{-| Module : Equivar Description : Theory of equivariant orbit-finite structures Copyright : (c) Murdoch J. Gabbay, 2020 License : GPL-3 Maintainer : murdoch.gabbay@gmail.com Stability : experimental Portability : POSIX This module contains functions for manipulating lists of representatives which represent orbit-finite equivariant maps, and applying them to arguments by matching representatives to arguments up to a swapping (permutation) action. -} {-# LANGUAGE ConstraintKinds , DataKinds , DeriveGeneric , DeriveAnyClass , FlexibleContexts , FlexibleInstances , GADTs , InstanceSigs , MultiParamTypeClasses , PartialTypeSignatures , ScopedTypeVariables , TypeOperators #-} module Language.Nominal.Equivar ( -- * Equivariance -- $intro KEvFun (..) , EvFun -- * Equivariant lists and maps -- $basiclists , kevRep , evRep , kevNub , evNub -- * Lookup -- $lookup , kevLookup , evLookup , kevLookupList' , kevLookupList , evLookupList -- * Orbit-finite equivariant maps -- $orbitfinite , KEvFinMap , EvFinMap , ($$) , constEvFinMap , extEvFinMap , evFinMap , fromEvFinMap -- * Tests -- $tests ) where import qualified Data.Map.Strict as DM -- for unifyPerm import Data.List as L import Data.Proxy (Proxy (..)) import qualified Data.Set as Set (fromList,empty) import GHC.Generics import Type.Reflection import Data.Type.Equality -- for testEquality import Language.Nominal.Name import Language.Nominal.NameSet import Language.Nominal.Unify -- For doctest: -- $setup -- >>> :m +Language.Nominal.Nom -- >>> let [a, b, c] = exit $ freshAtoms [(), (), ()] {- $intro A structure is __equivariant__ when it has a trivial swapping action: > swp _ _ a == a /__Example:__ Every element of a @Nameless@ type is equivariant./ /__Example:__ The mapping @const True :: Atoms -> Bool@ is equivariant./ This second example is a particularly important example because it illustrates that "being equivariant" is /not/ the same as "being nameless". To be equivariant, you only need to be /symmetric/. A structure is __equivariant orbit-finite__ when it can be represented by * taking finitely many representatives and * closing under the swapping action. /__Example:__ the graph of the identity mapping @id :: Atom -> Atom@ can be represented by closing @[(a,a)]@ under all swappings. So @id@ is equivariant orbit-finite./ Two equivariant orbit-finite maps may be compared for equality even though they may be infinite as functions, because they are finite as representatives-up-to-orbits. Opearationally for us here in Haskell, it suffices to inspect the representatives and compare them for unifiability using the functions from "Unify". We will build: * An equivariant function type 'KEvFun'. * An equivariant orbit-finite space of maps 'KEvFinMap', and * an equivariant application operation @$$@, for applying a 'KEvFinMap' (which under the hood is just a finite list of representatives) equivariantly to an argument. __Warning:__ When applying a map equivariantly using '$$', It should hold that if @(m $$ a) == b@ then @supp b `isSubsetOf` supp a@. If not, then unexpected behaviour may result. The general mathematical reasons for this are discussed with examples e.g. in <http://dx.doi.org/10.4204/EPTCS.34.5 closed nominal rewriting> (see also <http://www.gabbay.org.uk/papers.html#clonre author's pdfs>). Thus in the terminology of that paper, we need @m@ to be closed. One way to guarantee this is to ensure that @b@ be @'Nameless'@, so that @b@ is