numeric-prelude-0.4.3.2: An experimental alternative hierarchy of numeric type classes

Safe HaskellNone
LanguageHaskell98

Number.ResidueClass.Func

Synopsis

Documentation

newtype T a Source #

Here a residue class is a representative and the modulus is an argument. You cannot show a value of type T, you can only show it with respect to a concrete modulus. Values cannot be compared, because the comparison result depends on the modulus.

Constructors

Cons (a -> a) 
Instances
Eq (T a) Source # 
Instance details

Defined in Number.ResidueClass.Func

Methods

(==) :: T a -> T a -> Bool #

(/=) :: T a -> T a -> Bool #

Integral a => Num (T a) Source # 
Instance details

Defined in Number.ResidueClass.Func

Methods

(+) :: T a -> T a -> T a #

(-) :: T a -> T a -> T a #

(*) :: T a -> T a -> T a #

negate :: T a -> T a #

abs :: T a -> T a #

signum :: T a -> T a #

fromInteger :: Integer -> T a #

Show (T a) Source # 
Instance details

Defined in Number.ResidueClass.Func

Methods

showsPrec :: Int -> T a -> ShowS #

show :: T a -> String #

showList :: [T a] -> ShowS #

C a => C (T a) Source # 
Instance details

Defined in Number.ResidueClass.Func

Methods

zero :: T a Source #

(+) :: T a -> T a -> T a Source #

(-) :: T a -> T a -> T a Source #

negate :: T a -> T a Source #

C a => C (T a) Source # 
Instance details

Defined in Number.ResidueClass.Func

Methods

(*) :: T a -> T a -> T a Source #

one :: T a Source #

fromInteger :: Integer -> T a Source #

(^) :: T a -> Integer -> T a Source #

C a => C (T a) Source # 
Instance details

Defined in Number.ResidueClass.Func

Methods

(/) :: T a -> T a -> T a Source #

recip :: T a -> T a Source #

fromRational' :: Rational -> T a Source #

(^-) :: T a -> Integer -> T a Source #

concrete :: a -> T a -> a Source #

fromRepresentative :: C a => a -> T a Source #

lift0 :: (a -> a) -> T a Source #

lift1 :: (a -> a -> a) -> T a -> T a Source #

lift2 :: (a -> a -> a -> a) -> T a -> T a -> T a Source #

zero :: C a => T a Source #

one :: C a => T a Source #

fromInteger :: C a => Integer -> T a Source #

equal :: Eq a => a -> T a -> T a -> Bool Source #

lift98_1 :: (T a -> T a -> T a) -> T a -> T a Source #

lift98_2 :: (T a -> T a -> T a -> T a) -> T a -> T a -> T a Source #