-- | -- Module: Optics.Iso -- Description: Translates between types with the same structure. -- -- An 'Iso'morphism expresses the fact that two types have the -- same structure, and hence can be converted from one to the other in -- either direction. -- module Optics.Iso ( -- * Formation Iso , Iso' -- * Introduction , iso -- * Elimination -- | An 'Iso' is in particular a 'Optics.Getter.Getter', a -- 'Optics.Review.Review' and a 'Optics.Setter.Setter', therefore you can -- specialise types to obtain: -- -- @ -- 'Optics.Getter.view' :: 'Iso' s t a b -> s -> a -- 'Optics.Review.review' :: 'Iso' s t a b -> b -> t -- @ -- -- @ -- 'Optics.Setter.over' :: 'Iso' s t a b -> (a -> b) -> s -> t -- 'Optics.Setter.set' :: 'Iso' s t a b -> b -> s -> t -- @ -- * Computation -- | -- -- @ -- 'Optics.Getter.view' ('iso' f g) ≡ f -- 'Optics.Review.review' ('iso' f g) ≡ g -- @ -- * Well-formedness -- | The functions translating back and forth must be mutually inverse: -- -- @ -- 'Optics.Getter.view' i . 'Optics.Getter.review' i ≡ 'id' -- 'Optics.Getter.review' i . 'Optics.Getter.view' i ≡ 'id' -- @ -- * Additional introduction forms , equality , simple , coerced , coercedTo , coerced1 , curried , uncurried , flipped , involuted , Swapped(..) -- * Additional elimination forms , withIso , au , under -- * Combinators -- | The 'Optics.Re.re' combinator can be used to reverse an 'Iso': -- -- @ -- 'Optics.Re.re' :: 'Iso' s t a b -> 'Iso' b a t s -- @ , mapping -- * Subtyping , An_Iso -- | <<diagrams/Iso.png Iso in the optics hierarchy>> ) where import Data.Tuple import Data.Bifunctor import Data.Coerce import Optics.Internal.Concrete import Optics.Internal.Optic import Optics.Internal.Profunctor -- | Type synonym for a type-modifying iso. type Iso s t a b = Optic An_Iso NoIx s t a b -- | Type synonym for a type-preserving iso. type Iso' s a = Optic' An_Iso NoIx s a -- | Build an iso from a pair of inverse functions. -- -- If you want to build an 'Iso' from the van Laarhoven representation, use -- @isoVL@ from the @optics-vl@ package. iso :: (s -> a) -> (b -> t) -> Iso s t a b iso f g = Optic (dimap f g) {-# INLINE iso #-} -- | Extract the two components of an isomorphism. withIso :: Iso s t a b -> ((s -> a) -> (b -> t) -> r) -> r withIso o k = case getOptic o (Exchange id id) of Exchange sa bt -> k sa bt {-# INLINE withIso #-} -- | Based on @ala@ from Conor McBride's work on Epigram. -- -- This version is generalized to accept any 'Iso', not just a @newtype@. -- -- >>> au (coerced1 @Sum) foldMap [1,2,3,4] -- 10 -- -- You may want to think of this combinator as having the following, simpler -- type: -- -- @ -- au :: 'Iso' s t a b -> ((b -> t) -> e -> s) -> e -> a -- @ au :: Functor f => Iso s t a b -> ((b -> t) -> f s) -> f a au k = withIso k $ \sa bt f -> sa <$> f bt {-# INLINE au #-} -- | The opposite of working 'Optics.Setter.over' a 'Optics.Setter.Setter' is -- working 'under' an isomorphism. -- -- @ -- 'under' ≡ 'Optics.Setter.over' '.' 