Copyright | (c) Erich Gut |
---|---|
License | BSD3 |
Maintainer | zerich.gut@gmail.com |
Safe Haskell | Safe-Inferred |
Language | Haskell2010 |
definition of adjunctions between Multiplicative
structures. We relay on the terms and notation as
used in nLab
Synopsis
- data Adjunction h d c where
- Adjunction :: h c d -> h d c -> (Point c -> c) -> (Point d -> d) -> Adjunction h d c
- unitr :: Adjunction h d c -> Point c -> c
- unitl :: Adjunction h d c -> Point d -> d
- adjl :: Hom Mlt h => Adjunction h d c -> Point d -> c -> d
- adjr :: Hom Mlt h => Adjunction h d c -> Point c -> d -> c
- adjHomMlt :: Hom Mlt h => Adjunction h d c -> Homomorphous Mlt d c
- coAdjunction :: Hom Mlt h => Adjunction h d c -> Dual (Adjunction h d c)
- prpAdjunction :: Hom Mlt h => Adjunction h d c -> X (Point d) -> X d -> X (Point c) -> X c -> Statement
- prpAdjunctionRight :: Hom Mlt h => Adjunction h d c -> Point c -> c -> Statement
- prpAdjunctionLeft :: Hom Mlt h => Adjunction h d c -> Point d -> d -> Statement
Adjunction
data Adjunction h d c where Source #
adjunction between two multiplicative structures d
and c
according
two given multiplicative homomorphisms l :: h c d
and
r :: h d c
.
l <------- d c --------> r
Property Let
be in Adjunction
l r u v
where
Adjunction
h d ch
is a Mlt
-homomorphism,
then holds:
Naturality of the right unit
u
:Naturality of the left unit
v
:Triangle identities:
The following diagrams illustrate the above equations
naturality of the right unit u
(Equations 1.1 and 1.2):
u a a -------> pmap r (pmap l a) | | f | | amap r (amap l f) v v b -------> pmap r (pmap l b) u b
naturality of the left unit v
(Equations 2.1 and 2.2):
v a a <------- pmap l (pmap r a) | | g | | amap l (ampa r g) v v b <------ pmap l (pmap r b) v b
the left adjoint of the right unit u
is one
(Equation 3.1, see adjl
):
pmap l x x / | | / | | / | | amap l (u x) / | one ~ u x | / | | / | | v v v pmap l (pmap r (pmap l x)) ---> pmap l x pmap r (pmap l x) v (pmap l x)
the right adjoint of the left unit v
is one
(Equation 3.2, see adjr
):
u (pmap r y) pmap l (pmap r y) pmap r y ---> pmap r (pmap l (pmap r y)) | | / | | / | v y ~ one | / amap r (v y) | | / | | / v v v y pmap r y
Adjunction | |
|
Instances
(HomMultiplicative h, XStandardPoint d, XStandard d, XStandardPoint c, XStandard c) => Validable (Adjunction h d c) Source # | |
Defined in OAlg.Adjunction.Definition valid :: Adjunction h d c -> Statement Source # | |
type Dual (Adjunction h d c :: Type) Source # | |
Defined in OAlg.Adjunction.Definition |
unitr :: Adjunction h d c -> Point c -> c Source #
the unit on the right side.
unitl :: Adjunction h d c -> Point d -> d Source #
the unit on the left side.
adjHomMlt :: Hom Mlt h => Adjunction h d c -> Homomorphous Mlt d c Source #
attest of being Multiplicative
homomorphous.
Dual
coAdjunction :: Hom Mlt h => Adjunction h d c -> Dual (Adjunction h d c) Source #
the dual adjunction.
Proposition
prpAdjunction :: Hom Mlt h => Adjunction h d c -> X (Point d) -> X d -> X (Point c) -> X c -> Statement Source #
validity of an adjunction according to the properties of Adjunction
.
prpAdjunctionRight :: Hom Mlt h => Adjunction h d c -> Point c -> c -> Statement Source #
validity of the unit on the right side.
prpAdjunctionLeft :: Hom Mlt h => Adjunction h d c -> Point d -> d -> Statement Source #
validity of the unit on the left side.