-- | -- Module: Optics.Prism -- Description: A generalised or first-class constructor. -- -- A 'Prism' generalises the notion of a constructor (just as a -- 'Optics.Lens.Lens' generalises the notion of a field). -- module Optics.Prism ( -- * Formation Prism , Prism' -- * Introduction , prism -- * Elimination -- | A 'Prism' is in particular an 'Optics.AffineFold.AffineFold', a -- 'Optics.Review.Review' and a 'Optics.Setter.Setter', therefore you can -- specialise types to obtain: -- -- @ -- 'Optics.AffineFold.preview' :: 'Prism' s t a b -> s -> Maybe a -- 'Optics.Review.review' :: 'Prism' s t a b -> b -> t -- @ -- -- @ -- 'Optics.Setter.over' :: 'Prism' s t a b -> (a -> b) -> s -> t -- 'Optics.Setter.set' :: 'Prism' s t a b -> b -> s -> t -- @ -- * Computation -- | -- -- @ -- 'Optics.Review.review' ('prism' f g) ≡ f -- 'Optics.AffineTraversal.matching' ('prism' f g) ≡ g -- @ -- * Well-formedness -- | -- -- @ -- 'Optics.AffineTraversal.matching' o ('Optics.Review.review' o b) ≡ 'Right' b -- 'Optics.AffineTraversal.matching' o s ≡ 'Right' a => 'Optics.Review.review' o a ≡ s -- @ -- * Additional introduction forms -- | See "Data.Maybe.Optics" and "Data.Either.Optics" for 'Prism's for the -- corresponding types, and 'Optics.Cons.Core._Cons', 'Optics.Cons.Core._Snoc' -- and 'Optics.Empty.Core._Empty' for 'Prism's for container types. , prism' , only , nearly -- * Additional elimination forms , withPrism -- * Combinators , aside , without , below -- * Subtyping , A_Prism -- | <<diagrams/Prism.png Prism in the optics hierarchy>> ) where import Control.Monad import Data.Bifunctor import Optics.Internal.Concrete import Optics.Internal.Optic import Optics.Internal.Profunctor -- | Type synonym for a type-modifying prism. type Prism s t a b = Optic A_Prism NoIx s t a b -- | Type synonym for a type-preserving prism. type Prism' s a = Optic' A_Prism NoIx s a -- | Build a prism from a constructor and a matcher, which must respect the -- well-formedness laws. -- -- If you want to build a 'Prism' from the van Laarhoven representation, use -- @prismVL@ from the @optics-vl@ package. prism :: (b -> t) -> (s -> Either t a) -> Prism s t a b prism construct match = Optic $ dimap match (either id construct) . right' {-# INLINE prism #-} -- | This is usually used to build a 'Prism'', when you have to use an operation -- like 'Data.Typeable.cast' which already returns a 'Maybe'. prism' :: (b -> s) -> (s -> Maybe a) -> Prism s s a b prism' bs sma = prism bs (\s -> maybe (Left s) Right (sma s)) {-# INLINE prism' #-} -- | Work with a 'Prism' as a constructor and a matcher. withPrism :: Is k A_Prism => Optic k is s t a b -> ((b -> t) -> (s -> Either t a) -> r) -> r withPrism o k = case getOptic (castOptic @A_Prism o) (Market id Right) of Market construct match -> k construct match {-# INLINE withPrism #-} ---------------------------------------- -- | Use a 'Prism' to work over part of a structure. aside :: Is k A_Prism => Optic k is s t a b -> Prism (e, s) (e, t) (e, a) (e, b) aside k = withPrism k $ \bt seta -> prism (fmap bt) $ \(e,s) -> case seta s of Left t -> Left (e,t) Right a -> Right (e,a) {-# INLINE aside #-} -- | Given a pair of prisms, project sums. -- -- Viewing a 'Prism' as a co-'Optics.Lens.Lens', this combinator can be seen to -- be dual to 'Optics.Lens.alongside'. without :: (Is k A_Prism, Is l A_Prism) => Optic k is s t a b -> Optic l is u v c d -> Prism (Either s u) (Either t v) (Either a c) (Either b d) without k = withPrism k $ \bt seta k' -> withPrism k' $ \dv uevc -> prism (bimap bt dv) $ \su -> case su of Left s -> bimap Left Left (seta s) Right u -> bimap Right Right (uevc u) {-# INLINE without #-} -- | Lift a 'Prism' through a 'Traversable' functor, giving a 'Prism' that -- matches only if all the elements of the container match the 'Prism'. below :: (Is k A_Prism, Traversable f) => Optic' k is s a -> Prism' (f s) (f a) below k = withPrism k $ \bt seta -> prism (fmap bt) $ \s -> case traverse seta s of Left _ -> Left s Right t -> Right t {-# INLINE below #-} -- | This 'Prism' compares for exact equality with a given value. -- -- >>> only 4 # () -- 4 -- -- >>> 5 ^? only 4 -- Nothing only :: Eq a => a -> Prism' a () only a = prism' (\() -> a) $ guard . (a ==) {-# INLINE only #-} -- | This 'Prism' compares for approximate equality with a given value and a -- predicate for testing, an example where the value is the empty list and the -- predicate checks that a list is empty (same as 'Optics.Empty._Empty' with the -- 'Optics.Empty.AsEmpty' list instance): -- -- >>> nearly [] null # () -- [] -- >>> [1,2,3,4] ^? nearly [] null -- Nothing -- -- @'nearly' [] 'Prelude.null' :: 'Prism'' [a] ()@ -- -- To comply with the 'Prism' laws the arguments you supply to @nearly a p@ are -- somewhat constrained. -- -- We assume @p x@ holds iff @x ≡ a@. Under that assumption then this is a valid -- 'Prism'. -- -- This is useful when working with a type where you can test equality for only -- a subset of its values, and the prism selects such a value. nearly :: a -> (a -> Bool) -> Prism' a () nearly a p = prism' (\() -> a) $ guard . p {-# INLINE nearly #-} -- $setup -- >>> import Optics.Core