oalg-base-1.1.4.0: Algebraic structures on oriented entities and limits as a tool kit to solve algebraic problems.
Copyright(c) Erich Gut
LicenseBSD3
Maintainerzerich.gut@gmail.com
Safe HaskellSafe-Inferred
LanguageHaskell2010

OAlg.Hom.Fibred

Description

homomorphisms between Fibred structures

Synopsis

Fibred

class (EmbeddableMorphism h Fbr, Applicative h, Entity2 h, EmbeddableMorphismTyp h) => HomFibred h where Source #

type family of homomorphisms between Fibred structures.

Property Let h be an instance of HomFibred then for all a, b and f in h a b and x in a holds: root (amap f x) == rmap f (root x).

Minimal complete definition

Nothing

Methods

rmap :: h a b -> Root a -> Root b Source #

default rmap :: (EmbeddableMorphism h FbrOrt, HomOriented h) => h a b -> Root a -> Root b Source #

Instances

Instances details
HomFibred h => HomFibred (Path h) Source # 
Instance details

Defined in OAlg.Hom.Fibred

Methods

rmap :: Path h a b -> Root a -> Root b Source #

(Semiring r, Commutative r) => HomFibred (HomSymbol r) Source # 
Instance details

Defined in OAlg.Entity.Matrix.Vector

Methods

rmap :: HomSymbol r a b -> Root a -> Root b Source #

(TransformableOp s, ForgetfulFbrOrt s, ForgetfulTyp s, Typeable s) => HomFibred (HomOp s) Source # 
Instance details

Defined in OAlg.Hom.Fibred

Methods

rmap :: HomOp s a b -> Root a -> Root b Source #

(ForgetfulFbr s, ForgetfulTyp s, Typeable s) => HomFibred (IdHom s) Source # 
Instance details

Defined in OAlg.Hom.Fibred

Methods

rmap :: IdHom s a b -> Root a -> Root b Source #

(TransformableOp s, ForgetfulFbrOrt s, ForgetfulTyp s, Typeable s) => HomFibred (IsoOp s) Source # 
Instance details

Defined in OAlg.Hom.Fibred

Methods

rmap :: IsoOp s a b -> Root a -> Root b Source #

HomFibredOriented h => HomFibred (OpHom h) Source # 
Instance details

Defined in OAlg.Hom.Fibred

Methods

rmap :: OpHom h a b -> Root a -> Root b Source #

(TransformableOp s, ForgetfulDst s, ForgetfulTyp s, Typeable s) => HomFibred (IsoOpMap Matrix s) Source # 
Instance details

Defined in OAlg.Entity.Matrix.Definition

Methods

rmap :: IsoOpMap Matrix s a b -> Root a -> Root b Source #

(TransformableOp s, ForgetfulDst s, ForgetfulTyp s, Typeable s) => HomFibred (OpMap Matrix s) Source # 
Instance details

Defined in OAlg.Entity.Matrix.Definition

Methods

rmap :: OpMap Matrix s a b -> Root a -> Root b Source #

class (Category h, Functorial h, HomFibred h) => FunctorialHomFibred h Source #

functorial application of Fibred homomorphisms.

Instances

Instances details
FunctorialHomFibred h => FunctorialHomFibred (Path h) Source # 
Instance details

Defined in OAlg.Hom.Fibred

Fibred Oriented

class (EmbeddableMorphism h FbrOrt, HomFibred h, HomOriented h) => HomFibredOriented h Source #

type family of homomorphisms between FibredOriented structures.

Property Let h be an instance of HomFibredOriented then for all a, b and f in h a b and r in Root a holds: rmap f r == omap f r.

Proposition

prpHomFbrOrt :: HomFibredOriented h => h a b -> Root a -> Statement Source #

validity according to HomFibredOriented.