a type like 'Bool' or 'Int' and @supp b@ is guaranteed empty. In practice for the cases we care about, @b@ will indeed always be @'Nameless'@. -} -- | @'KEvFun' s a b@ is just @a -> b@ in a wrapper. -- But, we give this wrapped function trivial swapping and support. (For a usage example see the source code for 'Language.Nominal.Examples.IdealisedEUTxO.Val'.) -- -- Functions need not be finite and are not equality types in general, so we cannot computably test that the actual function wrapped by the programmer actually /does/ have a trivial swapping action (i.e. really is equivariant). -- -- It's the programmer's job to only insert truly equivariant functions here. Non-equivariant elements may lead to incorrect runtime behaviour. -- -- On an equivariant orbit-finite type, the compiler can step in with more stringent guarantees. See e.g. 'KEvFinMap'. newtype KEvFun s a b = EvFun { runEvFun :: a -> b -- ^ Function in a wrapper } instance (Typeable s, Swappable a, Swappable b) => Swappable (KEvFun s a b) where kswp (a1 :: KAtom t) (a2 :: KAtom t) (EvFun f) = case testEquality (typeRep :: TypeRep t) (typeRep :: TypeRep s) of Just Refl -> EvFun f -- s and t are the same type Nothing -> EvFun $ kswp a1 a2 f instance (Typeable s, Swappable a, Swappable b) => KSupport s (KEvFun s a b) where ksupp _ _ = Set.empty -- | @'Tom'@-equivariant function-space type EvFun = KEvFun Tom -- * Equivariant lists and maps {- $basiclists Now for some basic functions that filter an input list down to a nub of representatives. -} -- | Filter a list down to one representative from each atoms-orbit (choosing first representative of each orbit). kevRep :: KUnifyPerm s a => proxy s -> [a] -> [a] kevRep = L.nubBy . kunifiablePerm -- | Instance for @'Tom'@ atom type. evRep :: UnifyPerm a => [a] -> [a] evRep = kevRep atTom -- | Restrict a Map to its equivariant nub, discarding all but one of each key-orbit kevNub :: (Ord a, KUnifyPerm s a) => proxy s -> DM.Map a b -> DM.Map a b kevNub p m = DM.restrictKeys m ((Set.fromList . kevRep p . DM.keys) m) -- | Instance for unit atom type. evNub :: (Ord a, UnifyPerm a) => DM.Map a b -> DM.Map a b evNub = kevNub atTom -- * Lookup {- $lookup So we have a finite set of representative pairs. How do we unify a putative input with a representative to find a matching output? -} -- | Equivariantly apply a list of pairs, which we assume represents a map, to an element. -- Also returns the source element. kevLookupList' :: (KUnifyPerm s a, KUnifyPerm s b) => proxy s -> [(a, b)] -> a -> Maybe (a, b) kevLookupList' _ [] _ = Nothing -- Empty list? Stop. kevLookupList' p ((a, b) : t) a' = -- Nonempty list? let r = kunifyPerm p a a' in -- fetch unifier, if exists if isJustRen r then Just (a, ren r b) -- if it does, Just apply unifying renaming else kevLookupList' p t a' -- otherwise, continue down list. -- | Equivariantly apply a list of pairs (which we assume represents a map), to an element kevLookupList :: (KUnifyPerm s a, KUnifyPerm s b) => proxy s -> [(a,b)] -> a -> Maybe b kevLookupList p xs a = snd <$> kevLookupList' p xs a -- | Equivariantly apply a list of pairs (which we assume represents a map), to an element. @'Tom'@ version. evLookupList :: (UnifyPerm a, UnifyPerm b) => [(a,b)] -> a -> Maybe b evLookupList = kevLookupList atTom -- | Equivariantly apply a map @m@ to an element @a@. -- Also returns a unifier. kevLookup' :: (KUnifyPerm s a, KUnifyPerm s b) => proxy s -> DM.Map