{-# LANGUAGE DataKinds #-}
module Data.Tuple.Optics
(
Field1(..)
, Field2(..)
, Field3(..)
, Field4(..)
, Field5(..)
, Field6(..)
, Field7(..)
, Field8(..)
, Field9(..)
, _1', _2', _3', _4', _5', _6', _7', _8', _9'
) where
import Data.Functor.Identity
import Data.Functor.Product
import GHC.Generics ((:*:)(..))
import Optics.Generic
import Optics.Lens
import Optics.Optic
class Field1 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_1 :: Lens s t a b
default _1 :: GPosition 1 s t a b => Lens s t a b
_1 = forall (n :: Nat) s t a b. GPosition n s t a b => Lens s t a b
gposition @1
{-# INLINE[1] _1 #-}
instance Field1 (Identity a) (Identity b) a b where
_1 :: Lens (Identity a) (Identity b) a b
_1 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \a -> f b
f (Identity a
a) -> forall a. a -> Identity a
Identity forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> f b
f a
a
{-# INLINE[1] _1 #-}
instance Field1 (Product f g a) (Product f' g a) (f a) (f' a) where
_1 :: Lens (Product f g a) (Product f' g a) (f a) (f' a)
_1 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \f a -> f (f' a)
f ~(Pair f a
a g a
b) -> forall a b c. (a -> b -> c) -> b -> a -> c
flip forall {k} (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair g a
b forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f a -> f (f' a)
f f a
a
{-# INLINE[1] _1 #-}
instance Field1 ((f :*: g) p) ((f' :*: g) p) (f p) (f' p) where
_1 :: Lens ((:*:) f g p) ((:*:) f' g p) (f p) (f' p)
_1 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \f p -> f (f' p)
f ~(f p
l :*: g p
r) -> (forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: g p
r) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f p -> f (f' p)
f f p
l
{-# INLINE[1] _1 #-}
instance Field1 (a,b) (a',b) a a' where
_1 :: Lens (a, b) (a', b) a a'
_1 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \a -> f a'
k ~(a
a,b
b) -> a -> f a'
k a
a forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b)
{-# INLINE[1] _1 #-}
instance Field1 (a,b,c) (a',b,c) a a' where
_1 :: Lens (a, b, c) (a', b, c) a a'
_1 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \a -> f a'
k ~(a
a,b
b,c
c) -> a -> f a'
k a
a forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c)
{-# INLINE[1] _1 #-}
instance Field1 (a,b,c,d) (a',b,c,d) a a' where
_1 :: Lens (a, b, c, d) (a', b, c, d) a a'
_1 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \a -> f a'
k ~(a
a,b
b,c
c,d
d) -> a -> f a'
k a
a forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d)
{-# INLINE[1] _1 #-}
instance Field1 (a,b,c,d,e) (a',b,c,d,e) a a' where
_1 :: Lens (a, b, c, d, e) (a', b, c, d, e) a a'
_1 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e) -> a -> f a'
k a
a forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e)
{-# INLINE[1] _1 #-}
instance Field1 (a,b,c,d,e,f) (a',b,c,d,e,f) a a' where
_1 :: Lens (a, b, c, d, e, f) (a', b, c, d, e, f) a a'
_1 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f) -> a -> f a'
k a
a forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f)
{-# INLINE[1] _1 #-}
instance Field1 (a,b,c,d,e,f,g) (a',b,c,d,e,f,g) a a' where
_1 :: Lens (a, b, c, d, e, f, g) (a', b, c, d, e, f, g) a a'
_1 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g) -> a -> f a'
k a
a forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f,g
g)
{-# INLINE[1] _1 #-}
instance Field1 (a,b,c,d,e,f,g,h) (a',b,c,d,e,f,g,h) a a' where
_1 :: Lens (a, b, c, d, e, f, g, h) (a', b, c, d, e, f, g, h) a a'
_1 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h) -> a -> f a'
k a
a forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f,g
g,h
h)
{-# INLINE[1] _1 #-}
instance Field1 (a,b,c,d,e,f,g,h,i) (a',b,c,d,e,f,g,h,i) a a' where
_1 :: Lens (a, b, c, d, e, f, g, h, i) (a', b, c, d, e, f, g, h, i) a a'
_1 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i) -> a -> f a'
k a
a forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i)
{-# INLINE[1] _1 #-}
class Field2 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_2 :: Lens s t a b
