-- |
-- Module: Data.Tuple.Optics
-- Description: 'Lens'es for tuple types.
--
-- This module defines 'Lens'es for the fields of tuple types.  These are
-- overloaded using the 'Field1' to 'Field9' typeclasses, so that '_1' can be
-- used as a 'Lens' for the first field of a tuple with any number of fields (up
-- to the maximum supported tuple size, which is currently 9).  For example:
--
-- >>> view _1 ('a','b','c')
-- 'a'
--
-- >>> set _3 True ('a','b','c')
-- ('a','b',True)
--
-- If a single-constructor datatype has a 'Generic' instance, the corresponding
-- @FieldN@ instances can be defined using their default methods:
--
-- >>> :set -XDeriveGeneric
-- >>> data T a = MkT Int a deriving (Generic, Show)
-- >>> instance Field1 (T a) (T a) Int Int
-- >>> instance Field2 (T a) (T b) a b
--
-- >>> set _2 'x' (MkT 1 False)
-- MkT 1 'x'
--
{-# LANGUAGE UndecidableInstances   #-}
module Data.Tuple.Optics
  (
  -- * Tuples
    Field1(..)
  , Field2(..)
  , Field3(..)
  , Field4(..)
  , Field5(..)
  , Field6(..)
  , Field7(..)
  , Field8(..)
  , Field9(..)
  -- * Strict variations
  , _1', _2', _3', _4', _5', _6', _7', _8', _9'
  ) where

import Data.Functor.Identity
import Data.Functor.Product
import Data.Proxy
import GHC.Generics ((:*:)(..), Generic(..), K1, M1, U1)

import GHC.Generics.Optics
import Optics.Lens
import Optics.Optic

-- | Provides access to 1st field of a tuple.
class Field1 s t a b | s -> a, t -> b, s b -> t, t a -> s where
  -- | Access the 1st field of a tuple (and possibly change its type).
  --
  -- >>> (1,2) ^. _1
  -- 1
  --
  -- >>> (1,2) & _1 .~ "hello"
  -- ("hello",2)
  --
  -- >>> traverseOf _1 putStrLn ("hello","world")
  -- hello
  -- ((),"world")
  --
  -- This can also be used on larger tuples as well:
  --
  -- >>> (1,2,3,4,5) & _1 %~ (+41)
  -- (42,2,3,4,5)
  _1 :: Lens s t a b
  default _1 :: (Generic s, Generic t, GIxed N0 (Rep s) (Rep t) a b)
             => Lens s t a b
  _1 = ix proxyN0
  {-# INLINE[1] _1 #-}

instance Field1 (Identity a) (Identity b) a b where
  _1 = lensVL $ \f (Identity a) -> Identity <$> f a
  {-# INLINE[1] _1 #-}

instance Field1 (Product f g a) (Product f' g a) (f a) (f' a) where
  _1 = lensVL $ \f ~(Pair a b) -> flip Pair b <$> f a
  {-# INLINE[1] _1 #-}

instance Field1 ((f :*: g) p) ((f' :*: g) p) (f p) (f' p) where
  _1 = lensVL $ \f ~(l :*: r) -> (:*: r) <$> f l
  {-# INLINE[1] _1 #-}

instance Field1 (a,b) (a',b) a a' where
  _1 = lensVL $ \k ~(a,b) -> k a <&> \a' -> (a',b)
  {-# INLINE[1] _1 #-}

instance Field1 (a,b,c) (a',b,c) a a' where
  _1 = lensVL $ \k ~(a,b,c) -> k a <&> \a' -> (a',b,c)
  {-# INLINE[1] _1 #-}

instance Field1 (a,b,c,d) (a',b,c,d) a a' where
  _1 = lensVL $ \k ~(a,b,c,d) -> k a <&> \a' -> (a',b,c,d)
  {-# INLINE[1] _1 #-}

instance Field1 (a,b,c,d,e) (a',b,c,d,e) a a' where
  _1 = lensVL $ \k ~(a,b,c,d,e) -> k a <&> \a' -> (a',b,c,d,e)
  {-# INLINE[1] _1 #-}