a b -> a -> Maybe (a, b) kevLookup' p m = kevLookupList' p (DM.toList m) -- | Equivariantly apply a map @m@ to an element @a@. -- -- * If @a == ren r a'@ for some @r :: Ren@ and @m a' == b'@, -- -- * then @kevLookup m a == ren r b'@. -- -- For this to work, we require types @a@ and @b@ to support a @'ren'@ action, meaning they should support notions of unification up to permutation. kevLookup :: (KUnifyPerm s a, KUnifyPerm s b) => proxy s -> DM.Map a b -> a -> Maybe b kevLookup p m = fmap snd . kevLookup' p m -- | @'kevLookup'@ instantiated to a @'Tom'@. evLookup :: (UnifyPerm a, UnifyPerm b) => DM.Map a b -> a -> Maybe b evLookup = kevLookup atTom -- * Orbit-finite equivariant maps {- $orbitfinite @'KEvFinMap'@ is a type for /orbit-finite/ equivariant maps (contrast with @'KEvFun'@, a type for equivariant functions which need not be orbit-finite). Values of @'KEvFinMap'@ must be constructed using * @'constEvFinMap'@, * @'extEvFinMap'@ and * @'evFinMap'@. Under the hood, @KEvFinMap s a b@ has just one constructor: > DefAndRep b [(a, b)] @DefAndRep@ stands for /Default and list of Representatives/. We represent an orbit-finite equivariant map from @a@ to @b@ as * A default value in @b@, and * a list of key-value pairs, to be applied up to permuting @s@-sorted atoms in the keys. @DefAndRep@ does not store the atoms it wants permuted, in its structure. It's just a pair of an element in @b@ and a list of pairs from @[(a, b)]@. At the point where we use @'$$'@ to equivariantly apply some @DefAndRep@ structure to some argument in @a@, we specify over which atoms we wish to be equivariant. Thus: calling this @KEvFinMap@ is convenient but slighly misleading: the equivariance lies in the @'$$'@-/application/ of a @KEvFinMap@-wrapped collection of representatives, to an argument. -} -- | A type for orbit-finite equivariant maps. data KEvFinMap s a b = DefAndRep (Nameless b) [(a, Nameless b)] deriving (Show, Generic, Swappable) -- | We insist @a@ and @b@ be @k@-swappable so that the mathematical notion of support (which is based on nominal sets) makes sense. -- -- Operationally, we don't care: if see something of type @KEvFinMap s a b@, we return @Set.empty@. instance (Typeable s, Swappable a, Swappable b) => KSupport s (KEvFinMap s a b) where ksupp _ _ = Set.empty -- | @'KEvFinMap'@ at a @'Tom'@. Thus, a type for orbit-finite @'Tom'@-equivariant maps. type EvFinMap a b = KEvFinMap Tom a b -- | Equivariant application of an orbit-finite map. -- Given a map (expressed as finitely many representative pairs) and an argument ... -- -- * it tries to rename atoms to match the argument to the first element of one of its pairs and -- * if it finds a match, it maps to the second element of that pair, suitably renamed. ($$) :: forall s a b. (KUnifyPerm s a, Eq b) => KEvFinMap s a b -> a -> b DefAndRep (Nameless b') xs $$ a = maybe b' getNameless $ kevLookupList (Proxy :: Proxy s) xs a infixr 0 $$ -- | A constant equivariant map. We assume the codomain is @'Nameless'@. -- -- >>> (constEvFinMap 42 :: EvFinMap Char Int) $$ 'x' -- 42 -- -- >>> (constEvFinMap 0 :: EvFinMap Atom Int) $$ a -- 0 constEvFinMap :: KUnifyPerm s a => b -> KEvFinMap s a b constEvFinMap b = DefAndRep (Nameless b) [] -- | Extends a map with a new orbit, by specifying a representative @a@ maps to @b@. -- We assume codomain @b@ is @'Nameless'@, as discussed above. -- -- >>> (extEvFinMap 'x' 7 $ (constEvFinMap 42 :: EvFinMap Char Int)) $$ 