Safe Haskell | None |
---|---|
Language | Haskell2010 |
Concrete representation types for certain optics.
This module is intended for internal use only, and may change without warning in subsequent releases.
Synopsis
- data Exchange a b i s t = Exchange (s -> a) (b -> t)
- data Store a b i s t = Store (s -> a) (s -> b -> t)
- data Market a b i s t = Market (b -> t) (s -> Either t a)
- data AffineMarket a b i s t = AffineMarket (s -> b -> t) (s -> Either t a)
Documentation
data Exchange a b i s t Source #
Type to represent the components of an isomorphism.
Exchange (s -> a) (b -> t) |
Instances
Profunctor (Exchange a b) Source # | |
Defined in Optics.Internal.Concrete dimap :: (a0 -> b0) -> (c -> d) -> Exchange a b i b0 c -> Exchange a b i a0 d Source # lmap :: (a0 -> b0) -> Exchange a b i b0 c -> Exchange a b i a0 c Source # rmap :: (c -> d) -> Exchange a b i b0 c -> Exchange a b i b0 d Source # lcoerce' :: Coercible a0 b0 => Exchange a b i a0 c -> Exchange a b i b0 c Source # rcoerce' :: Coercible a0 b0 => Exchange a b i c a0 -> Exchange a b i c b0 Source # conjoined__ :: (Exchange a b i a0 b0 -> Exchange a b i s t) -> (Exchange a b i a0 b0 -> Exchange a b j s t) -> Exchange a b i a0 b0 -> Exchange a b j s t Source # ixcontramap :: (j -> i) -> Exchange a b i a0 b0 -> Exchange a b j a0 b0 Source # |
Type to represent the components of a lens.
Store (s -> a) (s -> b -> t) |
Instances
Strong (Store a b) Source # | |
Defined in Optics.Internal.Concrete first' :: Store a b i a0 b0 -> Store a b i (a0, c) (b0, c) Source # second' :: Store a b i a0 b0 -> Store a b i (c, a0) (c, b0) Source # linear :: (forall (f :: Type -> Type). Functor f => (a0 -> f b0) -> s -> f t) -> Store a b i a0 b0 -> Store a b i s t Source # ilinear :: (forall (f :: Type -> Type). Functor f => (i -> a0 -> f b0) -> s -> f t) -> Store a b j a0 b0 -> Store a b (i -> j) s t Source # | |
Profunctor (Store a b) Source # | |
Defined in Optics.Internal.Concrete dimap :: (a0 -> b0) -> (c -> d) -> Store a b i b0 c -> Store a b i a0 d Source # lmap :: (a0 -> b0) -> Store a b i b0 c -> Store a b i a0 c Source # rmap :: (c -> d) -> Store a b i b0 c -> Store a b i b0 d Source # lcoerce' :: Coercible a0 b0 => Store a b i a0 c -> Store a b i b0 c Source # rcoerce' :: Coercible a0 b0 => Store a b i c a0 -> Store a b i c b0 Source # conjoined__ :: (Store a b i a0 b0 -> Store a b i s t) -> (Store a b i a0 b0 -> Store a b j s t) -> Store a b i a0 b0 -> Store a b j s t Source # ixcontramap :: (j -> i) -> Store a b i a0 b0 -> Store a b j a0 b0 Source # |
data Market a b i s t Source #
Type to represent the components of a prism.
Instances
Choice (Market a b) Source # | |
Profunctor (Market a b) Source # | |
Defined in Optics.Internal.Concrete dimap :: (a0 -> b0) -> (c -> d) -> Market a b i b0 c -> Market a b i a0 d Source # lmap :: (a0 -> b0) -> Market a b i b0 c -> Market a b i a0 c Source # rmap :: (c -> d) -> Market a b i b0 c -> Market a b i b0 d Source # lcoerce' :: Coercible a0 b0 => Market a b i a0 c -> Market a b i b0 c Source # rcoerce' :: Coercible a0 b0 => Market a b i c a0 -> Market a b i c b0 Source # conjoined__ :: (Market a b i a0 b0 -> Market a b i s t) -> (Market a b i a0 b0 -> Market a b j s t) -> Market a b i a0 b0 -> Market a b j s t Source # ixcontramap :: (j -> i) -> Market a b i a0 b0 -> Market a b j a0 b0 Source # | |
Functor (Market a b i s) Source # | |
data AffineMarket a b i s t Source #
Type to represent the components of an affine traversal.
AffineMarket (s -> b -> t) (s -> Either t a) |
Instances
Visiting (AffineMarket a b) Source # | |
Defined in Optics.Internal.Concrete visit :: (forall (f :: Type -> Type). Functor f => (forall r. r -> f r) -> (a0 -> f b0) -> s -> f t) -> AffineMarket a b i a0 b0 -> AffineMarket a b i s t Source # ivisit :: (forall (f :: Type -> Type). Functor f => (forall r. r -> f r) -> (i -> a0 -> f b0) -> s -> f t) -> AffineMarket a b j a0 b0 -> AffineMarket a b (i -> j) s t Source # | |
Choice (AffineMarket a b) Source # | |
Defined in Optics.Internal.Concrete left' :: AffineMarket a b i a0 b0 -> AffineMarket a b i (Either a0 c) (Either b0 c) Source # right' :: AffineMarket a b i a0 b0 -> AffineMarket a b i (Either c a0) (Either c b0) Source # | |
Strong (AffineMarket a b) Source # | |
Defined in Optics.Internal.Concrete first' :: AffineMarket a b i a0 b0 -> AffineMarket a b i (a0, c) (b0, c) Source # second' :: AffineMarket a b i a0 b0 -> AffineMarket a b i (c, a0) (c, b0) Source # linear :: (forall (f :: Type -> Type). Functor f => (a0 -> f b0) -> s -> f t) -> AffineMarket a b i a0 b0 -> AffineMarket a b i s t Source # ilinear :: (forall (f :: Type -> Type). Functor f => (i -> a0 -> f b0) -> s -> f t) -> AffineMarket a b j a0 b0 -> AffineMarket a b (i -> j) s t Source # | |
Profunctor (AffineMarket a b) Source # | |
Defined in Optics.Internal.Concrete dimap :: (a0 -> b0) -> (c -> d) -> AffineMarket a b i b0 c -> AffineMarket a b i a0 d Source # lmap :: (a0 -> b0) -> AffineMarket a b i b0 c -> AffineMarket a b i a0 c Source # rmap :: (c -> d) -> AffineMarket a b i b0 c -> AffineMarket a b i b0 d Source # lcoerce' :: Coercible a0 b0 => AffineMarket a b i a0 c -> AffineMarket a b i b0 c Source # rcoerce' :: Coercible a0 b0 => AffineMarket a b i c a0 -> AffineMarket a b i c b0 Source # conjoined__ :: (AffineMarket a b i a0 b0 -> AffineMarket a b i s t) -> (AffineMarket a b i a0 b0 -> AffineMarket a b j s t) -> AffineMarket a b i a0 b0 -> AffineMarket a b j s t Source # ixcontramap :: (j -> i) -> AffineMarket a b i a0 b0 -> AffineMarket a b j a0 b0 Source # |