instance Field1 (a,b,c,d,e,f) (a',b,c,d,e,f) a a' where
  _1 = lensVL $ \k ~(a,b,c,d,e,f) -> k a <&> \a' -> (a',b,c,d,e,f)
  {-# INLINE[1] _1 #-}

instance Field1 (a,b,c,d,e,f,g) (a',b,c,d,e,f,g) a a' where
  _1 = lensVL $ \k ~(a,b,c,d,e,f,g) -> k a <&> \a' -> (a',b,c,d,e,f,g)
  {-# INLINE[1] _1 #-}

instance Field1 (a,b,c,d,e,f,g,h) (a',b,c,d,e,f,g,h) a a' where
  _1 = lensVL $ \k ~(a,b,c,d,e,f,g,h) -> k a <&> \a' -> (a',b,c,d,e,f,g,h)
  {-# INLINE[1] _1 #-}

instance Field1 (a,b,c,d,e,f,g,h,i) (a',b,c,d,e,f,g,h,i) a a' where
  _1 = lensVL $ \k ~(a,b,c,d,e,f,g,h,i) -> k a <&> \a' -> (a',b,c,d,e,f,g,h,i)
  {-# INLINE[1] _1 #-}

-- | Provides access to the 2nd field of a tuple.
class Field2 s t a b | s -> a, t -> b, s b -> t, t a -> s where
  -- | Access the 2nd field of a tuple.
  --
  -- >>> _2 .~ "hello" $ (1,(),3,4)
  -- (1,"hello",3,4)
  --
  -- >>> (1,2,3,4) & _2 %~ (*3)
  -- (1,6,3,4)
  --
  -- >>> traverseOf _2 print (1,2)
  -- 2
  -- (1,())
  _2 :: Lens s t a b
  default _2 :: (Generic s, Generic t, GIxed N1 (Rep s) (Rep t) a b)
             => Lens s t a b
  _2 = ix proxyN1
  {-# INLINE[1] _2 #-}

instance Field2 (Product f g a) (Product f g' a) (g a) (g' a) where
  _2 = lensVL $ \f ~(Pair a b) -> Pair a <$> f b
  {-# INLINE[1] _2 #-}

instance Field2 ((f :*: g) p) ((f :*: g') p) (g p) (g' p) where
  _2 = lensVL $ \f ~(l :*: r) -> (l :*:) <$> f r
  {-# INLINE[1] _2 #-}

instance Field2 (a,b) (a,b') b b' where
  _2 = lensVL $ \k ~(a,b) -> k b <&> \b' -> (a,b')
  {-# INLINE[1] _2 #-}

instance Field2 (a,b,c) (a,b',c) b b' where
  _2 = lensVL $ \k ~(a,b,c) -> k b <&> \b' -> (a,b',c)
  {-# INLINE[1] _2 #-}

instance Field2 (a,b,c,d) (a,b',c,d) b b' where
  _2 = lensVL $ \k ~(a,b,c,d) -> k b <&> \b' -> (a,b',c,d)
  {-# INLINE[1] _2 #-}

instance Field2 (a,b,c,d,e) (a,b',c,d,e) b b' where
  _2 = lensVL $ \k ~(a,b,c,d,e) -> k b <&> \b' -> (a,b',c,d,e)
  {-# INLINE[1] _2 #-}

instance Field2 (a,b,c,d,e,f) (a,b',c,d,e,f) b b' where
  _2 = lensVL $ \k ~(a,b,c,d,e,f) -> k b <&> \b' -> (a,b',c,d,e,f)
  {-# INLINE[1] _2 #-}

instance Field2 (a,b,c,d,e,f,g) (a,b',c,d,e,f,g) b b' where
  _2 = lensVL $ \k ~(a,b,c,d,e,f,g) -> k b <&> \b' -> (a,b',c,d,e,f,g)
  {-# INLINE[1] _2 #-}

instance Field2 (a,b,c,d,e,f,g,h) (a,b',c,d,e,f,g,h) b b' where
  _2 = lensVL $ \k ~(a,b,c,d,e,f,g,h) -> k b <&> \b' -> (a,b',c,d,e,f,g,h)
  {-# INLINE[1] _2 #-}

instance Field2 (a,b,c,d,e,f,g,h,i) (a,b',c,d,e,f,g,h,i) b b' where
  _2 = lensVL $ \k ~(a,b,c,d,e,f,g,h,i) -> k b <&> \b' -> (a,b',c,d,e,f,g,h,i)
  {-# INLINE[1] _2 #-}