default _2 :: GPosition 2 s t a b => Lens s t a b
_2 = forall (n :: Nat) s t a b. GPosition n s t a b => Lens s t a b
gposition @2
{-# INLINE[1] _2 #-}
instance Field2 (Product f g a) (Product f g' a) (g a) (g' a) where
_2 :: Lens (Product f g a) (Product f g' a) (g a) (g' a)
_2 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \g a -> f (g' a)
f ~(Pair f a
a g a
b) -> forall {k} (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair f a
a forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> g a -> f (g' a)
f g a
b
{-# INLINE[1] _2 #-}
instance Field2 ((f :*: g) p) ((f :*: g') p) (g p) (g' p) where
_2 :: Lens ((:*:) f g p) ((:*:) f g' p) (g p) (g' p)
_2 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \g p -> f (g' p)
f ~(f p
l :*: g p
r) -> (f p
l forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*:) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> g p -> f (g' p)
f g p
r
{-# INLINE[1] _2 #-}
instance Field2 (a,b) (a,b') b b' where
_2 :: Lens (a, b) (a, b') b b'
_2 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \b -> f b'
k ~(a
a,b
b) -> b -> f b'
k b
b forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b')
{-# INLINE[1] _2 #-}
instance Field2 (a,b,c) (a,b',c) b b' where
_2 :: Lens (a, b, c) (a, b', c) b b'
_2 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \b -> f b'
k ~(a
a,b
b,c
c) -> b -> f b'
k b
b forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c)
{-# INLINE[1] _2 #-}
instance Field2 (a,b,c,d) (a,b',c,d) b b' where
_2 :: Lens (a, b, c, d) (a, b', c, d) b b'
_2 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \b -> f b'
k ~(a
a,b
b,c
c,d
d) -> b -> f b'
k b
b forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d)
{-# INLINE[1] _2 #-}
instance Field2 (a,b,c,d,e) (a,b',c,d,e) b b' where
_2 :: Lens (a, b, c, d, e) (a, b', c, d, e) b b'
_2 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e) -> b -> f b'
k b
b forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e)
{-# INLINE[1] _2 #-}
instance Field2 (a,b,c,d,e,f) (a,b',c,d,e,f) b b' where
_2 :: Lens (a, b, c, d, e, f) (a, b', c, d, e, f) b b'
_2 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f) -> b -> f b'
k b
b forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f)
{-# INLINE[1] _2 #-}
instance Field2 (a,b,c,d,e,f,g) (a,b',c,d,e,f,g) b b' where
_2 :: Lens (a, b, c, d, e, f, g) (a, b', c, d, e, f, g) b b'
_2 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g) -> b -> f b'
k b
b forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f,g
g)
{-# INLINE[1] _2 #-}
instance Field2 (a,b,c,d,e,f,g,h) (a,b',c,d,e,f,g,h) b b' where
_2 :: Lens (a, b, c, d, e, f, g, h) (a, b', c, d, e, f, g, h) b b'
_2 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h) -> b -> f b'
k b
b forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f,g
g,h
h)
{-# INLINE[1] _2 #-}
instance Field2 (a,b,c,d,e,f,g,h,i) (a,b',c,d,e,f,g,h,i) b b' where
_2 :: Lens (a, b, c, d, e, f, g, h, i) (a, b', c, d, e, f, g, h, i) b b'
_2 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i) -> b -> f b'
k b
b forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f,g
g,h
h,i
i)
{-# INLINE[1] _2 #-}
class Field3 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_3 :: Lens s t a b
default _3 :: GPosition 3 s t a b => Lens s t a b
_3 = forall (n :: Nat) s t a b. GPosition n s t a b => Lens s t a b
gposition @3
{-# INLINE[1] _3 #-}
instance Field3 (a,b,c) (a,b,c') c c' where
_3 :: Lens (a, b, c) (a, b, c') c c'
_3 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \c -> f c'
k ~(a
a,b
b,c
c) -> c -> f c'
k c
c forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c')
{-# INLINE[1] _3 #-}
instance Field3 (a,b,c,d) (a,b,c',d) c c' where
_3 :: Lens (a, b, c, d) (a, b, c', d) c c'
_3 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \c -> f c'
k ~(a
a,b
b,c
c,d
d) -> c -> f c'
k c
c forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d)
{-# INLINE[1] _3 #-}
instance Field3 (a,b,c,d,e) (a,b,c',d,e) c c' where
