{-# OPTIONS_GHC -Wall #-}
{-# OPTIONS_GHC -Wno-unused-imports #-}
module NumHask.Algebra.Additive
( Additive (..),
sum,
accsum,
Subtractive (..),
)
where
import Control.Applicative
import Data.Foldable (foldl')
import Data.Int (Int16, Int32, Int64, Int8)
import Data.Traversable (mapAccumL)
import Data.Word (Word, Word16, Word32, Word64, Word8)
import GHC.Natural (Natural (..))
import Prelude (Applicative, Bool, Double, Float, Functor, Int, Integer, fromInteger, ($))
import qualified Prelude as P
class Additive a where
infixl 6 +
(+) :: a -> a -> a
zero :: a
sum :: (Additive a, P.Foldable f) => f a -> a
sum :: forall a (f :: * -> *). (Additive a, Foldable f) => f a -> a
sum = forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' forall a. Additive a => a -> a -> a
(+) forall a. Additive a => a
zero
accsum :: (Additive a, P.Traversable f) => f a -> f a
accsum :: forall a (f :: * -> *). (Additive a, Traversable f) => f a -> f a
accsum = forall a b. (a, b) -> b
P.snd forall b c a. (b -> c) -> (a -> b) -> a -> c
P.. forall (t :: * -> *) s a b.
Traversable t =>
(s -> a -> (s, b)) -> s -> t a -> (s, t b)
mapAccumL (\a
a a
b -> (a
a forall a. Additive a => a -> a -> a
+ a
b, a
a forall a. Additive a => a -> a -> a
+ a
b)) forall a. Additive a => a
zero
class (Additive a) => Subtractive a where
negate :: a -> a
negate a
a = forall a. Additive a => a
zero forall a. Subtractive a => a -> a -> a
- a
a
infixl 6 -
(-) :: a -> a -> a
a
a - a
b = a
a forall a. Additive a => a -> a -> a
+ forall a. Subtractive a => a -> a
negate a
b
instance Additive Double where
+ :: Double -> Double -> Double
(+) = forall a. Num a => a -> a -> a
(P.+)
zero :: Double
zero = Double
0
instance Subtractive Double where
negate :: Double -> Double
negate = forall a. Num a => a -> a
P.negate
instance Additive Float where
+ :: Float -> Float -> Float
(+) = forall a. Num a => a -> a -> a
(P.+)
zero :: Float
zero = Float
0
instance Subtractive Float where
negate :: Float -> Float
negate = forall a. Num a => a -> a
P.negate
instance Additive Int where
+ :: Int -> Int -> Int
(+) = forall a. Num a => a -> a -> a
(P.+)
zero :: Int
zero = Int
0
instance Subtractive Int where
negate :: Int -> Int
negate = forall a. Num a => a -> a
P.negate
instance Additive Integer where
+ :: Integer -> Integer -> Integer
(+) = forall a. Num a => a -> a -> a
(P.+)
zero :: Integer
zero = Integer
0
instance Subtractive Integer where
negate :: Integer -> Integer
negate = forall a. Num a => a -> a
P.negate
instance Additive Bool where
+ :: Bool -> Bool -> Bool
(+) = Bool -> Bool -> Bool
(P.||)
zero :: Bool
zero = Bool
P.False
instance Additive Natural where
+ :: Natural -> Natural -> Natural
(+) = forall a. Num a => a -> a -> a
(P.+)
zero :: Natural
zero = Natural
0
instance Subtractive Natural where
negate :: Natural -> Natural
negate = forall a. Num a => a -> a
P.negate
instance Additive Int8 where
+ :: Int8 -> Int8 -> Int8
(+) = forall a. Num a => a -> a -> a
(P.+)
zero :: Int8
zero = Int8
0
instance Subtractive Int8 where
negate :: Int8 -> Int8
negate = forall a. Num a => a -> a
P.negate
instance Additive Int16 where
+ :: Int16 -> Int16 -> Int16
(+) = forall a. Num a => a -> a -> a
(P.+)
zero :: Int16
zero = Int16
0
instance Subtractive Int16 where
negate :: Int16 -> Int16
negate = forall a. Num a => a -> a
P.negate
instance Additive Int32 where
+ :: Int32 -> Int32 -> Int32
(+) = forall a. Num a => a -> a -> a
(P.+)
zero :: Int32
zero = Int32
0
instance Subtractive Int32 where
negate :: Int32 -> Int32
negate = forall a. Num a => a -> a
P.negate
instance Additive Int64 where
+ :: Int64 -> Int64 -> Int64
(+) = forall a. Num a => a -> a -> a
(P.+)
zero :: Int64
zero = Int64
0
instance Subtractive Int64 where
negate :: Int64 -> Int64
negate = forall a. Num a => a -> a
P.negate
instance Additive Word where
+ :: Word -> Word -> Word
(+) = forall a. Num a => a -> a -> a
(P.+)
zero :: Word
zero = Word
0
instance Subtractive Word where
negate :: Word -> Word
negate = forall a. Num a => a -> a
P.negate
instance Additive Word8 where
+ :: Word8 -> Word8 -> Word8
(+) = forall a. Num a => a -> a -> a
(P.+)
zero :: Word8
zero = Word8
0
instance Subtractive Word8 where
negate :: Word8 -> Word8
negate = forall a. Num a => a -> a
P.negate
instance Additive Word16 where
+ :: Word16 -> Word16 -> Word16
(+) = forall a. Num a => a -> a -> a
(P.+)
zero :: Word16
zero = Word16
0
instance Subtractive Word16 where
negate :: Word16 -> Word16
negate = forall a. Num a => a -> a
P.negate
instance Additive Word32 where
+ :: Word32 -> Word32 -> Word32
(+) = forall a. Num a => a -> a -> a
(P.+)
zero :: Word32
zero = Word32
0
instance Subtractive Word32 where
negate :: Word32 -> Word32
negate = forall a. Num a => a -> a
P.negate
instance Additive Word64 where
+ :: Word64 -> Word64 -> Word64
(+) = forall a. Num a => a -> a -> a
(P.+)
zero :: Word64
zero = Word64
0
instance Subtractive Word64 where
negate :: Word64 -> Word64
negate = forall a. Num a => a -> a
P.negate
instance (Additive b) => Additive (a -> b) where
a -> b
f + :: (a -> b) -> (a -> b) -> a -> b
+ a -> b
f' = \a
a -> a -> b
f a
a forall a. Additive a => a -> a -> a
+ a -> b
f' a
a
zero :: a -> b
zero a
_ = forall a. Additive a => a
zero
instance (Subtractive b) => Subtractive (a -> b) where
negate :: (a -> b) -> a -> b
negate a -> b
f = forall a. Subtractive a => a -> a
negate forall b c a. (b -> c) -> (a -> b) -> a -> c
P.. a -> b
f