-- | Provides access to the 3rd field of a tuple.
class Field3 s t a b | s -> a, t -> b, s b -> t, t a -> s where
  -- | Access the 3rd field of a tuple.
  _3 :: Lens s t a b
  default _3 :: (Generic s, Generic t, GIxed N2 (Rep s) (Rep t) a b)
             => Lens s t a b
  _3 = ix proxyN2
  {-# INLINE[1] _3 #-}

instance Field3 (a,b,c) (a,b,c') c c' where
  _3 = lensVL $ \k ~(a,b,c) -> k c <&> \c' -> (a,b,c')
  {-# INLINE[1] _3 #-}

instance Field3 (a,b,c,d) (a,b,c',d) c c' where
  _3 = lensVL $ \k ~(a,b,c,d) -> k c <&> \c' -> (a,b,c',d)
  {-# INLINE[1] _3 #-}

instance Field3 (a,b,c,d,e) (a,b,c',d,e) c c' where
  _3 = lensVL $ \k ~(a,b,c,d,e) -> k c <&> \c' -> (a,b,c',d,e)
  {-# INLINE[1] _3 #-}

instance Field3 (a,b,c,d,e,f) (a,b,c',d,e,f) c c' where
  _3 = lensVL $ \k ~(a,b,c,d,e,f) -> k c <&> \c' -> (a,b,c',d,e,f)
  {-# INLINE[1] _3 #-}

instance Field3 (a,b,c,d,e,f,g) (a,b,c',d,e,f,g) c c' where
  _3 = lensVL $ \k ~(a,b,c,d,e,f,g) -> k c <&> \c' -> (a,b,c',d,e,f,g)
  {-# INLINE[1] _3 #-}

instance Field3 (a,b,c,d,e,f,g,h) (a,b,c',d,e,f,g,h) c c' where
  _3 = lensVL $ \k ~(a,b,c,d,e,f,g,h) -> k c <&> \c' -> (a,b,c',d,e,f,g,h)
  {-# INLINE[1] _3 #-}

instance Field3 (a,b,c,d,e,f,g,h,i) (a,b,c',d,e,f,g,h,i) c c' where
  _3 = lensVL $ \k ~(a,b,c,d,e,f,g,h,i) -> k c <&> \c' -> (a,b,c',d,e,f,g,h,i)
  {-# INLINE[1] _3 #-}

-- | Provide access to the 4th field of a tuple.
class Field4 s t a b | s -> a, t -> b, s b -> t, t a -> s where
  -- | Access the 4th field of a tuple.
  _4 :: Lens s t a b
  default _4 :: (Generic s, Generic t, GIxed N3 (Rep s) (Rep t) a b)
             => Lens s t a b
  _4 = ix proxyN3
  {-# INLINE[1] _4 #-}

instance Field4 (a,b,c,d) (a,b,c,d') d d' where
  _4 = lensVL $ \k ~(a,b,c,d) -> k d <&> \d' -> (a,b,c,d')
  {-# INLINE[1] _4 #-}

instance Field4 (a,b,c,d,e) (a,b,c,d',e) d d' where
  _4 = lensVL $ \k ~(a,b,c,d,e) -> k d <&> \d' -> (a,b,c,d',e)
  {-# INLINE[1] _4 #-}

instance Field4 (a,b,c,d,e,f) (a,b,c,d',e,f) d d' where
  _4 = lensVL $ \k ~(a,b,c,d,e,f) -> k d <&> \d' -> (a,b,c,d',e,f)
  {-# INLINE[1] _4 #-}

instance Field4 (a,b,c,d,e,f,g) (a,b,c,d',e,f,g) d d' where
  _4 = lensVL $ \k ~(a,b,c,d,e,f,g) -> k d <&> \d' -> (a,b,c,d',e,f,g)
  {-# INLINE[1] _4 #-}