'Optics.Re.re' -- @ under :: Iso s t a b -> (t -> s) -> b -> a under k = withIso k $ \sa bt ts -> sa . ts . bt {-# INLINE under #-} ---------------------------------------- -- Isomorphisms -- | This can be used to lift any 'Iso' into an arbitrary 'Functor'. mapping :: (Functor f, Functor g) => Iso s t a b -> Iso (f s) (g t) (f a) (g b) mapping k = withIso k $ \sa bt -> iso (fmap sa) (fmap bt) {-# INLINE mapping #-} -- | Capture type constraints as an isomorphism. -- -- /Note:/ This is the identity optic: -- -- >>> :t view equality -- view equality :: a -> a equality :: (s ~ a, t ~ b) => Iso s t a b equality = Optic id {-# INLINE equality #-} -- | Proof of reflexivity. simple :: Iso' a a simple = Optic id {-# INLINE simple #-} -- | Data types that are representationally equal are isomorphic. -- -- >>> view coerced 'x' :: Identity Char -- Identity 'x' -- coerced :: (Coercible s a, Coercible t b) => Iso s t a b coerced = Optic (lcoerce' . rcoerce') {-# INLINE coerced #-} -- | Type-preserving version of 'coerced' with type parameters rearranged for -- TypeApplications. -- -- >>> newtype MkInt = MkInt Int deriving Show -- -- >>> over (coercedTo @Int) (*3) (MkInt 2) -- MkInt 6 -- coercedTo :: forall a s. Coercible s a => Iso' s a coercedTo = Optic (lcoerce' . rcoerce') {-# INLINE coercedTo #-} -- | Special case of 'coerced' for trivial newtype wrappers. -- -- >>> over (coerced1 @Identity) (++ "bar") (Identity "foo") -- Identity "foobar" -- coerced1 :: forall f s a. (Coercible s (f s), Coercible a (f a)) => Iso (f s) (f a) s a coerced1 = Optic (lcoerce' . rcoerce') {-# INLINE coerced1 #-} -- | The canonical isomorphism for currying and uncurrying a function. -- -- @ -- 'curried' = 'iso' 'curry' 'uncurry' -- @ -- -- >>> view curried fst 3 4 -- 3 -- curried :: Iso ((a, b) -> c) ((d, e) -> f) (a -> b -> c) (d -> e -> f) curried = iso curry uncurry {-# INLINE curried #-} -- | The canonical isomorphism for uncurrying and currying a function. -- -- @ -- 'uncurried' = 'iso' 'uncurry' 'curry' -- @ -- -- @ -- 'uncurried' = 'Optics.Re.re' 'curried' -- @ -- -- >>> (view uncurried (+)) (1,2) -- 3 -- uncurried :: Iso (a -> b -> c) (d -> e -> f) ((a, b) -> c) ((d, e) -> f) uncurried = iso uncurry curry {-# INLINE uncurried #-} -- | The isomorphism for flipping a function. -- -- >>> (view flipped (,)) 1 2 -- (2,1) -- flipped :: Iso (a -> b -> c) (a' -> b' -> c') (b -> a -> c) (b' -> a' -> c') flipped = iso flip flip {-# INLINE flipped #-} -- | Given a function that is its own inverse, this gives you an 'Iso' using it -- in both directions. -- -- @ -- 'involuted' ≡ 'Control.Monad.join' 'iso' -- @ -- -- >>> "live" ^. involuted reverse -- "evil" -- -- >>> "live" & involuted reverse %~ ('d':) -- "lived" involuted :: (a -> a) -> Iso' a a involuted a = iso a a {-# INLINE involuted #-} -- | This class provides for symmetric bifunctors. class Bifunctor p => Swapped p where -- | -- @ -- 'swapped' '.' 'swapped' ≡ 'id' -- 'first' f '.' 'swapped' = 'swapped' '.' 'second' f -- 'second' g '.' 'swapped' = 'swapped' '.' 'first' g -- 'bimap' f g '.' 'swapped' = 'swapped' '.' 'bimap' g f -- @ -- -- >>> view swapped (1,2) -- (2,1) -- swapped :: Iso (p a b) (p c d) (p b a) (p d c) instance Swapped (,) where swapped = iso swap swap {-# INLINE swapped #-} instance Swapped Either where swapped = iso (either Right Left) (either Right Left) {-# INLINE swapped #-} -- $setup -- >>> import Data.Functor.Identity -- >>> import Data.Monoid -- >>> import Optics.Core