'x' -- 7 -- -- >>> (extEvFinMap 'x' 7 $ (constEvFinMap 42 :: EvFinMap Char Int)) $$ 'y' -- 42 -- -- >>> let [m, n, o] = exit $ freshNames [(), (), ()] -- >>> m == n -- False -- >>> unifiablePerm m n -- True -- >>> (extEvFinMap m 7 $ (constEvFinMap 42 :: EvFinMap (Name ()) Int)) $$ n -- 7 -- >>> (extEvFinMap o 8 (extEvFinMap m 7 $ (constEvFinMap 42 :: EvFinMap (Name ()) Int))) $$ n -- 8 extEvFinMap :: forall s a b. (KUnifyPerm s a, Eq a, Eq b) => a -> b -> KEvFinMap s a b -> KEvFinMap s a b extEvFinMap a b f@(DefAndRep (Nameless b') xs) = case kevLookupList' (Proxy :: Proxy s) xs a of Nothing -- No mapping but sending a to the default value? Then noop. | b == b' -> f -- No mapping and not sending a to the default value? Add (a,b) | otherwise -> DefAndRep (Nameless b') $ (a, Nameless b) : xs Just (a'', Nameless b'') -- (a,b) is already there, up to permuting atoms in a (b is nameless). Noop. | b == b'' -> f -- (a,b) is not already there up to permuting atoms in a. Remove (a'',b'') and replace with (a'',b). We really rely on b being nameless, here. | otherwise -> DefAndRep (Nameless b') [(c, if c == a'' then Nameless b else d) | (c, d) <- xs] -- | Constructs an orbit-finite equivariant map by prescribing a default value, and -- finitely many argument-value pairs. -- We assume the codomain is @'Nameless'@, as discussed above. -- -- >>> let f = evFinMap 42 [('x', 7), ('y', 5), ('x', 13)] :: EvFinMap Char Int -- >>> map (f $$) ['x', 'y', 'z'] -- [13,5,42] -- -- >>> let atmEq = evFinMap False [((a,a), True)] :: EvFinMap (Atom, Atom) Bool -- >>> map (atmEq $$) [(b,b), (c,c), (a,c), (b,c)] -- [True,True,False,False] -- -- >>> let g = evFinMap 2 [((a,a), 0), ((b,c), 1)] :: EvFinMap (Atom, Atom) Int -- >>> map (g $$) [(b,b), (c,c), (a,c), (b,c)] -- [0,0,1,1] evFinMap :: (KUnifyPerm s a, Eq a, Eq b) => b -- ^ Default value. -> [(a, b)] -- ^ List of exceptional argument-value pairs. In case of conflict, later pairs overwrite earlier pairs. -> KEvFinMap s a b evFinMap = L.foldl' (\m (a, b) -> extEvFinMap a b m) . constEvFinMap -- | Extracts default value und list of exceptional argument-value pairs from an @'EvFinMap'@. -- -- >>> fromEvFinMap $ (evFinMap 42 [('x', 7), ('y', 5), ('x', 13)] :: EvFinMap Char Int) -- (42,[('y',5),('x',13)]) -- fromEvFinMap :: KEvFinMap s a b -> (b, [(a, b)]) fromEvFinMap (DefAndRep (Nameless b') xs) = (b', [(a, b) | (a, Nameless b) <- xs]) -- | 'KEvFinMap' is compared for equality by comparing the default value and the representatives, up to permutations. -- -- __Edge case:__ If a codomain type is orbit-finite (e.g. @'Bool'@ and @'(Atom,Atom)'@, with two orbits, or @'Atom'@ with one), and representatives exhaust all possibilities, then the default value will never be queried, yet it will still be considered in our equality test. instance (KUnifyPerm s a, Eq b) => Eq (KEvFinMap s a b) where f1@(DefAndRep b1 xs1) == f2@(DefAndRep b2 xs2) = (b1 == b2) -- default values equal? && all (\(a, Nameless b) -> (f2 $$ a) == b) xs1 -- check equality by representatives && all (\(a, Nameless b) -> (f1 $$ a) == b) xs2 -- TODO: replace with extensionality test -- This looks like 'Nameless', but 'Nameless' cannot be parameterised over s. instance (KUnifyPerm s a, KUnifyPerm s b, Eq b) => KUnifyPerm s (KEvFinMap s a b) where kunifyPerm _ f g | f == g = mempty | otherwise = Ren Nothing ren = const id {- $tests Property-based tests are in "Language.Nominal.Properties.EquivarSpec". -}