instance Field4 (a,b,c,d,e,f,g,h) (a,b,c,d',e,f,g,h) d d' where
  _4 = lensVL $ \k ~(a,b,c,d,e,f,g,h) -> k d <&> \d' -> (a,b,c,d',e,f,g,h)
  {-# INLINE[1] _4 #-}

instance Field4 (a,b,c,d,e,f,g,h,i) (a,b,c,d',e,f,g,h,i) d d' where
  _4 = lensVL $ \k ~(a,b,c,d,e,f,g,h,i) -> k d <&> \d' -> (a,b,c,d',e,f,g,h,i)
  {-# INLINE[1] _4 #-}

-- | Provides access to the 5th field of a tuple.
class Field5 s t a b | s -> a, t -> b, s b -> t, t a -> s where
  -- | Access the 5th field of a tuple.
  _5 :: Lens s t a b
  default _5 :: (Generic s, Generic t, GIxed N4 (Rep s) (Rep t) a b)
             => Lens s t a b
  _5 = ix proxyN4
  {-# INLINE[1] _5 #-}

instance Field5 (a,b,c,d,e) (a,b,c,d,e') e e' where
  _5 = lensVL $ \k ~(a,b,c,d,e) -> k e <&> \e' -> (a,b,c,d,e')
  {-# INLINE[1] _5 #-}

instance Field5 (a,b,c,d,e,f) (a,b,c,d,e',f) e e' where
  _5 = lensVL $ \k ~(a,b,c,d,e,f) -> k e <&> \e' -> (a,b,c,d,e',f)
  {-# INLINE[1] _5 #-}

instance Field5 (a,b,c,d,e,f,g) (a,b,c,d,e',f,g) e e' where
  _5 = lensVL $ \k ~(a,b,c,d,e,f,g) -> k e <&> \e' -> (a,b,c,d,e',f,g)
  {-# INLINE[1] _5 #-}

instance Field5 (a,b,c,d,e,f,g,h) (a,b,c,d,e',f,g,h) e e' where
  _5 = lensVL $ \k ~(a,b,c,d,e,f,g,h) -> k e <&> \e' -> (a,b,c,d,e',f,g,h)
  {-# INLINE[1] _5 #-}

instance Field5 (a,b,c,d,e,f,g,h,i) (a,b,c,d,e',f,g,h,i) e e' where
  _5 = lensVL $ \k ~(a,b,c,d,e,f,g,h,i) -> k e <&> \e' -> (a,b,c,d,e',f,g,h,i)
  {-# INLINE[1] _5 #-}

-- | Provides access to the 6th element of a tuple.
class Field6 s t a b | s -> a, t -> b, s b -> t, t a -> s where
  -- | Access the 6th field of a tuple.
  _6 :: Lens s t a b
  default _6 :: (Generic s, Generic t, GIxed N5 (Rep s) (Rep t) a b)
             => Lens s t a b
  _6 = ix proxyN5
  {-# INLINE[1] _6 #-}

instance Field6 (a,b,c,d,e,f) (a,b,c,d,e,f') f f' where
  _6 = lensVL $ \k ~(a,b,c,d,e,f) -> k f <&> \f' -> (a,b,c,d,e,f')
  {-# INLINE[1] _6 #-}

instance Field6 (a,b,c,d,e,f,g) (a,b,c,d,e,f',g) f f' where
  _6 = lensVL $ \k ~(a,b,c,d,e,f,g) -> k f <&> \f' -> (a,b,c,d,e,f',g)
  {-# INLINE[1] _6 #-}

instance Field6 (a,b,c,d,e,f,g,h) (a,b,c,d,e,f',g,h) f f' where
  _6 = lensVL $ \k ~(a,b,c,d,e,f,g,h) -> k f <&> \f' -> (a,b,c,d,e,f',g,h)
  {-# INLINE[1] _6 #-}

instance Field6 (a,b,c,d,e,f,g,h,i) (a,b,c,d,e,f',g,h,i) f f' where
  _6 = lensVL $ \k ~(a,b,c,d,e,f,g,h,i) -> k f <&> \f' -> (a,b,c,d,e,f',g,h,i)
  {-# INLINE[1] _6 #-}