_3 :: Lens (a, b, c, d, e) (a, b, c', d, e) c c'
_3 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e) -> c -> f c'
k c
c forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e)
{-# INLINE[1] _3 #-}
instance Field3 (a,b,c,d,e,f) (a,b,c',d,e,f) c c' where
_3 :: Lens (a, b, c, d, e, f) (a, b, c', d, e, f) c c'
_3 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f) -> c -> f c'
k c
c forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f)
{-# INLINE[1] _3 #-}
instance Field3 (a,b,c,d,e,f,g) (a,b,c',d,e,f,g) c c' where
_3 :: Lens (a, b, c, d, e, f, g) (a, b, c', d, e, f, g) c c'
_3 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g) -> c -> f c'
k c
c forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f,g
g)
{-# INLINE[1] _3 #-}
instance Field3 (a,b,c,d,e,f,g,h) (a,b,c',d,e,f,g,h) c c' where
_3 :: Lens (a, b, c, d, e, f, g, h) (a, b, c', d, e, f, g, h) c c'
_3 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h) -> c -> f c'
k c
c forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f,g
g,h
h)
{-# INLINE[1] _3 #-}
instance Field3 (a,b,c,d,e,f,g,h,i) (a,b,c',d,e,f,g,h,i) c c' where
_3 :: Lens (a, b, c, d, e, f, g, h, i) (a, b, c', d, e, f, g, h, i) c c'
_3 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i) -> c -> f c'
k c
c forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f,g
g,h
h,i
i)
{-# INLINE[1] _3 #-}
class Field4 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_4 :: Lens s t a b
default _4 :: GPosition 4 s t a b => Lens s t a b
_4 = forall (n :: Nat) s t a b. GPosition n s t a b => Lens s t a b
gposition @4
{-# INLINE[1] _4 #-}
instance Field4 (a,b,c,d) (a,b,c,d') d d' where
_4 :: Lens (a, b, c, d) (a, b, c, d') d d'
_4 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \d -> f d'
k ~(a
a,b
b,c
c,d
d) -> d -> f d'
k d
d forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d')
{-# INLINE[1] _4 #-}
instance Field4 (a,b,c,d,e) (a,b,c,d',e) d d' where
_4 :: Lens (a, b, c, d, e) (a, b, c, d', e) d d'
_4 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e) -> d -> f d'
k d
d forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e)
{-# INLINE[1] _4 #-}
instance Field4 (a,b,c,d,e,f) (a,b,c,d',e,f) d d' where
_4 :: Lens (a, b, c, d, e, f) (a, b, c, d', e, f) d d'
_4 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f) -> d -> f d'
k d
d forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f)
{-# INLINE[1] _4 #-}
instance Field4 (a,b,c,d,e,f,g) (a,b,c,d',e,f,g) d d' where
_4 :: Lens (a, b, c, d, e, f, g) (a, b, c, d', e, f, g) d d'
_4 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g) -> d -> f d'
k d
d forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f,g
g)
{-# INLINE[1] _4 #-}
instance Field4 (a,b,c,d,e,f,g,h) (a,b,c,d',e,f,g,h) d d' where
_4 :: Lens (a, b, c, d, e, f, g, h) (a, b, c, d', e, f, g, h) d d'
_4 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h) -> d -> f d'
k d
d forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f,g
g,h
h)
{-# INLINE[1] _4 #-}
instance Field4 (a,b,c,d,e,f,g,h,i) (a,b,c,d',e,f,g,h,i) d d' where
_4 :: Lens (a, b, c, d, e, f, g, h, i) (a, b, c, d', e, f, g, h, i) d d'
_4 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i) -> d -> f d'
k d
d forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f,g
g,h
h,i
i)
{-# INLINE[1] _4 #-}
class Field5 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_5 :: Lens s t a b
default _5 :: GPosition 5 s t a b => Lens s t a b
_5 = forall (n :: Nat) s t a b. GPosition n s t a b => Lens s t a b
gposition @5
{-# INLINE[1] _5 #-}
instance Field5 (a,b,c,d,e) (a,b,c,d,e') e e' where
_5 :: Lens (a, b, c, d, e) (a, b, c, d, e') e e'
_5 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e) -> e -> f e'
k e
e forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e')
{-# INLINE[1] _5 #-}
instance Field5 (a,b,c,d,e,f) (a,b,c,d,e',f) e e' where
_5 :: Lens (a, b, c, d, e, f) (a, b, c, d, e', f) e e'
_5 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f) -> e -> f e'
