{-# LANGUAGE DataKinds #-}
module Optics.IxTraversal
(
IxTraversal
, IxTraversal'
, itraversalVL
, itraverseOf
, itraversed
, ignored
, elementsOf
, elements
, elementOf
, element
, iforOf
, imapAccumLOf
, imapAccumROf
, iscanl1Of
, iscanr1Of
, ifailover
, ifailover'
, indices
, ibackwards
, ipartsOf
, A_Traversal
, IxTraversalVL
, IxTraversalVL'
, TraversableWithIndex(..)
) where
import Control.Applicative.Backwards
import Control.Monad.Trans.State
import Data.Functor.Identity
import Optics.Internal.Indexed
import Optics.Internal.IxTraversal
import Optics.Internal.Profunctor
import Optics.Internal.Optic
import Optics.Internal.Utils
import Optics.IxLens
import Optics.IxFold
import Optics.ReadOnly
import Optics.Traversal
type IxTraversal i s t a b = Optic A_Traversal (WithIx i) s t a b
type IxTraversal' i s a = Optic' A_Traversal (WithIx i) s a
type IxTraversalVL i s t a b =
forall f. Applicative f => (i -> a -> f b) -> s -> f t
type IxTraversalVL' i s a = IxTraversalVL i s s a a
itraversalVL :: IxTraversalVL i s t a b -> IxTraversal i s t a b
itraversalVL t = Optic (iwander t)
{-# INLINE itraversalVL #-}
itraverseOf
:: (Is k A_Traversal, Applicative f, is `HasSingleIndex` i)
=> Optic k is s t a b
-> (i -> a -> f b) -> s -> f t
itraverseOf o = \f ->
runIxStar (getOptic (castOptic @A_Traversal o) (IxStar f)) id
{-# INLINE itraverseOf #-}
iforOf
:: (Is k A_Traversal, Applicative f, is `HasSingleIndex` i)
=> Optic k is s t a b
-> s -> (i -> a -> f b) -> f t
iforOf = flip . itraverseOf
{-# INLINE iforOf #-}
imapAccumLOf
:: (Is k A_Traversal, is `HasSingleIndex` i)
=> Optic k is s t a b
-> (i -> acc -> a -> (b, acc)) -> acc -> s -> (t, acc)
imapAccumLOf o = \f acc0 s ->
let g i a = state $ \acc -> f i acc a
in runState (itraverseOf o g s) acc0
{-# INLINE imapAccumLOf #-}
imapAccumROf
:: (Is k A_Traversal, is `HasSingleIndex` i)
=> Optic k is s t a b
-> (i -> acc -> a -> (b, acc)) -> acc -> s -> (t, acc)
imapAccumROf = imapAccumLOf . ibackwards
{-# INLINE imapAccumROf #-}
iscanl1Of
:: (Is k A_Traversal, is `HasSingleIndex` i)
=> Optic k is s t a a
-> (i -> a -> a -> a) -> s -> t
iscanl1Of o = \f ->
let step i ms a = case ms of
Nothing -> (a, Just a)
Just s -> let r = f i s a in (r, Just r)
in fst . imapAccumLOf o step Nothing
{-# INLINE iscanl1Of #-}
iscanr1Of
:: (Is k A_Traversal, is `HasSingleIndex` i)
=> Optic k is s t a a
-> (i -> a -> a -> a) -> s -> t
iscanr1Of o f = fst . imapAccumROf o step Nothing
where
step i ms a = case ms of
Nothing -> (a, Just a)
Just s -> let r = f i a s in (r, Just r)
{-# INLINE iscanr1Of #-}
ifailover
:: (Is k A_Traversal, is `HasSingleIndex` i)
=> Optic k is s t a b
-> (i -> a -> b) -> s -> Maybe t
ifailover o = \f s ->
let OrT visited t = itraverseOf o (\i -> wrapOrT . Identity #. f i) s
in if visited
then Just (runIdentity t)
else Nothing
{-# INLINE ifailover #-}
ifailover'
:: (Is k A_Traversal, is `HasSingleIndex` i)
=> Optic k is s t a b
-> (i -> a -> b) -> s -> Maybe t
ifailover' o = \f s ->
let OrT visited t = itraverseOf o (\i -> wrapOrT . wrapIdentity' . f i) s
in if visited
then Just (unwrapIdentity' t)
else Nothing
{-# INLINE ifailover' #-}
itraversed
:: TraversableWithIndex i f
=> IxTraversal i (f a) (f b) a b
itraversed = Optic itraversed__
{-# INLINE itraversed #-}
ignored :: IxTraversal i s s a b
ignored = itraversalVL $ \_ -> pure
indices
:: (Is k A_Traversal, is `HasSingleIndex` i)
=> (i -> Bool)
-> Optic k is s t a a
-> IxTraversal i s t a a
indices p o = itraversalVL $ \f ->
itraverseOf o $ \i a -> if p i then f i a else pure a
{-# INLINE indices #-}
ibackwards
:: (Is k A_Traversal, is `HasSingleIndex` i)
=> Optic k is s t a b
-> IxTraversal i s t a b
ibackwards o = conjoined (backwards o) $ itraversalVL $ \f ->
forwards #. itraverseOf o (\i -> Backwards #. f i)
{-# INLINE ibackwards #-}
elementsOf
:: Is k A_Traversal
=> Optic k is s t a a
-> (Int -> Bool)
-> IxTraversal Int s t a a
elementsOf o = \p -> itraversalVL $ \f ->
indexing (traverseOf o) $ \i a -> if p i then f i a else pure a
{-# INLINE elementsOf #-}
elements :: Traversable f => (Int -> Bool) -> IxTraversal' Int (f a) a
elements = elementsOf traversed
{-# INLINE elements #-}
elementOf
:: Is k A_Traversal
=> Optic k is s t a a
-> Int
-> IxTraversal Int s t a a
elementOf o = \i -> elementsOf o (== i)
{-# INLINE elementOf #-}
element :: Traversable f => Int -> IxTraversal' Int (f a) a
element = elementOf traversed
{-# INLINE element #-}
ipartsOf
:: forall k is i s t a. (Is k A_Traversal, is `HasSingleIndex` i)
=> Optic k is s t a a
-> IxLens [i] s t [a] [a]
ipartsOf o = conjoined (partsOf o) $ ilensVL $ \f s ->
evalState (traverseOf o update s)
<$> uncurry f (unzip $ itoListOf (getting $ castOptic @A_Traversal o) s)
where
update a = get >>= \case
[] -> pure a
a' : as' -> put as' >> pure a'
{-# INLINE ipartsOf #-}