-- | Provide access to the 7th field of a tuple.
class Field7 s t a b | s -> a, t -> b, s b -> t, t a -> s where
  -- | Access the 7th field of a tuple.
  _7 :: Lens s t a b
  default _7 :: (Generic s, Generic t, GIxed N6 (Rep s) (Rep t) a b)
             => Lens s t a b
  _7 = ix proxyN6
  {-# INLINE[1] _7 #-}

instance Field7 (a,b,c,d,e,f,g) (a,b,c,d,e,f,g') g g' where
  _7 = lensVL $ \k ~(a,b,c,d,e,f,g) -> k g <&> \g' -> (a,b,c,d,e,f,g')
  {-# INLINE[1] _7 #-}

instance Field7 (a,b,c,d,e,f,g,h) (a,b,c,d,e,f,g',h) g g' where
  _7 = lensVL $ \k ~(a,b,c,d,e,f,g,h) -> k g <&> \g' -> (a,b,c,d,e,f,g',h)
  {-# INLINE[1] _7 #-}

instance Field7 (a,b,c,d,e,f,g,h,i) (a,b,c,d,e,f,g',h,i) g g' where
  _7 = lensVL $ \k ~(a,b,c,d,e,f,g,h,i) -> k g <&> \g' -> (a,b,c,d,e,f,g',h,i)
  {-# INLINE[1] _7 #-}

-- | Provide access to the 8th field of a tuple.
class Field8 s t a b | s -> a, t -> b, s b -> t, t a -> s where
  -- | Access the 8th field of a tuple.
  _8 :: Lens s t a b
  default _8 :: (Generic s, Generic t, GIxed N7 (Rep s) (Rep t) a b)
             => Lens s t a b
  _8 = ix proxyN7
  {-# INLINE[1] _8 #-}

instance Field8 (a,b,c,d,e,f,g,h) (a,b,c,d,e,f,g,h') h h' where
  _8 = lensVL $ \k ~(a,b,c,d,e,f,g,h) -> k h <&> \h' -> (a,b,c,d,e,f,g,h')
  {-# INLINE[1] _8 #-}

instance Field8 (a,b,c,d,e,f,g,h,i) (a,b,c,d,e,f,g,h',i) h h' where
  _8 = lensVL $ \k ~(a,b,c,d,e,f,g,h,i) -> k h <&> \h' -> (a,b,c,d,e,f,g,h',i)
  {-# INLINE[1] _8 #-}

-- | Provides access to the 9th field of a tuple.
class Field9 s t a b | s -> a, t -> b, s b -> t, t a -> s where
  -- | Access the 9th field of a tuple.
  _9 :: Lens s t a b
  default _9 :: (Generic s, Generic t, GIxed N8 (Rep s) (Rep t) a b)
             => Lens s t a b
  _9 = ix proxyN8
  {-# INLINE[1] _9 #-}

instance Field9 (a,b,c,d,e,f,g,h,i) (a,b,c,d,e,f,g,h,i') i i' where
  _9 = lensVL $ \k ~(a,b,c,d,e,f,g,h,i) -> k i <&> \i' -> (a,b,c,d,e,f,g,h,i')
  {-# INLINE[1] _9 #-}

-- Strict versions of the _1 .. _9 operations

-- | Strict version of '_1'
_1' :: Field1 s t a b => Lens s t a b
_1' = equality' % _1
{-# INLINE _1' #-}

-- | Strict version of '_2'
_2' :: Field2 s t a b => Lens s t a b
_2' = equality' % _2
{-# INLINE _2' #-}

-- | Strict version of '_3'
_3' :: Field3 s t a b => Lens s t a b
_3' = equality' % _3
{-# INLINE _3' #-}

-- | Strict version of '_4'
_4' :: Field4 s t a b => Lens s t a b
_4' = equality' % _4
{-# INLINE _4' #-}

-- | Strict version of '_5'
_5' :: Field5 s t a b => Lens s t a b
_5' = equality' % _5
{-# INLINE _5' #-}

-- | Strict version of '_6'
_6' :: Field6 s t a b => Lens s t a b
_6' = equality' % _6
{-# INLINE _6' #-}

