module Control.NumericalApplicative.Backwards where
import Prelude hiding (foldr, foldr1, foldl, foldl1)
import qualified Control.Applicative as A
import Data.Foldable as F
import Data.Traversable as T
newtype Backwards f a = Backwards { forwards :: f a }
instance (Functor f) => Functor (Backwards f) where
fmap f (Backwards a) = Backwards (fmap f a)
{-# INLINE fmap #-}
instance (A.Applicative f) => A.Applicative (Backwards f) where
pure a = Backwards (A.pure a)
{-# INLINE pure #-}
Backwards f <*> Backwards a = Backwards (a <**> f)
{-# INLINE (<*>) #-}
instance (A.Alternative f) => A.Alternative (Backwards f) where
empty = Backwards A.empty
Backwards x <|> Backwards y = Backwards (x A.<|> y)
instance (Foldable f) => Foldable (Backwards f) where
foldMap f (Backwards t) = foldMap f t
foldr f z (Backwards t) = foldr f z t
foldl f z (Backwards t) = foldl f z t
foldr1 f (Backwards t) = foldl1 f t
foldl1 f (Backwards t) = foldr1 f t
instance (Traversable f) => Traversable (Backwards f) where
traverse f (Backwards t) = fmap Backwards (traverse f t)
sequenceA (Backwards t) = fmap Backwards (sequenceA t)
mapM f = A.unwrapMonad . T.traverse (A.WrapMonad . f)
sequence = T.mapM id
{-#INLINE traverse #-}
{-#INLINE sequenceA #-}
{-#INLINE mapM #-}
{-#INLINE sequence #-}
(<**>) :: A.Applicative f => f a -> f (a -> b) -> f b
(<**>) = liftA2 (flip ($))
{-# INLINE (<**>) #-}
liftA2 :: A.Applicative f => (a -> b -> c) -> f a -> f b -> f c
liftA2 f a b = f `fmap` a A.<*> b
{-# INLINE liftA2 #-}