k e
e forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f)
{-# INLINE[1] _5 #-}
instance Field5 (a,b,c,d,e,f,g) (a,b,c,d,e',f,g) e e' where
_5 :: Lens (a, b, c, d, e, f, g) (a, b, c, d, e', f, g) e e'
_5 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g) -> e -> f e'
k e
e forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f,g
g)
{-# INLINE[1] _5 #-}
instance Field5 (a,b,c,d,e,f,g,h) (a,b,c,d,e',f,g,h) e e' where
_5 :: Lens (a, b, c, d, e, f, g, h) (a, b, c, d, e', f, g, h) e e'
_5 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h) -> e -> f e'
k e
e forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f,g
g,h
h)
{-# INLINE[1] _5 #-}
instance Field5 (a,b,c,d,e,f,g,h,i) (a,b,c,d,e',f,g,h,i) e e' where
_5 :: Lens (a, b, c, d, e, f, g, h, i) (a, b, c, d, e', f, g, h, i) e e'
_5 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i) -> e -> f e'
k e
e forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f,g
g,h
h,i
i)
{-# INLINE[1] _5 #-}
class Field6 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_6 :: Lens s t a b
default _6 :: GPosition 6 s t a b => Lens s t a b
_6 = forall (n :: Nat) s t a b. GPosition n s t a b => Lens s t a b
gposition @6
{-# INLINE[1] _6 #-}
instance Field6 (a,b,c,d,e,f) (a,b,c,d,e,f') f f' where
_6 :: Lens (a, b, c, d, e, f) (a, b, c, d, e, f') f f'
_6 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f) -> f -> f f'
k f
f forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f')
{-# INLINE[1] _6 #-}
instance Field6 (a,b,c,d,e,f,g) (a,b,c,d,e,f',g) f f' where
_6 :: Lens (a, b, c, d, e, f, g) (a, b, c, d, e, f', g) f f'
_6 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g) -> f -> f f'
k f
f forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f',g
g)
{-# INLINE[1] _6 #-}
instance Field6 (a,b,c,d,e,f,g,h) (a,b,c,d,e,f',g,h) f f' where
_6 :: Lens (a, b, c, d, e, f, g, h) (a, b, c, d, e, f', g, h) f f'
_6 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h) -> f -> f f'
k f
f forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f',g
g,h
h)
{-# INLINE[1] _6 #-}
instance Field6 (a,b,c,d,e,f,g,h,i) (a,b,c,d,e,f',g,h,i) f f' where
_6 :: Lens (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f', g, h, i) f f'
_6 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i) -> f -> f f'
k f
f forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f',g
g,h
h,i
i)
{-# INLINE[1] _6 #-}
class Field7 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_7 :: Lens s t a b
default _7 :: GPosition 7 s t a b => Lens s t a b
_7 = forall (n :: Nat) s t a b. GPosition n s t a b => Lens s t a b
gposition @7
{-# INLINE[1] _7 #-}
instance Field7 (a,b,c,d,e,f,g) (a,b,c,d,e,f,g') g g' where
_7 :: Lens (a, b, c, d, e, f, g) (a, b, c, d, e, f, g') g g'
_7 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \g -> f g'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g) -> g -> f g'
k g
g forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \g'
g' -> (a
a,b
b,c
c,d
d,e
e,f
f,g'
g')
{-# INLINE[1] _7 #-}
instance Field7 (a,b,c,d,e,f,g,h) (a,b,c,d,e,f,g',h) g g' where
_7 :: Lens (a, b, c, d, e, f, g, h) (a, b, c, d, e, f, g', h) g g'
_7 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \g -> f g'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h) -> g -> f g'
k g
g forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \g'
g' -> (a
a,b
b,c
c,d
d,e
e,f
f,g'
g',h
h)
{-# INLINE[1] _7 #-}
instance Field7 (a,b,c,d,e,f,g,h,i) (a,b,c,d,e,f,g',h,i) g g' where
_7 :: Lens (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f, g', h, i) g g'
_7 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \g -> f g'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i) -> g -> f g'
k g
g forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \g'
g' -> (a
a,b
b,c
c,d
d,e
e,f
f,g'
g',h
h,i
i)
{-# INLINE[1] _7 #-}
class Field8 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_8 :: Lens s t a b
default _8 :: GPosition 8 s t a b => Lens s t a b
