numeric-prelude-0.4.2: An experimental alternative hierarchy of numeric type classes

Safe HaskellNone
LanguageHaskell98

Algebra.ToInteger

Synopsis

Documentation

class (C a, C a) => C a where Source

The two classes C and C exist to allow convenient conversions, primarily between the built-in types. They should satisfy

  fromInteger .  toInteger === id
   toRational .  toInteger === toRational

Conversions must be lossless, that is, they do not round in any way. For rounding see Algebra.RealRing.

I think that the RealIntegral superclass is too restrictive. Non-negative numbers are not a ring, but can be easily converted to Integers.

Methods

toInteger :: a -> Integer Source

Instances

C Int 
C Int8 
C Int16 
C Int32 
C Int64 
C Integer 
C Word 
C Word8 
C Word16 
C Word32 
C Word64 
C T 
C a => C (T a) 
Integral a => C (T a) 
C a => C (T a) 
(C a, C a) => C (T a) 

fromIntegral :: (C a, C b) => a -> b Source

ringPower :: (C a, C b) => b -> a -> a Source

A prefix function of '(Algebra.Ring.^)' with a parameter order that fits the needs of partial application and function composition. It has generalised exponent.

See: Argument order of expNat on http://www.haskell.org/pipermail/haskell-cafe/2006-September/018022.html

fieldPower :: (C a, C b) => b -> a -> a Source

A prefix function of '(Algebra.Field.^-)'. It has a generalised exponent.