(a
s, b
s', c
s'') -> case forall k (is :: IxList) s t a b.
Is k An_AffineTraversal =>
Optic k is s t a b -> s -> Either t a
matching forall a. AsEmpty a => Prism' a ()
_Empty a
s of
Right () -> case forall k (is :: IxList) s t a b.
Is k An_AffineTraversal =>
Optic k is s t a b -> s -> Either t a
matching forall a. AsEmpty a => Prism' a ()
_Empty b
s' of
Right () -> case forall k (is :: IxList) s t a b.
Is k An_AffineTraversal =>
Optic k is s t a b -> s -> Either t a
matching forall a. AsEmpty a => Prism' a ()
_Empty c
s'' of
Right () -> forall a. a -> Maybe a
Just ()
Left c
_ -> forall a. Maybe a
Nothing
Left b
_ -> forall a. Maybe a
Nothing
Left a
_ -> forall a. Maybe a
Nothing)
{-# INLINE _Empty #-}
instance AsEmpty [a] where
_Empty :: Prism' [a] ()
_Empty = forall a. a -> (a -> Bool) -> Prism' a ()
nearly [] forall (t :: * -> *) a. Foldable t => t a -> Bool
Prelude.null
{-# INLINE _Empty #-}
instance AsEmpty (ZipList a) where
_Empty :: Prism' (ZipList a) ()
_Empty = forall a. a -> (a -> Bool) -> Prism' a ()
nearly (forall a. [a] -> ZipList a
ZipList []) (forall (t :: * -> *) a. Foldable t => t a -> Bool
Prelude.null forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. ZipList a -> [a]
getZipList)
{-# INLINE _Empty #-}
instance AsEmpty (Map k a) where
_Empty :: Prism' (Map k a) ()
_Empty = forall a. a -> (a -> Bool) -> Prism' a ()
nearly forall k a. Map k a
Map.empty forall k a. Map k a -> Bool
Map.null
{-# INLINE _Empty #-}
instance AsEmpty (IntMap a) where
_Empty :: Prism' (IntMap a) ()
_Empty = forall a. a -> (a -> Bool) -> Prism' a ()
nearly forall a. IntMap a
IntMap.empty forall a. IntMap a -> Bool
IntMap.null
{-# INLINE _Empty #-}
instance AsEmpty (Set a) where
_Empty :: Prism' (Set a) ()
_Empty = forall a. a -> (a -> Bool) -> Prism' a ()
nearly forall a. Set a
Set.empty forall a. Set a -> Bool
Set.null
{-# INLINE _Empty #-}
instance AsEmpty IntSet where
_Empty :: Prism' IntSet ()
_Empty = forall a. a -> (a -> Bool) -> Prism' a ()
nearly IntSet
IntSet.empty IntSet -> Bool
IntSet.null
{-# INLINE _Empty #-}
instance AsEmpty (Seq.Seq a) where
_Empty :: Prism' (Seq a) ()
_Empty = forall a. a -> (a -> Bool) -> Prism' a ()
nearly forall a. Seq a
Seq.empty forall a. Seq a -> Bool
Seq.null
{-# INLINE _Empty #-}