-- | Strict version of '_7'
_7' :: Field7 s t a b => Lens s t a b
_7' = equality' % _7
{-# INLINE _7' #-}

-- | Strict version of '_8'
_8' :: Field8 s t a b => Lens s t a b
_8' = equality' % _8
{-# INLINE _8' #-}

-- | Strict version of '_9'
_9' :: Field9 s t a b => Lens s t a b
_9' = equality' % _9
{-# INLINE _9' #-}

ix :: (Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) => f n -> Lens s t a b
ix n = generic % gix n
{-# INLINE ix #-}

-- TODO: this can be replaced by generic-optics position
type family GSize (f :: * -> *)
type instance GSize U1 = Z
type instance GSize (K1 i c) = S Z
type instance GSize (M1 i c f) = GSize f
type instance GSize (a :*: b) = Add (GSize a) (GSize b)

class GIxed n s t a b | n s -> a, n t -> b, n s b -> t, n t a -> s where
  gix :: f n -> Lens (s x) (t x) a b

instance GIxed N0 (K1 i a) (K1 i b) a b where
  gix _ = castOptic _K1
  {-# INLINE gix #-}

instance GIxed n s t a b => GIxed n (M1 i c s) (M1 i c t) a b where
  gix n = _M1 % gix n
  {-# INLINE gix #-}

instance (p ~ GT (GSize s) n,
          p ~ GT (GSize t) n,
          GIxed' p n s s' t t' a b)
      => GIxed n (s :*: s') (t :*: t') a b where
  gix = gix' (Proxy @p)
  {-# INLINE gix #-}

class (p ~ GT (GSize s) n,
       p ~ GT (GSize t) n)
   => GIxed' p n s s' t t' a b | p n s s' -> a
                               , p n t t' -> b
                               , p n s s' b -> t t'
                               , p n t t' a -> s s' where
  gix' :: f p -> g n -> Lens ((s :*: s') x) ((t :*: t') x) a b

instance (GT (GSize s) n ~ T,
          GT (GSize t) n ~ T,
          GIxed n s t a b)
      => GIxed' T n s s' t s' a b where
  gix' _ n = _1 % gix n
  {-# INLINE gix' #-}

instance (GT (GSize s) n ~ F,
          n' ~ Subtract (GSize s) n,
          GIxed n' s' t' a b)
      => GIxed' F n s s' s t' a b where
  gix' _ _ = _2 % gix (Proxy @n')
  {-# INLINE gix' #-}

data Z
data S a

data T
data F

type family Add x y
type instance Add Z y = y
type instance Add (S x) y = S (Add x y)

type family Subtract x y
type instance Subtract Z x = x
type instance Subtract (S x) (S y) = Subtract x y

type family GT x y
type instance GT Z x = F
type instance GT (S x) Z = T
type instance GT (S x) (S y) = GT x y

type N0 = Z
type N1 = S N0
type N2 = S N1
type N3 = S N2
type N4 = S N3
type N5 = S N4
type N6 = S N5
type N7 = S N6
type N8 = S N7

proxyN0 :: Proxy N0
proxyN0 = Proxy
{-# INLINE proxyN0 #-}

proxyN1 :: Proxy N1
proxyN1 = Proxy
{-# INLINE proxyN1 #-}

proxyN2 :: Proxy N2
proxyN2 = Proxy
{-# INLINE proxyN2 #-}

proxyN3 :: Proxy N3
proxyN3 = Proxy
{-# INLINE proxyN3 #-}

proxyN4 :: Proxy N4
proxyN4 = Proxy
{-# INLINE proxyN4 #-}

proxyN5 :: Proxy N5
proxyN5 = Proxy
{-# INLINE proxyN5 #-}

proxyN6 :: Proxy N6
proxyN6 = Proxy
{-# INLINE proxyN6 #-}

proxyN7 :: Proxy N7
proxyN7 = Proxy
{-# INLINE proxyN7 #-}

proxyN8 :: Proxy N8
proxyN8 = Proxy
{-# INLINE proxyN8 #-}

-- $setup
-- >>> import Optics.Core