_8 = forall (n :: Nat) s t a b. GPosition n s t a b => Lens s t a b
gposition @8
{-# INLINE[1] _8 #-}
instance Field8 (a,b,c,d,e,f,g,h) (a,b,c,d,e,f,g,h') h h' where
_8 :: Lens (a, b, c, d, e, f, g, h) (a, b, c, d, e, f, g, h') h h'
_8 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \h -> f h'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h) -> h -> f h'
k h
h forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \h'
h' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h'
h')
{-# INLINE[1] _8 #-}
instance Field8 (a,b,c,d,e,f,g,h,i) (a,b,c,d,e,f,g,h',i) h h' where
_8 :: Lens (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f, g, h', i) h h'
_8 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \h -> f h'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i) -> h -> f h'
k h
h forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \h'
h' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h'
h',i
i)
{-# INLINE[1] _8 #-}
class Field9 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_9 :: Lens s t a b
default _9 :: GPosition 9 s t a b => Lens s t a b
_9 = forall (n :: Nat) s t a b. GPosition n s t a b => Lens s t a b
gposition @9
{-# INLINE[1] _9 #-}
instance Field9 (a,b,c,d,e,f,g,h,i) (a,b,c,d,e,f,g,h,i') i i' where
_9 :: Lens (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f, g, h, i') i i'
_9 = forall s t a b. LensVL s t a b -> Lens s t a b
lensVL forall a b. (a -> b) -> a -> b
$ \i -> f i'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i) -> i -> f i'
k i
i forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \i'
i' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i'
i')
{-# INLINE[1] _9 #-}
_1' :: Field1 s t a b => Lens s t a b
_1' :: forall s t a b. Field1 s t a b => Lens s t a b
_1' = forall a b. Lens a b a b
equality' forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% forall s t a b. Field1 s t a b => Lens s t a b
_1
{-# INLINE _1' #-}
_2' :: Field2 s t a b => Lens s t a b
_2' :: forall s t a b. Field2 s t a b => Lens s t a b
_2' = forall a b. Lens a b a b
equality' forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% forall s t a b. Field2 s t a b => Lens s t a b
_2
{-# INLINE _2' #-}
_3' :: Field3 s t a b => Lens s t a b
_3' :: forall s t a b. Field3 s t a b => Lens s t a b
_3' = forall a b. Lens a b a b
equality' forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% forall s t a b. Field3 s t a b => Lens s t a b
_3
{-# INLINE _3' #-}
_4' :: Field4 s t a b => Lens s t a b
_4' :: forall s t a b. Field4 s t a b => Lens s t a b
_4' = forall a b. Lens a b a b
equality' forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% forall s t a b. Field4 s t a b => Lens s t a b
_4
{-# INLINE _4' #-}
_5' :: Field5 s t a b => Lens s t a b
_5' :: forall s t a b. Field5 s t a b => Lens s t a b
_5' = forall a b. Lens a b a b
equality' forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% forall s t a b. Field5 s t a b => Lens s t a b
_5
{-# INLINE _5' #-}
_6' :: Field6 s t a b => Lens s t a b
_6' :: forall s t a b. Field6 s t a b => Lens s t a b
_6' = forall a b. Lens a b a b
equality' forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% forall s t a b. Field6 s t a b => Lens s t a b
_6
{-# INLINE _6' #-}
_7' :: Field7 s t a b => Lens s t a b
_7' :: forall s t a b. Field7 s t a b => Lens s t a b
_7' = forall a b. Lens a b a b
equality' forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% forall s t a b. Field7 s t a b => Lens s t a b
_7
{-# INLINE _7' #-}
_8' :: Field8 s t a b => Lens s t a b
_8' :: forall s t a b. Field8 s t a b => Lens s t a b
_8' = forall a b. Lens a b a b
equality' forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% forall s t a b. Field8 s t a b => Lens s t a b
_8
{-# INLINE _8' #-}
_9' :: Field9 s t a b => Lens s t a b
_9' :: forall s t a b. Field9 s t a b => Lens s t a b
_9' = forall a b. Lens a b a b
equality' forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% forall s t a b. Field9 s t a b => Lens s t a b
_9
{-# INLINE _9' #-}