Copyright | (c) Erich Gut |
---|---|
License | BSD3 |
Maintainer | zerich.gut@gmail.com |
Safe Haskell | Safe-Inferred |
Language | Haskell2010 |
homomorphisms between Fibred
structures
Synopsis
- class (EmbeddableMorphism h Fbr, Applicative h, Entity2 h, EmbeddableMorphismTyp h) => HomFibred h where
- class (Category h, Functorial h, HomFibred h) => FunctorialHomFibred h
- class (EmbeddableMorphism h FbrOrt, HomFibred h, HomOriented h) => HomFibredOriented h
- prpHomFbrOrt :: HomFibredOriented h => h a b -> Root a -> Statement
Fibred
class (EmbeddableMorphism h Fbr, Applicative h, Entity2 h, EmbeddableMorphismTyp h) => HomFibred h where Source #
type family of homomorphisms between Fibred
structures.
Property Let h
be an instance of HomFibred
then for all a
, b
and f
in
h a b
and x
in a
holds:
.root
(amap
f x) ==
rmap
f (root
x)
Nothing
rmap :: h a b -> Root a -> Root b Source #
default rmap :: (EmbeddableMorphism h FbrOrt, HomOriented h) => h a b -> Root a -> Root b Source #
Instances
HomFibred h => HomFibred (Path h) Source # | |
(Semiring r, Commutative r) => HomFibred (HomSymbol r) Source # | |
(TransformableOp s, ForgetfulFbrOrt s, ForgetfulTyp s, Typeable s) => HomFibred (HomOp s) Source # | |
(ForgetfulFbr s, ForgetfulTyp s, Typeable s) => HomFibred (IdHom s) Source # | |
(TransformableOp s, ForgetfulFbrOrt s, ForgetfulTyp s, Typeable s) => HomFibred (IsoOp s) Source # | |
HomFibredOriented h => HomFibred (OpHom h) Source # | |
(TransformableOp s, ForgetfulDst s, ForgetfulTyp s, Typeable s) => HomFibred (IsoOpMap Matrix s) Source # | |
(TransformableOp s, ForgetfulDst s, ForgetfulTyp s, Typeable s) => HomFibred (OpMap Matrix s) Source # | |
class (Category h, Functorial h, HomFibred h) => FunctorialHomFibred h Source #
functorial application of Fibred
homomorphisms.
Instances
FunctorialHomFibred h => FunctorialHomFibred (Path h) Source # | |
Defined in OAlg.Hom.Fibred |
Fibred Oriented
class (EmbeddableMorphism h FbrOrt, HomFibred h, HomOriented h) => HomFibredOriented h Source #
type family of homomorphisms between FibredOriented
structures.
Property Let h
be an instance of HomFibredOriented
then for all a
, b
and f
in
h a b
and r
in
holds: Root
a
.rmap
f r ==
omap
f r
Instances
HomFibredOriented h => HomFibredOriented (Path h) Source # | |
Defined in OAlg.Hom.Fibred | |
(TransformableOp s, ForgetfulFbrOrt s, ForgetfulTyp s, Typeable s) => HomFibredOriented (HomOp s) Source # | |
Defined in OAlg.Hom.Fibred | |
(TransformableOp s, ForgetfulFbrOrt s, ForgetfulTyp s, Typeable s) => HomFibredOriented (IdHom s) Source # | |
Defined in OAlg.Hom.Fibred | |
(TransformableOp s, ForgetfulFbrOrt s, ForgetfulTyp s, Typeable s) => HomFibredOriented (IsoOp s) Source # | |
Defined in OAlg.Hom.Fibred | |
HomFibredOriented h => HomFibredOriented (OpHom h) Source # | |
Defined in OAlg.Hom.Fibred | |
(TransformableOp s, ForgetfulDst s, ForgetfulTyp s, Typeable s) => HomFibredOriented (IsoOpMap Matrix s) Source # | |
Defined in OAlg.Entity.Matrix.Definition | |
(TransformableOp s, ForgetfulDst s, ForgetfulTyp s, Typeable s) => HomFibredOriented (OpMap Matrix s) Source # | |
Defined in OAlg.Entity.Matrix.Definition |
Proposition
prpHomFbrOrt :: HomFibredOriented h => h a b -> Root a -> Statement Source #
validity according to HomFibredOriented
.